JP3672827B2 - Optical tomographic image measuring device - Google Patents

Optical tomographic image measuring device Download PDF

Info

Publication number
JP3672827B2
JP3672827B2 JP2001007505A JP2001007505A JP3672827B2 JP 3672827 B2 JP3672827 B2 JP 3672827B2 JP 2001007505 A JP2001007505 A JP 2001007505A JP 2001007505 A JP2001007505 A JP 2001007505A JP 3672827 B2 JP3672827 B2 JP 3672827B2
Authority
JP
Japan
Prior art keywords
light wave
light
frequency
objective lens
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001007505A
Other languages
Japanese (ja)
Other versions
JP2002214130A (en
Inventor
学 佐藤
直弘 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001007505A priority Critical patent/JP3672827B2/en
Publication of JP2002214130A publication Critical patent/JP2002214130A/en
Application granted granted Critical
Publication of JP3672827B2 publication Critical patent/JP3672827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、3次元速度ベクトル測定が可能な光波断層画像測定装置に関するものである。
【0002】
【従来の技術】
従来技術として、IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,VOL.5,NO.4.JULY/AUGUST 1999に開示されるように、ODT(オプティカル・ドップラー・トモグラフィー)は、OCT(オプティカル・コヒーレンス・トモグラフィー)とドップラー速度計を組み合わせたものが用いられている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記した従来のODTでは、速度ベクトルの3成分のうち、一成分の測定しかできないといった問題があった。
【0004】
本発明は、上記状況に鑑みて、3次元速度ベクトル測定が可能な光波断層画像測定装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
光波断層画像測定装置において、コヒーレント光源201からの光波を4つに分け、それぞれ3個の周波数シフター(AOM1,2,3)207,208,209を透過させて第1光波1,第2光波2,第3光波3および前記周波数シフターを通さずに参照光として光検出器219に入射される第4光波4(周波数:f0 +f1,2,3 )となし、前記第1光波1は対物レンズ(OL)213の光軸上をこのOL213に入射し、前記第2光波2は前記OL213の周辺部でこのOL213に入射し、その出射光波は、X−Z平面内でなす角θで前記第1光波1と交叉させ、さらに前記第3光波3は前記OL213の周辺部でこのOL213に入射し、出射光波は、Y−Z平面内でなす角θで前記第1光波1と交叉させ、生体組織である散乱体が所定速度V1 で移動しているとき、前記散乱体による散乱光は、前記光検出器219でヘテロダイン検出され、RFスペクトラムアナライザー220で周波数分析されることを特徴とする。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0007】
図1は本発明にかかる速度ベクトル測定の原理の説明をする模式図である。
【0008】
この図において、101はコヒーレント光源、102,103はハーフミラー、104はミラー、105は周波数シフター(AOM1)、106は周波数シフター(AOM2)、107はミラー、108はハーフミラー、109はミラー、110はレンズ、111は光検出器、112はRFスペクトラムアナライザー、113は対物レンズ、114は散乱体である。
【0009】
コヒーレント光源101からの光波(周波数:f0 )は、ハーフミラー102,103とミラー104で3つに分けられ、一つは周波数シフター(AOM1)105を透過して光波1(周波数:f0 +f1 )に、2つ目は同様に周波数シフター(AOM2)106を透過して光波2(周波数:f0 +f2 )となる。3つ目は周波数シフターを通らずに光波3となり、参照光として光検出器111に入射する。
【0010】
光波1は対物レンズ(OL)113の光軸上をOL113に入射し、光波2はOL113の周辺部でOL113に入射し、それらの出射光波は、光波1となす角θで交叉する。今、ある散乱体114が速度V0 で光軸とαのなす角で移動しているとする。散乱体114による散乱光は、光検出器111でヘテロダイン検出されRFスペクトラムアナライザー112で周波数分析される。この時、散乱体の速度によるドップラーシフトを伴った光波1,2のビート周波数f1 −f2 +ΔfX'が測定されるが、2つの光波入射時のドップラー速度計測の原理に従って、ドップラーシフトΔfX'から、次式によって散乱体の特定方向の速度成分VX'が求まる。
【0011】
【数1】

Figure 0003672827
【0012】
ここで、λは光源の波長である。また、光軸方向の速度成分については、光波1,3のヘテロダインビート検出よりビート周波数f1 +ΔfZ が測定され、さらにドップラーシフトΔfZ から散乱体の光軸方向速度成分VZ が次式によって求まる。
【0013】
【数2】
Figure 0003672827
【0014】
つまり、従来のドップラー速度計測の原理に従って、光波1,2の検出よりVX'が、光波1,3の検出よりVZ が測定され、これらは周波数f1 −f2 、f1 で区分されて、同時に測定が可能である。さらに速度成分VX',VZ より速度成分VZ は次式で与えられる。
【0015】
【数3】
Figure 0003672827
【0016】
以上より、周波数軸上で同時にΔfX'とΔfZ が測定され、速度ベクトル成分VX ,VZ が求められる。
【0017】
次に、3次元速度ベクトルV1 の測定方法を図2を参照しながら説明する。
【0018】
1 のX−Z平面への射影がV0 である。3次元速度ベクトルを測定するには、3軸方向速度成分を測定すればよい。上記の方法により、V1 のZ、X成分は測定可能であり、Y成分に関してもOLへの入射光波を増やしてVY の測定が可能となる。
【0019】
具体的には、図3を参照しながら説明する。
【0020】
図3は3次元速度ベクトル測定用光波断層画像測定装置の構成図である。
【0021】
この図において、201はコヒーレント光源、202はO.I.(Optical Isolator)、203はビームスプリッター(BS1)、204はビームスプリッター(BS2)、205はビームスプリッター(BS3)、206はミラー(M1)、207は周波数シフター(AOM)〔AOM1〕、208はAOM2、209はAOM3、210はミラー(M2)、211はハーフミラー(M3)、212はミラー(M4)、213は対物レンズ(OL)、214はサンプル、215はサンプルステージ、216はレンズ、217はビームスプリッター(BS4)、218は空間フィルター、219は光検出器、220はRFスペクトラムアナライザー、221はコンピューターである。
【0022】
コヒーレント光源201からの光波(周波数:f0 )は、4つに分けられ、それぞれ3個の周波数シフター(AOM1,2,3)207,209,208を透過して光波1,3,2(周波数:f0 +f1,2,3 )となる。4つ目は周波数シフターを通らずに光波4となり、参照光として光検出器219に入射する。
【0023】
光波1は対物レンズ(OL)213の光軸上をOL213に入射し、光波2はOL213の周辺部でOL213に入射し、その出射光波2は、X−Z平面内でなす角θで光波1と交叉する。
【0024】
さらに、光波3はOL213の周辺部でOL213に入射し、出射光波は、Y−Z平面内でなす角θで光波1と交叉する。今、図2のようにある散乱体が速度V1 で移動しているとする。散乱体による散乱光は、光検出器219でヘテロダイン検出されRFスペクトラムアナライザー220で周波数分析される。
【0025】
今、3つのAOM207,208,209の周波数をf1 =80.00MHz、f2 =80.05MHz、f3 =80.10MHzとすると、ドップラーシフトしたビート信号は、スペクトル軸上で図4に示すように分離する。
【0026】
よって、3成分ΔfX',ΔfY',ΔfZ の同時測定ができて、上記の式(1),(2),(3)に示した処理で速度ベクトルが測定される。
【0027】
断層画像の測定に関しては、近赤外領域のコヒーレント光源を用いれば比較的生体内に侵入することが容易である。入射ビームはOL213の大きさに対して十分細いビームなので、有効開口数は小さく、直径1ミリ程度の試料領域を照射する。その際、照射されたあらゆる領域から後方散乱光が発生し、この散乱光は、OL213の全開口を用いて集光され、空間フィルター218へと導入される。よって、OL213と空間フィルター218によって共焦点光学系が構成されているので、後方散乱光の発生領域が広くても共焦点光学系の検出系で、検出領域を制限し、3次元空間分解能を持たせている。光検出器219からの信号は、RFスペクトラムアナライザー220へ入力され、その強度信号とサンプルステージ215からの同期信号からコンピュータ221内で断層画像化される。
【0028】
以上のシステムを用いることにより、生体試料の断層画像、そこを流れる血液などの3次元速度ベクトル分布画像が測定される。
【0029】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0030】
【発明の効果】
以上、詳細に説明したように、本発明によれば、以下のような効果を奏することができる。
【0031】
生体組織は3次元構造であり、血管なども3次元に入り組んだ構造をしている。したがって、血流測定も1つの速度成分のみの測定では不十分であるが、3次元速度ベクトルを測定することによって、十分な情報が得られることになる。
【0032】
よって、本発明は、生体組織の生理、病理に関して、特に血流などについての生体情報計測に対して極めて有効的である。
【0033】
また、本発明によれば、組織構造と毛細血管内の血流ベクトル分布測定が可能となり、臨床での応用範囲は非常に広い。例えば、生活習慣病で、血液・血管に関する疾患は非常に多いことから、血流の3次元ベクトルの測定と断層画像との比較により、本発明はそれらの疾患の診断などに幅広く役に立つと考えられる。
【0034】
よって、本発明により医学分野での新しい臨床診断が期待され、さらに、他の計測産業分野への波及効果も多大である。
【図面の簡単な説明】
【図1】本発明にかかる速度ベクトル測定の原理の説明をする模式図である。
【図2】本発明にかかる3次元速度ベクトルV1 の測定方法の説明図である。
【図3】本発明の具体例を示す3次元速度ベクトル測定用光波断層画像測定装置の構成図である。
【図4】本発明にかかるドップラーシフトしたビート信号のスペクトル軸上での分離状態を示す図である。
【符号の説明】
101,201 コヒーレント光源
102,103,108 ハーフミラー
104,107,109 ミラー
105,207 周波数シフター(AOM1)
106,208 周波数シフター(AOM2)
110,216 レンズ
111,219 光検出器
112,220 RFスペクトラムアナライザー
113,213 対物レンズ(OL)
114 散乱体
202 O.I.
203 ビームスプリッター(BS1)
204 ビームスプリッター(BS2)
205 ビームスプリッター(BS3)
206 ミラー(M1)
209 周波数シフター(AOM3)
210 ミラー(M2)
211 ハーフミラー(M3)
212 ミラー(M4)
214 サンプル
215 サンプルステージ
217 ビームスプリッター(BS4)
218 空間フィルター
221 コンピューター[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical tomographic image measurement apparatus capable of measuring a three-dimensional velocity vector.
[0002]
[Prior art]
As a prior art, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 5, NO. 4). As disclosed in JULY / AUGUST 1999, ODT (Optical Doppler Tomography) is a combination of OCT (Optical Coherence Tomography) and Doppler velocimeter.
[0003]
[Problems to be solved by the invention]
However, the conventional ODT described above has a problem that only one component of the three components of the velocity vector can be measured.
[0004]
In view of the above situation, an object of the present invention is to provide an optical tomographic image measurement apparatus capable of measuring a three-dimensional velocity vector.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
In the optical tomographic image measurement apparatus, the light wave from the coherent light source 201 is divided into four, and each of the three frequency shifters (AOM1, 2, 3) 207, 208, and 209 is transmitted through the first light wave 1, the second light wave 2, and so on. , The third light wave 3 and the fourth light wave 4 (frequency: f 0 + f 1,2,3 ) incident on the photodetector 219 as reference light without passing through the frequency shifter, and the first light wave 1 is the objective An optical axis of a lens (OL) 213 is incident on the OL 213, the second light wave 2 is incident on the OL 213 at the periphery of the OL 213, and the outgoing light wave is at the angle θ formed in the XZ plane. Crossing with the first light wave 1, the third light wave 3 is incident on the OL 213 at the periphery of the OL 213, and the outgoing light wave is crossed with the first light wave 1 at an angle θ formed in the YZ plane, A scatterer that is a living tissue When moving at a velocity V 1, light scattered by the scatterer is heterodyne detected by the photodetector 219, characterized in that it is frequency analyzed by the RF spectrum analyzer 220.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0007]
FIG. 1 is a schematic diagram for explaining the principle of velocity vector measurement according to the present invention.
[0008]
In this figure, 101 is a coherent light source, 102 and 103 are half mirrors, 104 is a mirror, 105 is a frequency shifter (AOM1), 106 is a frequency shifter (AOM2), 107 is a mirror, 108 is a half mirror, 109 is a mirror, 110 Is a lens, 111 is a photodetector, 112 is an RF spectrum analyzer, 113 is an objective lens, and 114 is a scatterer.
[0009]
The light wave (frequency: f 0 ) from the coherent light source 101 is divided into three by the half mirrors 102, 103 and the mirror 104, one passing through the frequency shifter (AOM 1) 105 and light wave 1 (frequency: f 0 + f 1 ), the second light is transmitted through the frequency shifter (AOM2) 106 in the same manner, and becomes the light wave 2 (frequency: f 0 + f 2 ). The third light wave 3 does not pass through the frequency shifter and enters the photodetector 111 as reference light.
[0010]
The light wave 1 is incident on the OL 113 on the optical axis of the objective lens (OL) 113, the light wave 2 is incident on the OL 113 at the periphery of the OL 113, and the emitted light waves intersect at an angle θ formed with the light wave 1. Now, it is assumed that a certain scatterer 114 is moving at an angle formed by the optical axis and α at a velocity V 0 . Light scattered by the scatterer 114 is heterodyne detected by the photodetector 111 and subjected to frequency analysis by the RF spectrum analyzer 112. At this time, the beat frequencies f 1 -f 2 + Δf X ′ of the light waves 1 and 2 accompanied by the Doppler shift due to the speed of the scatterer are measured. In accordance with the principle of measuring the Doppler velocity when two light waves are incident, the Doppler shift Δf From X ′ , a velocity component V X ′ in a specific direction of the scatterer is obtained by the following equation.
[0011]
[Expression 1]
Figure 0003672827
[0012]
Here, λ is the wavelength of the light source. As for the velocity component in the optical axis direction, the beat frequency f 1 + Δf Z is measured from the heterodyne beat detection of the light waves 1 and 3, and the optical axis direction velocity component V Z of the scatterer is calculated from the Doppler shift Δf Z by the following equation. I want.
[0013]
[Expression 2]
Figure 0003672827
[0014]
In other words, according to the conventional principle of Doppler velocity measurement, V X ′ is measured from the detection of the light waves 1 and 2 , and V Z is measured from the detection of the light waves 1 and 3, and these are classified by the frequencies f 1 -f 2 and f 1. Simultaneous measurement is possible. Further, the velocity component V Z is given by the following equation from the velocity components V X ′ and V Z.
[0015]
[Equation 3]
Figure 0003672827
[0016]
As described above, Δf X ′ and Δf Z are simultaneously measured on the frequency axis, and velocity vector components V X and V Z are obtained.
[0017]
Next, a method for measuring the three-dimensional velocity vector V 1 will be described with reference to FIG.
[0018]
Projection to X-Z plane of V 1 is a V 0. In order to measure a three-dimensional velocity vector, a three-axis direction velocity component may be measured. By the above method, the Z and X components of V 1 can be measured, and the V Y can also be measured for the Y component by increasing the incident light wave to the OL.
[0019]
Specifically, this will be described with reference to FIG.
[0020]
FIG. 3 is a configuration diagram of a three-dimensional velocity vector measuring optical tomographic image measuring apparatus.
[0021]
In this figure, 201 is a coherent light source, 202 is O.D. I. (Optical Isolator), 203 is a beam splitter (BS1), 204 is a beam splitter (BS2), 205 is a beam splitter (BS3), 206 is a mirror (M1), 207 is a frequency shifter (AOM) [AOM1], 208 is AOM2 209, AOM3, 210 mirror (M2), 211 half mirror (M3), 212 mirror (M4), 213 objective lens (OL), 214 sample, 215 sample stage, 216 lens, 217 A beam splitter (BS4), 218 is a spatial filter, 219 is a photodetector, 220 is an RF spectrum analyzer, and 221 is a computer.
[0022]
The light wave (frequency: f 0 ) from the coherent light source 201 is divided into four light beams that pass through three frequency shifters (AOM1, 2, 3) 207, 209, 208, respectively, and light waves 1, 3, 2 (frequency : F 0 + f 1,2,3 ) The fourth light wave 4 does not pass through the frequency shifter and enters the photodetector 219 as reference light.
[0023]
The light wave 1 is incident on the OL 213 on the optical axis of the objective lens (OL) 213, the light wave 2 is incident on the OL 213 at the periphery of the OL 213, and the emitted light wave 2 is the light wave 1 at an angle θ formed in the XZ plane. Cross with.
[0024]
Further, the light wave 3 enters the OL 213 at the periphery of the OL 213, and the outgoing light wave intersects the light wave 1 at an angle θ formed in the YZ plane. Now, assume that a scatterer is moving at a velocity V 1 as shown in FIG. Light scattered by the scatterer is heterodyne detected by the photodetector 219 and frequency-analyzed by the RF spectrum analyzer 220.
[0025]
Assuming that the frequencies of the three AOMs 207, 208, and 209 are f 1 = 80.00 MHz, f 2 = 80.05 MHz, and f 3 = 80.10 MHz, the Doppler-shifted beat signal is shown in FIG. 4 on the spectrum axis. To separate.
[0026]
Therefore, the three components Δf X ′ , Δf Y ′ and Δf Z can be measured simultaneously, and the velocity vector is measured by the processing shown in the above equations (1), (2) and (3).
[0027]
Regarding the measurement of tomographic images, it is relatively easy to enter the living body by using a near-infrared coherent light source. Since the incident beam is sufficiently thin with respect to the size of the OL 213, the effective numerical aperture is small and a sample region having a diameter of about 1 mm is irradiated. At that time, back-scattered light is generated from all irradiated regions, and this scattered light is collected using the entire aperture of the OL 213 and introduced into the spatial filter 218. Therefore, since the confocal optical system is configured by the OL 213 and the spatial filter 218, the detection area is limited by the detection system of the confocal optical system even if the generation region of the backscattered light is wide, and the three-dimensional spatial resolution is obtained. It is A signal from the photodetector 219 is input to the RF spectrum analyzer 220, and a tomographic image is formed in the computer 221 from the intensity signal and the synchronization signal from the sample stage 215.
[0028]
By using the above system, a tomographic image of a biological sample and a three-dimensional velocity vector distribution image such as blood flowing therethrough are measured.
[0029]
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.
[0030]
【The invention's effect】
As described above in detail, according to the present invention, the following effects can be obtained.
[0031]
A living tissue has a three-dimensional structure, and blood vessels and the like have a three-dimensional structure. Therefore, blood flow measurement is not sufficient with only one velocity component, but sufficient information can be obtained by measuring a three-dimensional velocity vector.
[0032]
Therefore, the present invention is extremely effective for the physiological information and pathology of biological tissues, particularly for biological information measurement of blood flow and the like.
[0033]
In addition, according to the present invention, it is possible to measure the blood flow vector distribution in the tissue structure and capillaries, and the clinical application range is very wide. For example, since there are many diseases related to blood and blood vessels in lifestyle-related diseases, it is considered that the present invention is widely useful for diagnosis of such diseases by measuring three-dimensional vectors of blood flow and comparing tomographic images. .
[0034]
Therefore, a new clinical diagnosis in the medical field is expected by the present invention, and the ripple effect on other measurement industry fields is also great.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining the principle of velocity vector measurement according to the present invention.
FIG. 2 is an explanatory diagram of a method for measuring a three-dimensional velocity vector V 1 according to the present invention.
FIG. 3 is a block diagram of a three-dimensional velocity vector measurement optical tomographic image measurement apparatus showing a specific example of the present invention.
FIG. 4 is a diagram showing a separation state on the spectrum axis of a beat signal shifted by Doppler according to the present invention.
[Explanation of symbols]
101, 201 Coherent light source 102, 103, 108 Half mirror 104, 107, 109 Mirror 105, 207 Frequency shifter (AOM1)
106,208 Frequency shifter (AOM2)
110, 216 Lens 111, 219 Photodetector 112, 220 RF spectrum analyzer 113, 213 Objective lens (OL)
114 Scatterer 202 O.I. I.
203 Beam splitter (BS1)
204 Beam splitter (BS2)
205 Beam splitter (BS3)
206 Mirror (M1)
209 Frequency shifter (AOM3)
210 Mirror (M2)
211 Half mirror (M3)
212 mirror (M4)
214 Sample 215 Sample stage 217 Beam splitter (BS4)
218 Spatial filter 221 Computer

Claims (1)

コヒーレント光源からの光波を4つに分け、それぞれ3個の周波数シフターを透過させて第1光波、第2光波、第3光波及び前記周波数シフターを通さずに参照光として光検出器に入射される第4光波(周波数:f0 +f1,2,3 )となし、前記第1光波は対物レンズの光軸上を該対物レンズに入射し、前記第2光波は前記対物レンズの周辺部で該対物レンズに入射し、その出射光波はX−Z平面内でなす角θで前記第1光波と交叉させ、さらに前記第3光波は前記対物レンズの周辺部で該対物レンズに入射し、その出射光波は、Y−Z平面内でなす角θで前記第1光波と交叉させ、生体組織である散乱体が所定速度で移動しているとき、前記散乱体による散乱光は、前記光検出器でヘテロダイン検出され、RFスペクトラムアナライザーで周波数分析されることを特徴とする光波断層画像測定装置。The light wave from the coherent light source is divided into four parts, each of which passes through three frequency shifters, and enters the photodetector as reference light without passing through the first light wave, the second light wave, the third light wave, and the frequency shifter. A fourth light wave (frequency: f 0 + f 1,2,3 ) is formed, the first light wave is incident on the objective lens on the optical axis of the objective lens, and the second light wave is incident on the periphery of the objective lens. The incident light enters the objective lens, and the emitted light wave intersects the first light wave at an angle θ formed in the XZ plane, and the third light wave enters the objective lens at the periphery of the objective lens and emits the light. The light wave intersects the first light wave at an angle θ formed in the YZ plane, and when the scatterer, which is a biological tissue, moves at a predetermined speed, the scattered light from the scatterer is reflected by the photodetector. Heterodyne detection and frequency with RF spectrum analyzer Lightwave tomographic image measuring apparatus characterized by being analyzed.
JP2001007505A 2001-01-16 2001-01-16 Optical tomographic image measuring device Expired - Fee Related JP3672827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001007505A JP3672827B2 (en) 2001-01-16 2001-01-16 Optical tomographic image measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001007505A JP3672827B2 (en) 2001-01-16 2001-01-16 Optical tomographic image measuring device

Publications (2)

Publication Number Publication Date
JP2002214130A JP2002214130A (en) 2002-07-31
JP3672827B2 true JP3672827B2 (en) 2005-07-20

Family

ID=18875246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001007505A Expired - Fee Related JP3672827B2 (en) 2001-01-16 2001-01-16 Optical tomographic image measuring device

Country Status (1)

Country Link
JP (1) JP3672827B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597744B2 (en) * 2004-11-08 2010-12-15 株式会社トプコン Optical image measuring device and optical image measuring method

Also Published As

Publication number Publication date
JP2002214130A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
JP5844510B2 (en) Imaging of structure and flow in biological environment
CN107595250B (en) Blood flow imaging method and system based on motion and graph mixed contrast
JP5134177B2 (en) Systems using light-scattering spectroscopy based on electric fields
JP5536854B2 (en) Method, arrangement and system for polarization sensitive optical frequency domain imaging of samples
Trasischker et al. In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography
US9354038B2 (en) Swept source optical coherence tomography and method for stabilizing phase thereof
US8879070B2 (en) Two beams formed by Wollaston prism in sample arm in an optical coherence tomography apparatus
JP5679630B2 (en) Optical tomographic imaging apparatus and method
CN106137134B (en) Multi-angle composite blood flow imaging method and system
CN107788950B (en) Blood flow imaging method and system based on self-adaptive threshold segmentation
JP7154542B2 (en) Apparatus and method for tomographic visualization of tissue viscoelasticity
US20150216415A1 (en) Method and apparatus for performing multidimensional velocity measurements using amplitude and phase in optical interferometry
JP5557397B2 (en) Method and apparatus for imaging translucent materials
JP3672827B2 (en) Optical tomographic image measuring device
CN110192852B (en) Flow velocity transverse component measuring system and method for double-scanning-line optical coherence tomography
Wartak et al. Adaptable switching schemes for time-encoded multichannel optical coherence tomography
JP2890309B2 (en) Form and function imaging device
JP2013113587A (en) Optical image measuring apparatus
Jing et al. Optical coherence tomography
US8485034B2 (en) Acoustic confocal interferometry microscope
JPH10221248A (en) Optical examination method and device thereof
Golpayegani et al. Laser Doppler and laser speckle techniques for blood flow measurement
Wang et al. Optical microangiography: high-resolution 3-D imaging of blood flow
JP4478286B2 (en) Fundus blood flow meter and fundus blood flow velocity measuring method
McElligott-Daly et al. Design & development of a galvanometer inspired dual beam optical coherence tomography system for flow velocity quantification of the microvasculature

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees