JP3673508B2 - Intermediate shaft construction method and intermediate shaft - Google Patents

Intermediate shaft construction method and intermediate shaft Download PDF

Info

Publication number
JP3673508B2
JP3673508B2 JP2002170995A JP2002170995A JP3673508B2 JP 3673508 B2 JP3673508 B2 JP 3673508B2 JP 2002170995 A JP2002170995 A JP 2002170995A JP 2002170995 A JP2002170995 A JP 2002170995A JP 3673508 B2 JP3673508 B2 JP 3673508B2
Authority
JP
Japan
Prior art keywords
segment
intermediate shaft
continuous underground
wall
underground wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002170995A
Other languages
Japanese (ja)
Other versions
JP2004019099A (en
Inventor
耕一 田中
知一 岩住
新一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002170995A priority Critical patent/JP3673508B2/en
Publication of JP2004019099A publication Critical patent/JP2004019099A/en
Application granted granted Critical
Publication of JP3673508B2 publication Critical patent/JP3673508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、既設シールドトンネルの中間位置で中間立坑を構築する方法および中間立坑に関するものである。
【0002】
【従来の技術】
従来、シールドトンネルの中間に位置する立坑を構築するには、既設のシールドトンネルより下に厚い底版を打設していた。以下に、従来の中間立坑の構築方法について説明する。図11は、中間立坑105の平面図、図12は、中間立坑105の立面断面図を示す。図12は、図11の矢印G−Gによる断面図である。
【0003】
図11に示すように、地盤101内に設置されたトンネル103の中間に中間立坑105を構築するには、まず、図11、図12に示すように、地盤101に連続地中壁107等の山留め壁を構築し、必要に応じて、連続地中壁107の下端付近の地盤改良111を行う。連続地中壁107内を掘削する前に連続地中壁107内にシールドマシンを通過させる必要がある場合には、連続地中壁107をシールドマシンで切削可能な材質にしておく。
【0004】
次に、連続地中壁107の内側の地盤101を掘削する工程と、連続地中壁107の内側に切梁113と腹起こし115を設置する工程とを繰り返しつつ、既設のトンネル103のセグメントを撤去する。さらに、連続地中壁107の内側の地盤101を、底版109の下端の予定位置まで掘削した後、RC造等の底版109を形成する。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の方法では、底版109を既設のトンネル103の下方に新たに設置するため、掘削数量が多い上、底版109を構築するのに多くの材料が必要となる。また、最終床付けレベルが深くなり、壁、支保工の仕様が大きくなる可能性があり、施工手間がかかる。
【0006】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、シールドトンネルの中間位置に短い工期で経済的に立坑を形成する中間立坑の構築方法および中間立坑を提供することにある。
【0007】
【課題を解決するための手段】
前述した目的を達成するための第1の発明は、既設シールドトンネルに中間立坑を構築する方法であって、中間立坑の予定線に沿って、地表から既設シールドトンネル下方まで山留め壁を形成する工程と、前記山留め壁の内側の地盤を既設シールドトンネルの位置まで掘削し、既設シールドトンネルの底部以外のセグメントを撤去する工程と、前記既設シールドトンネルの底部のセグメントの両端部と前記山留め壁との間に連結部を形成する工程と、を具備することを特徴とする中間立坑の構築方法である。
【0008】
山留め壁は、例えば、連続地中壁等を用いて形成される。既設シールドトンネルのセグメントは、底部付近を除いて撤去され、底部付近のセグメントと山留め壁とが連結部で一体化される。連結部は、底部付近のセグメントと山留め壁との間の止水が可能な構造とし、例えば、鉄筋コンクリート、鋼材、鉄筋コンクリートと鋼材等で形成される。鋼材とは、H鋼や鋼板等である。
【0009】
連結部を鉄筋コンクリートや、鉄筋コンクリートと鋼材で形成する場合には、連結部は、ジベルを用いて山留め壁に一体化される。連結部を鋼材で形成する場合には、H鋼等の鋼材の一端がセグメントに、他端が連続地中壁の芯材である鋼材あるいは連続地中壁に埋め込まれた鋼材に、溶接される。
【0010】
第1の発明では、既設シールドトンネルの中間位置に山留め壁を形成し、山留め壁の内側の地盤を掘削しつつ、既設シールドトンネルのセグメントの一部を撤去する。そして、既設シールドトンネルの残りのセグメントの両端部と山留め壁との間に連結部を形成する。
【0011】
第2の発明は、地盤中に形成された山留め壁と、前記山留め壁の内側に設置された既設シールドトンネルのセグメントの一部と、前記セグメントの一部の両端部と前記山留め壁との間に形成された連結部とを具備することを特徴とする中間立坑である。
【0012】
第2の発明は、第1の発明の中間立坑の構築方法を用いて構築された中間立坑である。
【0013】
【発明の実施の形態】
以下、図面に基づいて、本発明の第1の実施例について詳細に説明する。図1は、中間立坑9の既設トンネル2の軸方向の断面立面図、図2は、中間立坑9の既設トンネル2の周方向の断面立面図を示す。図1は、図2の矢印B−Bによる断面図、図2は、図1の矢印A−Aによる断面図である。
【0014】
中間立坑9は、連続地中壁7、既設トンネル2の底部付近のセグメント3、セグメント3と連続地中壁7との連結部10等で構成される。連結部10とは、例えば、セグメント3の端部付近と連続地中壁7とを連結する梁端部11、側壁部13等である。
【0015】
中間立坑9を構築するには、まず、図1、図2に示すように、地盤1中に設置された既設トンネル2の中間位置に、連続地中壁7を形成する。そして、必要に応じて、連続地中壁7の下端部付近の地盤改良5を行う。連続地中壁7は、例えば、地盤に掘削された溝に泥水を満たし、泥水中にH鋼や鉄筋かごを挿入した後、泥水をコンクリートと置き換えて形成される。
【0016】
図2に示すように、中間立坑9で既設トンネル2と合流するトンネル6を新たに構築する場合には、連続地中壁7を形成する際に、トンネル6が通過する部分を、シールドマシンで切削可能な材質にしておく。そして、連続地中壁7を形成した後、シールドマシンを通過させてトンネル6を構築する。シールドマシンの通過により、連続地中壁7には開口部4が形成される。この他、合流するトンネルを開削として、山留め壁を鏡切してもよい。
【0017】
次に、既設トンネル2のセグメントの一部を撤去しつつ、連続地中壁7の内側の地盤1を地盤1a、1bまで掘削する。図2に示すように、既設トンネル2のうち破線で示した部分ではセグメントを撤去し、実線で示した底部付近ではセグメント3を残す。セグメント3は、例えば、鋼製セグメントである。掘削時には、必要に応じて切梁(図示せず)を配置する。
【0018】
掘削終了後、既設トンネル2の底部付近のセグメント3の端部と連続地中壁7との間に、梁端部11および側壁部13を形成する。梁端部11は、トンネル6の構築時に形成された開口部4の下部の連続地中壁7と、セグメント3の端部とを連結する。側壁部13は、開口部4の両側の部分や開口部4と対面する部分の連続地中壁7と、セグメント3の端部とを連結する。
【0019】
図3は、梁端部11付近の断面図を示す。図3は、図2のCに示す部分の拡大断面図である。図3に示すように、梁端部11は、鉄筋21、補強鉄筋23、鉄筋25、補強鉄筋27、コンクリート29等で構成される。梁端部11と連続地中壁7との間には止水用ゴム19が固定され、セグメント3の外周部18の端部付近には突出部17が設けられる。
【0020】
梁端部11を形成するには、まず、セグメント3の外周部18の端部付近に、突出部17を形成する。突出部17は、セグメント3と梁端部11のコンクリート29との付着を良くするための部材である。また、連続地中壁7の内壁面8に止水用ゴム19を固定する。止水用ゴム19は、地盤1aと梁端部11との間を止水する。
【0021】
次に、梁端部11の軸方向の鉄筋21、周方向の鉄筋25、補強鉄筋23、補強鉄筋27を配置する。そして、梁端部11の側面12がセグメント3の内側の二次ライニング39になめらかに接合されるようにコンクリート29を打設して、梁端部11を完成する。梁端部11は、連続地中壁7とセグメント3とを構造的に一体化する。
【0022】
図4は、側壁部13付近の断面図を示す。図4は、図2のDに示す部分の拡大断面図を反転させた図である。図4に示すように、側壁部13は、鉄筋21a、鉄筋25a、補強鉄筋27a、コンクリート29a等からなる梁32と、鉄筋31、鉄筋33、コンクリート37等からなる壁34で構成される。側壁部13の壁34と連続地中壁7との間にはジベル35が固定される。連続地中壁7の内側面8には止水用ゴム19aが固定される。セグメント3の外周部18の端部付近には突出部17aが設けられる。
【0023】
側壁部13を形成するには、まず、セグメント3の外周部18の端部付近に、突出部17aを形成する。突出部17aは、セグメント3と梁32のコンクリート29aとの付着を良くするための部材である。また、連続地中壁7の内壁面8側に複数のジベル35を埋め込み、ジベル35の下方に止水用ゴム19aを固定する。ジベル35は、セグメント3からくる反力を、連続地中壁7へ応力伝達する。止水用ゴム19aは、地盤1bと梁32との間を止水する。
【0024】
次に、梁32の軸方向の鉄筋21a、周方向の鉄筋25a、補強鉄筋27aを配置する。また、壁34には、鉄筋21aと平行な鉄筋31、鉛直断面の周方向の鉄筋33を配置する。そして、梁32の側面12aがセグメント3の内側の二次ライニング39になめらかに接合されるようにコンクリート29aを打設し、さらに壁34の側面14が梁32の側面12aになめらかに接合されるようにコンクリート37を打設して、側壁部13を完成する。側壁部13は、連続地中壁7とセグメント3とを構造的に一体化する。
【0025】
連続地中壁7に開口部4がある部分ではセグメント3の端部と連続地中壁7との間に梁端部11を形成し、開口部4がない部分では側壁部13を形成して、図1、図2に示すような中間立坑9を完成する。梁端部11の両側に形成される側壁部13と連続地中壁7との接合部には、梁端部11と対面して形成される側壁部13と連続地中壁7との接合部と同様に、ジベルが埋設される。
【0026】
このように、第1の実施の形態では、既設トンネル2の底部付近のセグメント3を中間立坑9の底版に転用するので、従来のように厚い底版109(図12)を打設する必要がなく、材料の数量および施工手間が少なくてすむ。また、地盤の掘削数量も減らすことができる。さらに、山留め壁や支保工の仕様を小さくできる、あるいは、切梁113や腹起こし115(図12)等の支保工の段数を減らすことができる可能性が高く、施工性が向上する。
【0027】
なお、第1の実施の形態において、連結部10として梁端部11および側壁部13を形成して連続地中壁7とセグメント3とを一体化する際、補強鉄筋23、補強鉄筋27、補強鉄筋27aは、必要に応じて設置する。
【0028】
次に、第2の実施の形態について説明する。第2の実施の形態の中間立坑9は、第1の実施の形態と同様に、連続地中壁7、既設トンネル2の底部付近のセグメント3、セグメント3と連続地中壁7との連結部10等で構成されるが、連結部10として、図2に示すように、梁端部11a、側壁部13aを形成する。梁端部11a、側壁部13aは、それぞれ、第1の実施の形態の梁端部11、側壁部13のかわりに設けられる。
【0029】
第2の実施の形態では、第1の実施の形態と同様にして、図1、図2に示すように、地盤1中に設置された既設トンネル2の中間位置に連続地中壁7を形成する。そして、必要に応じて連続地中壁7の下端部付近の地盤改良5を行い、シールドマシンを用いてトンネル6を構築する。シールドマシンの通過により、連続地中壁7には開口部4が形成される。なお、合流するトンネルを開削して構築してもよい。
【0030】
次に、既設トンネル2のセグメントの一部を撤去しつつ、連続地中壁7の内側の地盤1を地盤1a、1bまで掘削する。図2に示すように、既設トンネル2のうち破線で示した部分ではセグメントを撤去し、実線で示した底部付近ではセグメント3を残す。セグメント3は、例えば、鋼製セグメントである。掘削時には、必要に応じて切梁(図示せず)を配置する。
【0031】
掘削終了後、既設トンネル2の底部付近のセグメント3の端部と連続地中壁7との間に、梁端部11aおよび側壁部13aを形成する。梁端部11aは、トンネル6の構築時に形成された開口部4の下部の連続地中壁7と、セグメント3の端部とを連結する。側壁部13aは、開口部4の両側の部分や開口部4と対面する部分の連続地中壁7と、セグメント3の端部とを連結する。
【0032】
図5は、梁端部11a付近の断面図を示す。図5は、図2のCに示す部分の拡大断面図である。図6は、セグメント3と連続地中壁7との間にH鋼などの鋼材43を設置した状態での図5のE−Eによる断面図、図7は、セグメント3および鋼材49と、鋼材43との接続部を示す斜視図である。
【0033】
図5に示すように、梁端部11aは、接続板41、鋼材43、鉄筋53、鉄筋55、補強鉄筋57、コンクリート59等で構成される。連続地中壁7には、例えば、図6に示すように鋼材49が埋設されている。連続地中壁7がRC連壁の場合には、連続地中壁7中に別途鋼材49を埋め込む。
【0034】
梁端部11aを形成するには、まず、図6のFに示す部分の連続地中壁7をはつり、鋼材49のフランジ51を露出させる。そして、図6および図7に示すように、鋼材43の一端のウェブ45とフランジ47を、連続地中壁7中の鋼材49のフランジ51に溶接する。また、セグメント3の外周部18の端部付近に、セグメント3に沿った形状の接続板41を介して、鋼材43の他端のウェブ45とフランジ47を固定する。そして、図6のFに示す部分を埋め戻す。
【0035】
次に、梁端部11aの軸方向の鉄筋53、周方向の鉄筋55、補強鉄筋57を配置する。そして、梁端部11aの側面12bがセグメント3の内側の二次ライニング39になめらかに接合されるようにコンクリート59を打設して、梁端部11aを完成する。梁端部11aは、連続地中壁7とセグメント3とを構造的に一体化する。
【0036】
図8は、側壁部13a付近の断面図を示す。図8は、図2のDに示す部分の拡大断面図を反転させた図である。図8に示すように、側壁部13aは、接続板41、鋼材43、鉄筋53等からなる梁32aと、コンクリート65等からなる壁34aで構成される。側壁部13aと連続地中壁7との間にはジベル63が固定される。
【0037】
側壁部13aを形成するには、まず、梁端部11aの形成時と同様にして、図6のFに示す部分の連続地中壁7をはつり、鋼材49のフランジ51を露出させる。そして、図6および図7に示すように、鋼材43の一端のウェブ45とフランジ47を、連続地中壁7中の鋼材49のフランジ51に溶接する。また、セグメント3の外周部18の端部付近に、セグメント3に沿った形状の接続板41を介して、鋼材43の他端のウェブ45とフランジ47を固定する。
【0038】
そして、図6のFに示す部分を埋め戻し、図8に示すように、連続地中壁7の内壁面8側に複数のジベル63を固定する。ジベル63は、連続地中壁7と鋼材43との接合部の上方に固定される。ジベル63は、セグメント3からくる反力を、連続地中壁7へ応力伝達する。
【0039】
そして、梁32aの軸方向の鉄筋53、鉄筋79を配置し、梁32aの側面12cと壁34aの側面14aがセグメント3の内側の二次ライニング39になめらかに接合されるようにコンクリート65を打設して、側壁部13aを完成する。側壁部13aは、連続地中壁7とセグメント3とを構造的に一体化する。
【0040】
連続地中壁7に開口部4がある部分ではセグメント3の端部と連続地中壁7との間に梁端部11aを形成し、開口部4がない部分では側壁部13aを形成して、図1、図2に示すような中間立坑9を完成する。梁端部11aの両側に形成される側壁部13aと連続地中壁7との接合部には、梁端部11aと対面して形成される側壁部13aと連続地中壁7との接合部と同様に、ジベルが埋設される。
【0041】
このように、第2の実施の形態においても、第1の実施の形態と同様に、既設トンネル2の底部付近のセグメント3を中間立坑9の底版に転用するので、従来のように厚い底版109(図12)を打設する必要がなく、材料の数量および施工手間が少なくてすむ。また、地盤の掘削数量も減らすことができる。さらに、山留め壁や支保工の仕様を小さくできる、あるいは、切梁113や腹起こし115(図12)等の支保工の段数を減らすことができる可能性が高く、施工性が向上する。
【0042】
なお、第2の実施の形態において、連結部10として梁端部11aおよび側壁部13aを形成して連続地中壁7とセグメント3とを一体化する際、補強鉄筋57は、必要に応じて設置する。
【0043】
次に、第3の実施の形態について説明する。第3の実施の形態の中間立坑9は、第1、第2の実施の形態と同様に、連続地中壁7、既設トンネル2の底部付近のセグメント3、セグメント3と連続地中壁7との連結部10等で構成されるが、連結部10として、梁端部11、11aや側壁部13、13aのかわりに、梁端部11b(図9)、他の構造の側壁部(図示せず)が形成される。
【0044】
第3の実施の形態でも、第1、第2の実施の形態と同様にして、図1、図2に示すように、地盤1中に連続地中壁7を形成し、必要に応じて連続地中壁7の下端部に地盤改良5を行い、シールドマシンを用いてトンネル6を構築する。シールドマシンの通過により、連続地中壁7には開口部4が形成される。なお、合流するトンネルを開削して構築してもよい。
【0045】
そして、既設トンネル2のセグメントの一部を撤去しつつ、連続地中壁7の内側の地盤1を地盤1a、1bまで掘削する。図2に示すように、既設トンネル2のうち破線で示した部分ではセグメントを撤去し、実線で示した底部付近ではセグメント3を残す。セグメント3は、例えば、鋼製セグメントである。掘削時には、必要に応じて切梁(図示せず)を配置する。
【0046】
掘削終了後、既設トンネル2の底部付近のセグメント3の端部と連続地中壁7との間に、梁端部11bと側壁部を形成する。梁端部11bは、トンネル6の構築時に形成された開口部4の下部の連続地中壁7と、セグメント3の端部とを連結する。側壁部は、開口部4の両側の部分や開口部4と対面する部分の連続地中壁7と、セグメント3の端部とを連結する。
【0047】
図9は、梁端部11b付近の断面図、図10は、セグメント3および鋼材73とプレート67との接続部を示す斜視図を示す。図9に示すように、梁端部11bは、プレート67、接続板69、プレート71、鋼材73、コンクリート81等で構成される。
【0048】
梁端部11bを形成するには、図9、図10に示すように、セグメント3と連続地中壁7との間に、梁端部11bの軸方向と平行に鋼材73を配置し、鋼材73のウェブ77のセグメント3側に五角形のプレート67を溶接する。また、鋼材73のウェブ77の連続地中壁7側に矩形のプレート71を溶接する。そして、セグメント3の外周部18の端部付近に、接続板69を介して、プレート69を固定する。
【0049】
そして、図9に示すように、梁端部11bの側面12dがセグメント3の内側の二次ライニング39になめらかに接合されるようにコンクリート81を打設して、梁端部11bを完成する。梁端部11bは、連続地中壁7とセグメント3とを構造的に一体化する。
【0050】
第3の実施の形態では、開口部4を有さない連続地中壁7とセグメント3との連結部10として、図9に示す梁端部11bを梁とし、その上方に壁を設けた側壁部を形成する。
【0051】
第3の実施の形態においても、第1、第2の実施の形態と同様に、既設トンネル2の底部付近のセグメント3を中間立坑9の底版に転用するので、材料の数量および施工手間が少なくてすむ。また、地盤の掘削数量も減らすことができる。さらに、壁や支保工の仕様を小さくできる、あるいは、切梁や腹起こし等の支保工の段数を減らすことができる可能性が高く、施工性が向上する。
【0052】
なお、第3の実施の形態において、セグメント3と連続地中壁7とを連結する際、あらかじめプレート67やプレート71を溶接した鋼材73を、接続板69を介してセグメント3に固定してもよい。
【0053】
第1から第3の実施の形態では、山留め壁として連続地中壁7を、セグメント3として鋼製セグメントを使用したが、これ以外の山留め壁やセグメントが使用されている場合でも、既設トンネルの底部付近のセグメントを中間立坑の底版に転用し、セグメントと山留め壁との間に連結部10を形成することで、第1から第3の実施の形態と同様に、材料の数量および施工手間が少なくてすむ。また、地盤の掘削数量も減らすことができる。さらに、壁や支保工の仕様を少なくできる、あるいは、切梁や腹起こし等の支保工の段数を減らすことができる可能性が高く、施工性が向上する。
【0054】
連結部10は、第1から第3の実施の形態で説明した梁端部11、11a、11bや、側壁部13、13a等以外の構造でもよい。連結部10は、既存トンネル2の下部付近のセグメント3と連続地中壁7等の山留め壁とを構造的に一体化でき、セグメント3および連続地中壁7等の山留め壁との接合部を止水できる構造であればよい。
【0055】
【発明の効果】
以上、詳細に説明したように、本発明によれば、シールドトンネルの中間位置に短い工期で経済的に立坑を形成する中間立坑の構築方法および中間立坑を提供できる。
【図面の簡単な説明】
【図1】中間立坑9の既設トンネルの軸方向の断面立面図
【図2】中間立坑9の既設トンネルの周方向の断面立面図
【図3】梁端部11付近の断面図
【図4】側壁部13付近の断面図
【図5】梁端部11a付近の断面図
【図6】鉄筋57、コンクリート59を設置する前の図5のE−Eによる断面図
【図7】セグメント3および鋼材49と鋼材43との接続部を示す斜視図
【図8】側壁部13a付近の断面図
【図9】梁端部11c付近の断面図
【図10】セグメント3および鋼材73とプレート67との接続部を示す斜視図
【図11】中間立坑105の平面図
【図12】中間立坑105の立面断面図
【符号の説明】
1、1a、1b………地盤
2………既設トンネル
3………セグメント
7………連続地中壁
9………中間立坑
11、11a、11b………梁端部
13、13a………側壁部
35、63………ジベル
19、19a………止水用ゴム
21、21a、25、25a、31、33、53、55………鉄筋
23、27、27a、57………補強鉄筋
29、29a、37、59、65、81………コンクリート
32、32a………梁
34、34a………壁
41、69………接続板、
43、49、73………鋼材
67、71………プレート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for constructing an intermediate shaft at an intermediate position of an existing shield tunnel and an intermediate shaft.
[0002]
[Prior art]
Conventionally, in order to construct a vertical shaft located in the middle of a shield tunnel, a thick bottom slab is placed below the existing shield tunnel. Below, the construction method of the conventional intermediate shaft is demonstrated. FIG. 11 is a plan view of the intermediate shaft 105, and FIG. 12 is an elevational sectional view of the intermediate shaft 105. 12 is a cross-sectional view taken along arrow GG in FIG.
[0003]
As shown in FIG. 11, in order to construct the intermediate shaft 105 in the middle of the tunnel 103 installed in the ground 101, first, as shown in FIG. 11 and FIG. A mountain retaining wall is constructed, and ground improvement 111 near the lower end of the continuous underground wall 107 is performed as necessary. If it is necessary to pass the shield machine through the continuous underground wall 107 before excavating the continuous underground wall 107, the continuous underground wall 107 is made of a material that can be cut by the shield machine.
[0004]
Next, the segment of the existing tunnel 103 is removed while repeating the step of excavating the ground 101 inside the continuous underground wall 107 and the step of installing the cut beam 113 and the upset 115 inside the continuous underground wall 107. To do. Further, after excavating the ground 101 inside the continuous underground wall 107 to a predetermined position at the lower end of the bottom plate 109, a bottom plate 109 made of RC or the like is formed.
[0005]
[Problems to be solved by the invention]
However, in the conventional method, since the bottom plate 109 is newly installed below the existing tunnel 103, the number of excavations is large and a large amount of material is required to construct the bottom plate 109. In addition, the final flooring level becomes deep, and the specifications of the walls and the support work may become large, which takes time and effort.
[0006]
The present invention has been made in view of such problems, and an object of the present invention is to provide an intermediate shaft construction method and an intermediate shaft that can economically form a shaft in a short construction period at an intermediate position of a shield tunnel. There is.
[0007]
[Means for Solving the Problems]
A first invention for achieving the above-described object is a method of constructing an intermediate shaft in an existing shield tunnel, the step of forming a retaining wall from the ground surface to the lower side of the existing shield tunnel along a planned line of the intermediate shaft And excavating the ground inside the retaining wall to the position of the existing shield tunnel, removing the segments other than the bottom of the existing shield tunnel, and both ends of the bottom segment of the existing shield tunnel and the retaining wall And a step of forming a connecting portion between the intermediate shafts.
[0008]
The mountain retaining wall is formed using, for example, a continuous underground wall. The segment of the existing shield tunnel is removed except for the vicinity of the bottom, and the segment near the bottom and the retaining wall are integrated at the connecting portion. The connecting portion has a structure capable of stopping water between the segment near the bottom and the retaining wall, and is formed of, for example, reinforced concrete, steel, reinforced concrete and steel. Steel materials are H steel, a steel plate, etc.
[0009]
When the connecting portion is formed of reinforced concrete or reinforced concrete and steel, the connecting portion is integrated with the mountain retaining wall using a gibber. When the connecting portion is formed of a steel material, one end of the steel material such as H steel is welded to the segment, and the other end is welded to a steel material that is a core material of the continuous underground wall or a steel material embedded in the continuous underground wall. .
[0010]
In the first invention, a retaining wall is formed at an intermediate position of the existing shield tunnel, and a part of the segment of the existing shield tunnel is removed while excavating the ground inside the retaining wall. And a connection part is formed between the both ends of the remaining segment of an existing shield tunnel, and a mountain retaining wall.
[0011]
According to a second aspect of the present invention, there is a mountain retaining wall formed in the ground, a part of a segment of an existing shield tunnel installed inside the mountain retaining wall, a gap between both ends of the segment and the mountain retaining wall. It is the intermediate shaft characterized by comprising the connection part formed in this.
[0012]
2nd invention is the intermediate shaft constructed | assembled using the construction method of the intermediate shaft of 1st invention.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. 1 is a sectional elevation view in the axial direction of the existing tunnel 2 of the intermediate shaft 9, and FIG. 2 is a sectional elevation view in the circumferential direction of the existing tunnel 2 of the intermediate shaft 9. 1 is a cross-sectional view taken along arrow BB in FIG. 2, and FIG. 2 is a cross-sectional view taken along arrow AA in FIG.
[0014]
The intermediate shaft 9 includes a continuous underground wall 7, a segment 3 near the bottom of the existing tunnel 2, a connecting portion 10 between the segment 3 and the continuous underground wall 7, and the like. The connection part 10 is the beam end part 11 and the side wall part 13 etc. which connect the edge part vicinity of the segment 3, and the continuous underground wall 7, for example.
[0015]
In order to construct the intermediate shaft 9, first, as shown in FIGS. 1 and 2, a continuous underground wall 7 is formed at an intermediate position of the existing tunnel 2 installed in the ground 1. And the ground improvement 5 near the lower end part of the continuous underground wall 7 is performed as needed. The continuous underground wall 7 is formed, for example, by filling a groove excavated in the ground with muddy water, inserting H steel or a rebar cage into the muddy water, and then replacing the muddy water with concrete.
[0016]
As shown in FIG. 2, when constructing a new tunnel 6 that merges with the existing tunnel 2 in the intermediate shaft 9, when the continuous underground wall 7 is formed, the part through which the tunnel 6 passes is shielded. Use a material that can be cut. And after forming the continuous underground wall 7, the shield machine is passed and the tunnel 6 is constructed | assembled. An opening 4 is formed in the continuous underground wall 7 by the passage of the shield machine. In addition, the mountain retaining wall may be mirror cut with the joining tunnel as an opening.
[0017]
Next, the ground 1 inside the continuous underground wall 7 is excavated to the ground 1a and 1b while removing a part of the segment of the existing tunnel 2. As shown in FIG. 2, the segment is removed at the portion indicated by the broken line in the existing tunnel 2, and the segment 3 is left near the bottom indicated by the solid line. The segment 3 is a steel segment, for example. When excavating, cutting beams (not shown) are arranged as necessary.
[0018]
After the excavation is completed, a beam end 11 and a side wall 13 are formed between the end of the segment 3 near the bottom of the existing tunnel 2 and the continuous underground wall 7. The beam end 11 connects the continuous underground wall 7 below the opening 4 formed when the tunnel 6 is constructed and the end of the segment 3. The side wall part 13 connects the continuous underground wall 7 of the part on both sides of the opening part 4 or the part facing the opening part 4 and the end part of the segment 3.
[0019]
FIG. 3 shows a cross-sectional view near the beam end 11. FIG. 3 is an enlarged cross-sectional view of a portion indicated by C in FIG. As shown in FIG. 3, the beam end portion 11 is composed of a reinforcing bar 21, a reinforcing bar 23, a reinforcing bar 25, a reinforcing bar 27, concrete 29, and the like. A water-stopping rubber 19 is fixed between the beam end 11 and the continuous underground wall 7, and a protrusion 17 is provided near the end of the outer peripheral portion 18 of the segment 3.
[0020]
In order to form the beam end portion 11, first, the protruding portion 17 is formed near the end portion of the outer peripheral portion 18 of the segment 3. The protruding portion 17 is a member for improving the adhesion between the segment 3 and the concrete 29 at the beam end portion 11. Further, a water stop rubber 19 is fixed to the inner wall surface 8 of the continuous underground wall 7. The water-stopping rubber 19 stops water between the ground 1a and the beam end 11.
[0021]
Next, the reinforcing bar 21 in the axial direction, the reinforcing bar 25 in the circumferential direction, the reinforcing bar 23 and the reinforcing bar 27 of the beam end 11 are arranged. Then, concrete 29 is placed so that the side surface 12 of the beam end 11 is smoothly joined to the secondary lining 39 inside the segment 3, thereby completing the beam end 11. The beam end 11 structurally integrates the continuous underground wall 7 and the segment 3.
[0022]
FIG. 4 shows a cross-sectional view in the vicinity of the side wall portion 13. 4 is a diagram obtained by inverting an enlarged cross-sectional view of a portion indicated by D in FIG. As shown in FIG. 4, the side wall part 13 is comprised by the beam 32 which consists of the reinforcing bar 21a, the reinforcing bar 25a, the reinforcing reinforcing bar 27a, the concrete 29a, etc., and the wall 34 which consists of the reinforcing bar 31, the reinforcing bar 33, the concrete 37, etc. A bevel 35 is fixed between the wall 34 of the side wall 13 and the continuous underground wall 7. A water-stopping rubber 19 a is fixed to the inner side surface 8 of the continuous underground wall 7. In the vicinity of the end of the outer peripheral portion 18 of the segment 3, a protruding portion 17 a is provided.
[0023]
In order to form the side wall portion 13, first, the protruding portion 17 a is formed near the end portion of the outer peripheral portion 18 of the segment 3. The protrusion 17a is a member for improving the adhesion between the segment 3 and the concrete 29a of the beam 32. Further, a plurality of dowels 35 are embedded on the inner wall surface 8 side of the continuous underground wall 7, and a water stop rubber 19 a is fixed below the dowels 35. The gibber 35 transmits the reaction force coming from the segment 3 to the continuous underground wall 7. The water stopping rubber 19a stops water between the ground 1b and the beam 32.
[0024]
Next, the reinforcing bars 21a in the axial direction of the beams 32, the reinforcing bars 25a in the circumferential direction, and the reinforcing reinforcing bars 27a are arranged. Further, a reinforcing bar 31 parallel to the reinforcing bar 21a and a reinforcing bar 33 in the circumferential direction of the vertical section are arranged on the wall 34. The concrete 29a is placed so that the side surface 12a of the beam 32 is smoothly joined to the secondary lining 39 inside the segment 3, and the side surface 14 of the wall 34 is smoothly joined to the side surface 12a of the beam 32. Thus, the concrete 37 is placed to complete the side wall 13. The side wall portion 13 structurally integrates the continuous underground wall 7 and the segment 3.
[0025]
A beam end 11 is formed between the end of the segment 3 and the continuous underground wall 7 in a portion where the continuous underground wall 7 has the opening 4, and a side wall portion 13 is formed in a portion where the opening 4 is not present. The intermediate shaft 9 as shown in FIGS. 1 and 2 is completed. The joint between the side wall 13 formed on both sides of the beam end 11 and the continuous underground wall 7 is a joint between the side wall 13 formed facing the beam end 11 and the continuous underground wall 7. In the same way, the gibber is buried.
[0026]
Thus, in the first embodiment, the segment 3 near the bottom of the existing tunnel 2 is diverted to the bottom slab of the intermediate shaft 9, so there is no need to drive a thick bottom slab 109 (FIG. 12) as in the prior art. The amount of materials and the labor required for construction can be reduced. In addition, the number of ground excavation can be reduced. Furthermore, it is highly possible that the specifications of the retaining wall and the support work can be reduced, or the number of steps of the support work such as the cut beam 113 and the upset 115 (FIG. 12) can be reduced, and the workability is improved.
[0027]
In the first embodiment, when the beam end portion 11 and the side wall portion 13 are formed as the connecting portion 10 and the continuous underground wall 7 and the segment 3 are integrated, the reinforcing reinforcing bar 23, the reinforcing reinforcing rod 27, The reinforcing bar 27a is installed as necessary.
[0028]
Next, a second embodiment will be described. As with the first embodiment, the intermediate shaft 9 according to the second embodiment includes a continuous underground wall 7, a segment 3 near the bottom of the existing tunnel 2, and a connecting portion between the segment 3 and the continuous underground wall 7. Although it is comprised by 10 grade | etc., As shown in FIG. 2, as the connection part 10, the beam end part 11a and the side wall part 13a are formed. The beam end portion 11a and the side wall portion 13a are provided in place of the beam end portion 11 and the side wall portion 13 of the first embodiment, respectively.
[0029]
In the second embodiment, as in the first embodiment, as shown in FIGS. 1 and 2, a continuous underground wall 7 is formed at an intermediate position of the existing tunnel 2 installed in the ground 1. To do. And the ground improvement 5 near the lower end part of the continuous underground wall 7 is performed as needed, and the tunnel 6 is constructed using a shield machine. An opening 4 is formed in the continuous underground wall 7 by the passage of the shield machine. In addition, you may construct by excavating the tunnel to join.
[0030]
Next, the ground 1 inside the continuous underground wall 7 is excavated to the ground 1a and 1b while removing a part of the segment of the existing tunnel 2. As shown in FIG. 2, the segment is removed at the portion indicated by the broken line in the existing tunnel 2, and the segment 3 is left near the bottom indicated by the solid line. The segment 3 is a steel segment, for example. When excavating, cutting beams (not shown) are arranged as necessary.
[0031]
After the excavation is completed, a beam end 11a and a side wall 13a are formed between the end of the segment 3 near the bottom of the existing tunnel 2 and the continuous underground wall 7. The beam end 11 a connects the continuous underground wall 7 below the opening 4 formed when the tunnel 6 is constructed and the end of the segment 3. The side wall portion 13 a connects the continuous underground wall 7 of the portion on both sides of the opening 4 or the portion facing the opening 4 and the end of the segment 3.
[0032]
FIG. 5 shows a cross-sectional view in the vicinity of the beam end portion 11a. FIG. 5 is an enlarged cross-sectional view of a portion indicated by C in FIG. 6 is a cross-sectional view taken along line E-E of FIG. 5 in a state in which a steel material 43 such as H steel is installed between the segment 3 and the continuous underground wall 7, and FIG. It is a perspective view which shows a connection part with 43. FIG.
[0033]
As shown in FIG. 5, the beam end portion 11a includes a connection plate 41, a steel material 43, a reinforcing bar 53, a reinforcing bar 55, a reinforcing reinforcing bar 57, concrete 59, and the like. For example, a steel material 49 is embedded in the continuous underground wall 7 as shown in FIG. When the continuous underground wall 7 is an RC continuous wall, a steel material 49 is separately embedded in the continuous underground wall 7.
[0034]
In order to form the beam end portion 11a, first, the continuous underground wall 7 in the portion shown in FIG. 6F is hung and the flange 51 of the steel material 49 is exposed. Then, as shown in FIGS. 6 and 7, the web 45 and the flange 47 at one end of the steel material 43 are welded to the flange 51 of the steel material 49 in the continuous underground wall 7. Further, the web 45 and the flange 47 at the other end of the steel material 43 are fixed to each other in the vicinity of the end portion of the outer peripheral portion 18 of the segment 3 through a connection plate 41 having a shape along the segment 3. Then, the portion indicated by F in FIG. 6 is backfilled.
[0035]
Next, the reinforcing bar 53 in the axial direction, the reinforcing bar 55 in the circumferential direction, and the reinforcing reinforcing bar 57 of the beam end portion 11a are arranged. Then, concrete 59 is placed so that the side surface 12b of the beam end portion 11a is smoothly joined to the secondary lining 39 inside the segment 3 to complete the beam end portion 11a. The beam end portion 11a structurally integrates the continuous underground wall 7 and the segment 3.
[0036]
FIG. 8 shows a cross-sectional view near the side wall 13a. FIG. 8 is a diagram obtained by inverting an enlarged cross-sectional view of a portion indicated by D in FIG. As shown in FIG. 8, the side wall part 13a is comprised by the beam 32a which consists of the connection board 41, the steel material 43, the reinforcing bar 53, etc., and the wall 34a which consists of concrete 65 grade | etc.,. A bevel 63 is fixed between the side wall 13a and the continuous underground wall 7.
[0037]
In order to form the side wall portion 13a, first, similarly to the formation of the beam end portion 11a, the continuous underground wall 7 of the portion shown in F of FIG. 6 is suspended, and the flange 51 of the steel material 49 is exposed. Then, as shown in FIGS. 6 and 7, the web 45 and the flange 47 at one end of the steel material 43 are welded to the flange 51 of the steel material 49 in the continuous underground wall 7. Further, the web 45 and the flange 47 at the other end of the steel material 43 are fixed to each other in the vicinity of the end portion of the outer peripheral portion 18 of the segment 3 through a connection plate 41 having a shape along the segment 3.
[0038]
And the part shown to F of FIG. 6 is back-filled, and as shown in FIG. 8, the some divel 63 is fixed to the inner wall surface 8 side of the continuous underground wall 7. As shown in FIG. The gibber 63 is fixed above the joint between the continuous underground wall 7 and the steel material 43. The gibber 63 transmits the reaction force coming from the segment 3 to the continuous underground wall 7.
[0039]
Then, the reinforcing bars 53 and the reinforcing bars 79 in the axial direction of the beam 32a are arranged, and the concrete 65 is driven so that the side surface 12c of the beam 32a and the side surface 14a of the wall 34a are smoothly joined to the secondary lining 39 inside the segment 3. To complete the side wall 13a. The side wall portion 13a structurally integrates the continuous underground wall 7 and the segment 3.
[0040]
A beam end 11a is formed between the end of the segment 3 and the continuous underground wall 7 in a portion where the continuous underground wall 7 has the opening 4, and a side wall 13a is formed in a portion where the opening 4 is not present. The intermediate shaft 9 as shown in FIGS. 1 and 2 is completed. The joint between the side wall 13a formed on both sides of the beam end 11a and the continuous underground wall 7 is the joint between the side wall 13a and the continuous underground wall 7 formed facing the beam end 11a. In the same way, the gibber is buried.
[0041]
As described above, in the second embodiment as well, as in the first embodiment, the segment 3 near the bottom of the existing tunnel 2 is diverted to the bottom slab of the intermediate shaft 9, so that the thick bottom slab 109 as in the prior art is used. There is no need to place (FIG. 12), and the amount of materials and the construction work can be reduced. In addition, the number of ground excavation can be reduced. Furthermore, it is highly possible that the specifications of the retaining wall and the support work can be reduced, or the number of steps of the support work such as the cut beam 113 and the upset 115 (FIG. 12) can be reduced, and the workability is improved.
[0042]
In the second embodiment, when the beam end portion 11a and the side wall portion 13a are formed as the connecting portion 10 and the continuous underground wall 7 and the segment 3 are integrated, the reinforcing reinforcing bars 57 are provided as necessary. Install.
[0043]
Next, a third embodiment will be described. As with the first and second embodiments, the intermediate shaft 9 of the third embodiment includes a continuous underground wall 7, a segment 3 near the bottom of the existing tunnel 2, a segment 3, and a continuous underground wall 7. However, instead of the beam end parts 11 and 11a and the side wall parts 13 and 13a, the beam end part 11b (FIG. 9) and other structure side wall parts (not shown) are used. Is formed.
[0044]
Also in the third embodiment, as in the first and second embodiments, as shown in FIGS. 1 and 2, a continuous underground wall 7 is formed in the ground 1, and continuous as necessary. The ground improvement 5 is performed at the lower end of the underground wall 7 and the tunnel 6 is constructed using a shield machine. An opening 4 is formed in the continuous underground wall 7 by the passage of the shield machine. In addition, you may construct by excavating the tunnel to join.
[0045]
And while removing a part of segment of the existing tunnel 2, the ground 1 inside the continuous underground wall 7 is excavated to the ground 1a, 1b. As shown in FIG. 2, the segment is removed at the portion indicated by the broken line in the existing tunnel 2, and the segment 3 is left near the bottom indicated by the solid line. The segment 3 is a steel segment, for example. When excavating, cutting beams (not shown) are arranged as necessary.
[0046]
After excavation, a beam end portion 11b and a side wall portion are formed between the end portion of the segment 3 near the bottom portion of the existing tunnel 2 and the continuous underground wall 7. The beam end 11 b connects the continuous underground wall 7 below the opening 4 formed when the tunnel 6 is constructed and the end of the segment 3. The side wall portion connects the end portions of the segment 3 and the continuous underground wall 7 on both sides of the opening portion 4 and the portion facing the opening portion 4.
[0047]
FIG. 9 is a cross-sectional view in the vicinity of the beam end portion 11 b, and FIG. 10 is a perspective view showing a connection portion between the segment 3 and the steel material 73 and the plate 67. As shown in FIG. 9, the beam end portion 11b includes a plate 67, a connection plate 69, a plate 71, a steel material 73, concrete 81, and the like.
[0048]
In order to form the beam end portion 11b, as shown in FIGS. 9 and 10, a steel material 73 is disposed between the segment 3 and the continuous underground wall 7 in parallel with the axial direction of the beam end portion 11b. A pentagonal plate 67 is welded to the segment 3 side of the web 77 of 73. Further, a rectangular plate 71 is welded to the continuous underground wall 7 side of the web 77 of the steel material 73. Then, the plate 69 is fixed near the end of the outer peripheral portion 18 of the segment 3 via the connection plate 69.
[0049]
Then, as shown in FIG. 9, concrete 81 is placed so that the side surface 12d of the beam end portion 11b is smoothly joined to the secondary lining 39 inside the segment 3, thereby completing the beam end portion 11b. The beam end portion 11 b structurally integrates the continuous underground wall 7 and the segment 3.
[0050]
In the third embodiment, as the connecting portion 10 between the continuous underground wall 7 having no opening 4 and the segment 3, the beam end portion 11b shown in FIG. 9 is used as a beam, and the side wall is provided thereabove. Forming part.
[0051]
Also in the third embodiment, as in the first and second embodiments, the segment 3 near the bottom of the existing tunnel 2 is diverted to the bottom slab of the intermediate shaft 9, so the amount of materials and the labor required for construction are small. Tesumu. In addition, the number of ground excavation can be reduced. Furthermore, it is highly possible that the specifications of the wall and the support work can be reduced, or the number of steps of the support work such as a cut beam and a bellows can be reduced, and the workability is improved.
[0052]
In the third embodiment, when connecting the segment 3 and the continuous underground wall 7, the steel material 73 to which the plate 67 or the plate 71 is welded in advance is fixed to the segment 3 via the connection plate 69. Good.
[0053]
In the first to third embodiments, the continuous underground wall 7 is used as the retaining wall and the steel segment is used as the segment 3. However, even when other retaining walls or segments are used, the existing tunnel By diverting the segment near the bottom to the bottom slab of the intermediate shaft and forming the connecting part 10 between the segment and the retaining wall, the quantity of materials and the labor required for construction can be reduced as in the first to third embodiments. Less. In addition, the number of ground excavation can be reduced. Furthermore, it is highly possible that the specifications of the wall and the support work can be reduced, or the number of steps of the support work such as a cut beam and a bellows can be reduced, and the workability is improved.
[0054]
The connecting portion 10 may have a structure other than the beam end portions 11, 11 a, 11 b and the side wall portions 13, 13 a described in the first to third embodiments. The connecting portion 10 can structurally integrate the segment 3 in the vicinity of the lower part of the existing tunnel 2 and the retaining wall such as the continuous underground wall 7, and a joint portion between the segment 3 and the retaining wall such as the continuous underground wall 7. Any structure that can stop water is acceptable.
[0055]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide an intermediate shaft construction method and an intermediate shaft that can economically form a shaft in a short construction period at an intermediate position of a shield tunnel.
[Brief description of the drawings]
FIG. 1 is a sectional elevation view in the axial direction of an existing tunnel of the intermediate shaft 9 FIG. 2 is a sectional elevation view in the circumferential direction of the existing tunnel of the intermediate shaft 9 FIG. 3 is a sectional view in the vicinity of the beam end 11 4] Cross-sectional view near the side wall 13 [Fig. 5] Cross-sectional view near the beam end 11a [Fig. 6] Cross-sectional view taken along line EE of Fig. 5 before installing the reinforcing bar 57 and concrete 59 [Fig. 7] Segment 3 FIG. 8 is a cross-sectional view of the vicinity of the side wall portion 13a. FIG. 9 is a cross-sectional view of the vicinity of the beam end portion 11c. FIG. 11 is a plan view of the intermediate shaft 105. FIG. 12 is an elevational sectional view of the intermediate shaft 105.
1, 1a, 1b ... Ground 2 ... Existing tunnel 3 ... Segment 7 ... Continuous underground wall 9 ... Intermediate shaft 11, 11a, 11b ... Beam end 13, 13a ... ... Sidewall part 35, 63 ......... Bevel 19, 19a ......... Water-stopping rubber 21, 21a, 25, 25a, 31, 33, 53, 55 ......... Reinforcing bars 23, 27, 27a, 57 ......... Reinforcement Reinforcing bars 29, 29a, 37, 59, 65, 81 ......... concrete 32, 32a ......... beams 34, 34a ...... walls 41, 69 ...... connecting plates,
43, 49, 73 ... Steel members 67, 71 ... Plate

Claims (8)

既設シールドトンネルに中間立坑を構築する方法であって、
中間立坑の予定線に沿って、地表から既設シールドトンネル下方まで山留め壁を形成する工程と、
前記山留め壁の内側の地盤を既設シールドトンネルの位置まで掘削し、既設シールドトンネルの底部以外のセグメントを撤去する工程と、
前記既設シールドトンネルの底部のセグメントの両端部と前記山留め壁との間に連結部を形成する工程と、
を具備することを特徴とする中間立坑の構築方法。
A method of constructing an intermediate shaft in an existing shield tunnel,
Forming a retaining wall from the ground surface to the lower part of the existing shield tunnel along the planned line of the intermediate shaft ,
Excavating the ground inside the retaining wall to the position of the existing shield tunnel, and removing the segments other than the bottom of the existing shield tunnel;
Forming a connecting portion between both ends of the bottom segment of the existing shield tunnel and the retaining wall;
An intermediate shaft construction method characterized by comprising:
前記山留め壁は、柱列式を含む連続地中壁であることを特徴とする請求項1記載の中間立坑の構築方法。  The method for constructing an intermediate shaft according to claim 1, wherein the mountain retaining wall is a continuous underground wall including a column arrangement. 前記連結部を鉄筋コンクリートで形成することを特徴とする請求項1記載の中間立坑の構築方法。  The method for constructing an intermediate shaft according to claim 1, wherein the connecting portion is formed of reinforced concrete. 前記連結部を鋼材で形成することを特徴とする請求項1記載の中間立坑の構築方法。  The method for constructing an intermediate shaft according to claim 1, wherein the connecting portion is formed of a steel material. 前記連結部を鉄筋コンクリートおよび鋼材で形成することを特徴とする請求項1記載の中間立坑の構築方法。  The method for constructing an intermediate shaft according to claim 1, wherein the connecting portion is formed of reinforced concrete and steel. ジベルを用いて前記連結部を前記山留め壁に一体化することを特徴とする請求項3または請求項5記載の中間立坑の構築方法。  6. The method for constructing an intermediate shaft according to claim 3, wherein the connecting portion is integrated with the retaining wall using a gibber. 前記鋼材はH鋼および鋼板であることを特徴とする請求項4または請求項5記載の中間立坑の構築方法。  6. The intermediate shaft construction method according to claim 4, wherein the steel material is H steel and steel plate. 請求項1から7のいずれかの方法で構築された中間立坑。  An intermediate shaft constructed by the method according to any one of claims 1 to 7.
JP2002170995A 2002-06-12 2002-06-12 Intermediate shaft construction method and intermediate shaft Expired - Fee Related JP3673508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170995A JP3673508B2 (en) 2002-06-12 2002-06-12 Intermediate shaft construction method and intermediate shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170995A JP3673508B2 (en) 2002-06-12 2002-06-12 Intermediate shaft construction method and intermediate shaft

Publications (2)

Publication Number Publication Date
JP2004019099A JP2004019099A (en) 2004-01-22
JP3673508B2 true JP3673508B2 (en) 2005-07-20

Family

ID=31170965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170995A Expired - Fee Related JP3673508B2 (en) 2002-06-12 2002-06-12 Intermediate shaft construction method and intermediate shaft

Country Status (1)

Country Link
JP (1) JP3673508B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104453915B (en) * 2014-11-14 2016-09-07 中铁二十一局集团第三工程有限公司 Big cross section vertical shaft pre-pouring grout reinforces Rapid Excavation method
CN109958443B (en) * 2019-04-30 2024-04-02 北京市市政工程设计研究总院有限公司 Parallel vertical shafts hidden in pipe gallery tunnel and construction method thereof
CN114352288B (en) * 2021-12-30 2024-04-16 南京工大交通科学研究院(滁州)有限公司 Construction structure and construction method for shield tunneling in short distance

Also Published As

Publication number Publication date
JP2004019099A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP6186267B2 (en) How to build an underground tunnel
JP4881555B2 (en) Construction method of underground structure
KR101167511B1 (en) Underpass using precast concrete pile and method for constructing the same
JP3673508B2 (en) Intermediate shaft construction method and intermediate shaft
JP4083334B2 (en) Underground structure having arch roof and method for constructing the same
JP3829319B2 (en) Construction method of underground hollow structure and its underground hollow structure
JP5764245B2 (en) Construction method of underground structure and underground structure
JP6043454B1 (en) Construction method of underground structure and underground structure
JP3937588B2 (en) Construction method for underground structures
JP2012031678A (en) Foundation for structure and method for constructing the same
KR20160106357A (en) PHC Pile having Steel Bands, Retaining Wall using such PHC Piles, and Constructing Method of such Retaining Wall
KR102292762B1 (en) Continuous Steel Material constituting Wall Connected to Plurality of Units and Underground Structure Construction Method Using the Same
JP3930954B2 (en) Construction method of structure
KR20220065461A (en) WIRE STRUCTURE FOR STAGGERED LAPPING IN SLURRY WALL, SLURRY WALL and CONSTRUCTION METHOD FOR THE SAME
KR101219451B1 (en) Concrete structure and construction method for the same, constructing method of underground wall as a retaining structural wall used in the same
JP6882024B2 (en) Joining structure of precast concrete slab and construction method of precast concrete slab
JP6827294B2 (en) Segment wall and tunnel lining
JPH01315520A (en) Underground outer wall constructing method for superstructure
JP3900684B2 (en) Construction method for underground structures
JP2571426B2 (en) Construction method of retaining wall
KR102371284B1 (en) Slurry wall, construction method for the same and wire mesh assembly
KR101288602B1 (en) Underpass using precast concrete pile and method for constructing the same
JP4134847B2 (en) Construction method of underground structure
JP5480745B2 (en) Reinforcement method for existing foundations for structures
JP4079297B2 (en) Shield tunnel connection method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees