JP2002214130A - Light wave tomogram measuring device - Google Patents

Light wave tomogram measuring device

Info

Publication number
JP2002214130A
JP2002214130A JP2001007505A JP2001007505A JP2002214130A JP 2002214130 A JP2002214130 A JP 2002214130A JP 2001007505 A JP2001007505 A JP 2001007505A JP 2001007505 A JP2001007505 A JP 2001007505A JP 2002214130 A JP2002214130 A JP 2002214130A
Authority
JP
Japan
Prior art keywords
light wave
light
frequency
objective lens
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001007505A
Other languages
Japanese (ja)
Other versions
JP3672827B2 (en
Inventor
Manabu Sato
学 佐藤
Naohiro Tanno
直弘 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001007505A priority Critical patent/JP3672827B2/en
Publication of JP2002214130A publication Critical patent/JP2002214130A/en
Application granted granted Critical
Publication of JP3672827B2 publication Critical patent/JP3672827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a light wave tomogram measuring device capable of executing three-dimensional velocity vector measurement. SOLUTION: In this light wave tomogram measuring device, a light wave from a coherent light source 201 is divided into four, and transmitted through three frequency shifters 207, 208, 209, respectively, to thereby form a first light wave 1, a second light wave 2, a third light wave 3, and a fourth light wave 4 (frequency: f0+f1,2,3) entering a photodetector 219 as reference light without passing the frequency shifters, and the first light wave 1 enters an objective lens(OL) 213 along the optical axis of the OL 213, and the second light wave 2 enters the OL 213 at a peripheral part of the OL 213, and its outgoing light wave intersects the first light wave 1 at an angle θ formed in the X-Z plane, and the third light wave 3 enters the OL 213 at a peripheral part of the OL 213, and its outgoing light wave intersects the first light wave 1 at the angle θformed in the Y-Z plane, and, when a scattering body which is an organism tissue is moved at a speed V1, heterodyne detection of scattered light caused by the scattering body is executed by the photodetector 219, and frequency analysis thereof is executed by an RF spectrum analyzer 220.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、3次元速度ベクト
ル測定が可能な光波断層画像測定装置に関するものであ
る。
[0001] 1. Field of the Invention [0002] The present invention relates to an optical tomographic image measuring apparatus capable of measuring a three-dimensional velocity vector.

【0002】[0002]

【従来の技術】従来技術として、IEEE JOURN
AL OF SELECTED TOPICS IN
QUANTUM ELECTRONICS,VOL.
5,NO.4.JULY/AUGUST 1999に開
示されるように、ODT(オプティカル・ドップラー・
トモグラフィー)は、OCT(オプティカル・コヒーレ
ンス・トモグラフィー)とドップラー速度計を組み合わ
せたものが用いられている。
2. Description of the Related Art As a prior art, IEEE JOURN
AL OF SELECTED TOPICS IN
QUANTUM ELECTRONICS, VOL.
5, NO. 4. As disclosed in JULY / AUGUST 1999, ODT (Optical Doppler
For tomography, a combination of OCT (optical coherence tomography) and a Doppler velocimeter is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記し
た従来のODTでは、速度ベクトルの3成分のうち、一
成分の測定しかできないといった問題があった。
However, the above-described conventional ODT has a problem that only one of the three components of the velocity vector can be measured.

【0004】本発明は、上記状況に鑑みて、3次元速度
ベクトル測定が可能な光波断層画像測定装置を提供する
ことを目的とする。
[0004] In view of the above situation, an object of the present invention is to provide a light wave tomographic image measuring apparatus capable of measuring a three-dimensional velocity vector.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、光波断層画像測定装置において、コヒー
レント光源201からの光波を4つに分け、それぞれ3
個の周波数シフター(AOM1,2,3)207,20
8,209を透過させて第1光波1,第2光波2,第3
光波3および前記周波数シフターを通さずに参照光とし
て光検出器219に入射される第4光波4(周波数:f
0 +f1,2,3 )となし、前記第1光波1は対物レンズ
(OL)213の光軸上をこのOL213に入射し、前
記第2光波2は前記OL213の周辺部でこのOL21
3に入射し、その出射光波は、X−Z平面内でなす角θ
で前記第1光波1と交叉させ、さらに前記第3光波3は
前記OL213の周辺部でこのOL213に入射し、出
射光波は、Y−Z平面内でなす角θで前記第1光波1と
交叉させ、生体組織である散乱体が所定速度V1 で移動
しているとき、前記散乱体による散乱光は、前記光検出
器219でヘテロダイン検出され、RFスペクトラムア
ナライザー220で周波数分析されることを特徴とす
る。
The present invention achieves the above object.
To achieve this, a coherent
The light wave from the rent light source 201 is divided into four,
Frequency shifters (AOM1,2,3) 207,20
8, 209 and the first light wave 1, the second light wave 2, the third light wave
Lightwave 3 and the reference light without passing through the frequency shifter
The fourth light wave 4 (frequency: f
0+ F1,2,3) And the first light wave 1 is an objective lens.
(OL) The optical axis of 213 is incident on this OL 213, and
The second lightwave 2 is applied to the OL21 at the periphery of the OL213.
3, and the outgoing light wave forms an angle θ in the XZ plane.
Crosses with the first light wave 1 and the third light wave 3
At the periphery of the OL 213, the light enters the OL 213 and exits.
The emitted light wave and the first light wave 1 are formed at an angle θ in the YZ plane.
The scatterers, which are living tissues, cross at a predetermined velocity V1Move with
When scattered light by the scatterer, the light detection
219, the heterodyne is detected, and the RF spectrum
The frequency analysis is performed by the narizer 220.
You.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0007】図1は本発明にかかる速度ベクトル測定の
原理の説明をする模式図である。
FIG. 1 is a schematic diagram for explaining the principle of velocity vector measurement according to the present invention.

【0008】この図において、101はコヒーレント光
源、102,103はハーフミラー、104はミラー、
105は周波数シフター(AOM1)、106は周波数
シフター(AOM2)、107はミラー、108はハー
フミラー、109はミラー、110はレンズ、111は
光検出器、112はRFスペクトラムアナライザー、1
13は対物レンズ、114は散乱体である。
In this figure, 101 is a coherent light source, 102 and 103 are half mirrors, 104 is a mirror,
105 is a frequency shifter (AOM1), 106 is a frequency shifter (AOM2), 107 is a mirror, 108 is a half mirror, 109 is a mirror, 110 is a lens, 111 is a photodetector, 112 is an RF spectrum analyzer,
13 is an objective lens, and 114 is a scatterer.

【0009】コヒーレント光源101からの光波(周波
数:f0 )は、ハーフミラー102,103とミラー1
04で3つに分けられ、一つは周波数シフター(AOM
1)105を透過して光波1(周波数:f0 +f1
に、2つ目は同様に周波数シフター(AOM2)106
を透過して光波2(周波数:f0 +f2 )となる。3つ
目は周波数シフターを通らずに光波3となり、参照光と
して光検出器111に入射する。
The light wave (frequency f 0 ) from the coherent light source 101 is transmitted to half mirrors 102 and 103 and mirror 1
04 is divided into three, one is a frequency shifter (AOM
1) Light wave 1 transmitted through 105 (frequency: f 0 + f 1 )
The second is also a frequency shifter (AOM2) 106
A: (f 0 + f 2 frequency) passes through the light wave 2. The third light wave 3 does not pass through the frequency shifter, and enters the photodetector 111 as reference light.

【0010】光波1は対物レンズ(OL)113の光軸
上をOL113に入射し、光波2はOL113の周辺部
でOL113に入射し、それらの出射光波は、光波1と
なす角θで交叉する。今、ある散乱体114が速度V0
で光軸とαのなす角で移動しているとする。散乱体11
4による散乱光は、光検出器111でヘテロダイン検出
されRFスペクトラムアナライザー112で周波数分析
される。この時、散乱体の速度によるドップラーシフト
を伴った光波1,2のビート周波数f1 −f2+ΔfX'
が測定されるが、2つの光波入射時のドップラー速度計
測の原理に従って、ドップラーシフトΔfX'から、次式
によって散乱体の特定方向の速度成分V X'が求まる。
Light wave 1 is the optical axis of objective lens (OL) 113
The upper part is incident on the OL 113, and the light wave 2 is
At the OL 113 and their outgoing lightwaves are lightwave 1 and
Intersect at an angle θ. Now, a scatterer 114 has a velocity V0
Let it be assumed that the optical axis moves at an angle between the optical axis and α. Scatterer 11
4 is heterodyne detected by the photodetector 111
Frequency analysis with RF spectrum analyzer 112
Is done. At this time, Doppler shift due to the speed of the scatterer
Beat frequency f of light waves 1 and 2 with1−fTwo+ ΔfX '
Is measured, but the Doppler velocimeter when two light waves are incident
According to the principle of measurement, the Doppler shift ΔfX 'From the following equation
The velocity component V of the scatterer in a specific direction X 'Is found.

【0011】[0011]

【数1】 (Equation 1)

【0012】ここで、λは光源の波長である。また、光
軸方向の速度成分については、光波1,3のヘテロダイ
ンビート検出よりビート周波数f1 +ΔfZ が測定さ
れ、さらにドップラーシフトΔfZ から散乱体の光軸方
向速度成分VZ が次式によって求まる。
Here, λ is the wavelength of the light source. As for the velocity component in the optical axis direction, the beat frequency f 1 + Δf Z is measured by detecting the heterodyne beat of the light waves 1 and 3, and the velocity component V Z of the scatterer in the optical axis direction is obtained from the Doppler shift Δf Z by the following equation. I get it.

【0013】[0013]

【数2】 (Equation 2)

【0014】つまり、従来のドップラー速度計測の原理
に従って、光波1,2の検出よりV X'が、光波1,3の
検出よりVZ が測定され、これらは周波数f1 −f2
1で区分されて、同時に測定が可能である。さらに速
度成分VX',VZ より速度成分VZ は次式で与えられ
る。
That is, the principle of the conventional Doppler velocity measurement
From the detection of the light waves 1 and 2, X 'But the lightwave 1,3
V from detectionZAre measured, these are the frequencies f1−fTwo,
f1And can be measured simultaneously. Even faster
Degree component VX ', VZMore speed component VZIs given by
You.

【0015】[0015]

【数3】 (Equation 3)

【0016】以上より、周波数軸上で同時にΔfX'とΔ
Z が測定され、速度ベクトル成分VX ,VZ が求めら
れる。
From the above, Δf X ′ and Δf X ′ are simultaneously determined on the frequency axis.
f Z is measured, and velocity vector components V X and V Z are obtained.

【0017】次に、3次元速度ベクトルV1 の測定方法
を図2を参照しながら説明する。
Next, a method of measuring the three-dimensional velocity vector V 1 will be described with reference to FIG.

【0018】V1 のX−Z平面への射影がV0 である。
3次元速度ベクトルを測定するには、3軸方向速度成分
を測定すればよい。上記の方法により、V1 のZ、X成
分は測定可能であり、Y成分に関してもOLへの入射光
波を増やしてVY の測定が可能となる。
[0018] The projection to the X-Z plane of the V 1 is V 0.
In order to measure a three-dimensional velocity vector, it is sufficient to measure a velocity component in three axial directions. By the above method, Z, X component of V 1 was a measurable, it is possible to measure the V Y increase the incident light wave to the OL regard Y component.

【0019】具体的には、図3を参照しながら説明す
る。
More specifically, this will be described with reference to FIG.

【0020】図3は3次元速度ベクトル測定用光波断層
画像測定装置の構成図である。
FIG. 3 is a block diagram of a three-dimensional velocity vector measuring light wave tomographic image measuring apparatus.

【0021】この図において、201はコヒーレント光
源、202はO.I.(Optical Isolat
or)、203はビームスプリッター(BS1)、20
4はビームスプリッター(BS2)、205はビームス
プリッター(BS3)、206はミラー(M1)、20
7は周波数シフター(AOM)〔AOM1〕、208は
AOM2、209はAOM3、210はミラー(M
2)、211はハーフミラー(M3)、212はミラー
(M4)、213は対物レンズ(OL)、214はサン
プル、215はサンプルステージ、216はレンズ、2
17はビームスプリッター(BS4)、218は空間フ
ィルター、219は光検出器、220はRFスペクトラ
ムアナライザー、221はコンピューターである。
In this figure, reference numeral 201 denotes a coherent light source; I. (Optical Isolat
or), 203 is the beam splitter (BS1), 20
4 is a beam splitter (BS2), 205 is a beam splitter (BS3), 206 is a mirror (M1), 20
7 is a frequency shifter (AOM) [AOM1], 208 is AOM2, 209 is AOM3, 210 is a mirror (MOM).
2), 211 is a half mirror (M3), 212 is a mirror (M4), 213 is an objective lens (OL), 214 is a sample, 215 is a sample stage, 216 is a lens,
17 is a beam splitter (BS4), 218 is a spatial filter, 219 is a photodetector, 220 is an RF spectrum analyzer, and 221 is a computer.

【0022】コヒーレント光源201からの光波(周波
数:f0 )は、4つに分けられ、それぞれ3個の周波数
シフター(AOM1,2,3)207,209,208
を透過して光波1,3,2(周波数:f0 +f1,2,3
となる。4つ目は周波数シフターを通らずに光波4とな
り、参照光として光検出器219に入射する。
The light wave (frequency: f 0 ) from the coherent light source 201 is divided into four, and three frequency shifters (AOM1, 2, 3) 207, 209, and 208 are respectively provided.
Through the light waves 1, 3, 2 (frequency: f 0 + f 1,2,3 )
Becomes The fourth light wave 4 does not pass through the frequency shifter, and enters the light detector 219 as reference light.

【0023】光波1は対物レンズ(OL)213の光軸
上をOL213に入射し、光波2はOL213の周辺部
でOL213に入射し、その出射光波2は、X−Z平面
内でなす角θで光波1と交叉する。
The light wave 1 is incident on the OL 213 on the optical axis of the objective lens (OL) 213, the light wave 2 is incident on the OL 213 at the periphery of the OL 213, and the emitted light wave 2 forms an angle θ in the XZ plane. Intersects with the light wave 1.

【0024】さらに、光波3はOL213の周辺部でO
L213に入射し、出射光波は、Y−Z平面内でなす角
θで光波1と交叉する。今、図2のようにある散乱体が
速度V1 で移動しているとする。散乱体による散乱光
は、光検出器219でヘテロダイン検出されRFスペク
トラムアナライザー220で周波数分析される。
Further, the light wave 3
The lightwave incident on L213 intersects with lightwave 1 at an angle .theta. In the YZ plane. Now, the scatterers as shown in FIG. 2 is moving at a velocity V 1. Light scattered by the scatterer is heterodyne-detected by the photodetector 219 and frequency-analyzed by the RF spectrum analyzer 220.

【0025】今、3つのAOM207,208,209
の周波数をf1 =80.00MHz、f2 =80.05
MHz、f3 =80.10MHzとすると、ドップラー
シフトしたビート信号は、スペクトル軸上で図4に示す
ように分離する。
Now, the three AOMs 207, 208, 209
Frequency of f 1 = 80.00 MHz, f 2 = 80.05
MHz, When f 3 = 80.10MHz, beat signals by Doppler shifts are separated as shown in FIG. 4 on the spectral axis.

【0026】よって、3成分ΔfX',ΔfY',ΔfZ
同時測定ができて、上記の式(1),(2),(3)に
示した処理で速度ベクトルが測定される。
Therefore, the three components Δf X ′ , Δf Y ′ , and Δf Z can be measured simultaneously, and the velocity vector is measured by the processing shown in the above equations (1), (2) and (3).

【0027】断層画像の測定に関しては、近赤外領域の
コヒーレント光源を用いれば比較的生体内に侵入するこ
とが容易である。入射ビームはOL213の大きさに対
して十分細いビームなので、有効開口数は小さく、直径
1ミリ程度の試料領域を照射する。その際、照射された
あらゆる領域から後方散乱光が発生し、この散乱光は、
OL213の全開口を用いて集光され、空間フィルター
218へと導入される。よって、OL213と空間フィ
ルター218によって共焦点光学系が構成されているの
で、後方散乱光の発生領域が広くても共焦点光学系の検
出系で、検出領域を制限し、3次元空間分解能を持たせ
ている。光検出器219からの信号は、RFスペクトラ
ムアナライザー220へ入力され、その強度信号とサン
プルステージ215からの同期信号からコンピュータ2
21内で断層画像化される。
As for the measurement of a tomographic image, it is relatively easy to invade a living body by using a coherent light source in the near infrared region. Since the incident beam is sufficiently narrow with respect to the size of the OL 213, the effective numerical aperture is small and irradiates a sample area having a diameter of about 1 mm. At that time, backscattered light is generated from all the irradiated areas, and the scattered light is
The light is condensed using the full aperture of the OL 213 and introduced into the spatial filter 218. Therefore, since the confocal optical system is configured by the OL 213 and the spatial filter 218, even if the region where the backscattered light is generated is wide, the detection system of the confocal optical system limits the detection region and has three-dimensional spatial resolution. I'm making it. The signal from the photodetector 219 is input to the RF spectrum analyzer 220, and the signal from the computer 2 is obtained from the intensity signal and the synchronization signal from the sample stage 215.
A tomographic image is formed in 21.

【0028】以上のシステムを用いることにより、生体
試料の断層画像、そこを流れる血液などの3次元速度ベ
クトル分布画像が測定される。
By using the above system, a tomographic image of a biological sample and a three-dimensional velocity vector distribution image of blood flowing therethrough are measured.

【0029】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications are possible based on the gist of the present invention, and these are not excluded from the scope of the present invention.

【0030】[0030]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。
As described above, according to the present invention, the following effects can be obtained.

【0031】生体組織は3次元構造であり、血管なども
3次元に入り組んだ構造をしている。したがって、血流
測定も1つの速度成分のみの測定では不十分であるが、
3次元速度ベクトルを測定することによって、十分な情
報が得られることになる。
The living tissue has a three-dimensional structure, and blood vessels and the like have a three-dimensional structure. Therefore, blood flow measurement is not sufficient if only one velocity component is measured.
Measuring the three-dimensional velocity vector will provide sufficient information.

【0032】よって、本発明は、生体組織の生理、病理
に関して、特に血流などについての生体情報計測に対し
て極めて有効的である。
Therefore, the present invention is extremely effective for physiological information and pathology of a living tissue, particularly for measuring biological information on blood flow and the like.

【0033】また、本発明によれば、組織構造と毛細血
管内の血流ベクトル分布測定が可能となり、臨床での応
用範囲は非常に広い。例えば、生活習慣病で、血液・血
管に関する疾患は非常に多いことから、血流の3次元ベ
クトルの測定と断層画像との比較により、本発明はそれ
らの疾患の診断などに幅広く役に立つと考えられる。
Further, according to the present invention, it is possible to measure the tissue structure and the blood flow vector distribution in the capillaries, and the clinical application range is very wide. For example, since there are many lifestyle-related diseases related to blood and blood vessels, the present invention is considered to be widely useful for diagnosis of those diseases by measuring three-dimensional vectors of blood flow and comparing with tomographic images. .

【0034】よって、本発明により医学分野での新しい
臨床診断が期待され、さらに、他の計測産業分野への波
及効果も多大である。
Therefore, the present invention is expected to provide a new clinical diagnosis in the medical field, and has a great ripple effect on other fields of the measurement industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる速度ベクトル測定の原理の説明
をする模式図である。
FIG. 1 is a schematic diagram illustrating the principle of velocity vector measurement according to the present invention.

【図2】本発明にかかる3次元速度ベクトルV1 の測定
方法の説明図である。
FIG. 2 is an explanatory diagram of a method for measuring a three-dimensional velocity vector V 1 according to the present invention.

【図3】本発明の具体例を示す3次元速度ベクトル測定
用光波断層画像測定装置の構成図である。
FIG. 3 is a configuration diagram of a three-dimensional velocity vector measuring light wave tomographic image measuring apparatus showing a specific example of the present invention.

【図4】本発明にかかるドップラーシフトしたビート信
号のスペクトル軸上での分離状態を示す図である。
FIG. 4 is a diagram showing a separated state on a spectral axis of a Doppler shifted beat signal according to the present invention.

【符号の説明】[Explanation of symbols]

101,201 コヒーレント光源 102,103,108 ハーフミラー 104,107,109 ミラー 105,207 周波数シフター(AOM1) 106,208 周波数シフター(AOM2) 110,216 レンズ 111,219 光検出器 112,220 RFスペクトラムアナライザー 113,213 対物レンズ(OL) 114 散乱体 202 O.I. 203 ビームスプリッター(BS1) 204 ビームスプリッター(BS2) 205 ビームスプリッター(BS3) 206 ミラー(M1) 209 周波数シフター(AOM3) 210 ミラー(M2) 211 ハーフミラー(M3) 212 ミラー(M4) 214 サンプル 215 サンプルステージ 217 ビームスプリッター(BS4) 218 空間フィルター 221 コンピューター 101, 201 Coherent light source 102, 103, 108 Half mirror 104, 107, 109 Mirror 105, 207 Frequency shifter (AOM1) 106, 208 Frequency shifter (AOM2) 110, 216 Lens 111, 219 Photodetector 112, 220 RF spectrum analyzer 113, 213 Objective lens (OL) 114 Scatterer 202 O. I. 203 Beam splitter (BS1) 204 Beam splitter (BS2) 205 Beam splitter (BS3) 206 Mirror (M1) 209 Frequency shifter (AOM3) 210 Mirror (M2) 211 Half mirror (M3) 212 Mirror (M4) 214 Sample 215 Sample stage 217 Beam splitter (BS4) 218 Spatial filter 221 Computer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コヒーレント光源からの光波を4つに分
け、それぞれ3個の周波数シフターを透過させて第1光
波、第2光波、第3光波及び前記周波数シフターを通さ
ずに参照光として光検出器に入射される第4光波(周波
数:f0 +f 1,2,3 )となし、前記第1光波は対物レン
ズの光軸上を該対物レンズに入射し、前記第2光波は前
記対物レンズの周辺部で該対物レンズに入射し、その出
射光波はX−Z平面内でなす角θで前記第1光波と交叉
させ、さらに前記第3光波は前記対物レンズの周辺部で
該対物レンズに入射し、その出射光波は、Y−Z平面内
でなす角θで前記第1光波と交叉させ、生体組織である
散乱体が所定速度で移動しているとき、前記散乱体によ
る散乱光は、前記光検出器でヘテロダイン検出され、R
Fスペクトラムアナライザーで周波数分析されることを
特徴とする光波断層画像測定装置。
1. A light wave from a coherent light source is divided into four light waves.
And the first light is transmitted through three frequency shifters.
Through the wave, the second lightwave, the third lightwave and the frequency shifter
The fourth lightwave (frequency) incident on the photodetector as reference light without
Number: f0+ F 1,2,3) And the first light wave is an objective lens.
Incident on the objective lens on the optical axis of the
At the periphery of the objective lens, the light enters the objective lens and exits
The emitted light wave intersects with the first light wave at an angle θ formed in the XZ plane.
And the third light wave is applied around the objective lens.
The light wave incident on the objective lens and emitted from the objective lens is in the YZ plane.
Crosses the first light wave at an angle θ formed by
When the scatterer is moving at a predetermined speed, the scatterer
Scattered light is heterodyne detected by the photodetector, and R
Frequency analysis with F spectrum analyzer
Characteristic light wave tomographic image measurement device.
JP2001007505A 2001-01-16 2001-01-16 Optical tomographic image measuring device Expired - Fee Related JP3672827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001007505A JP3672827B2 (en) 2001-01-16 2001-01-16 Optical tomographic image measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001007505A JP3672827B2 (en) 2001-01-16 2001-01-16 Optical tomographic image measuring device

Publications (2)

Publication Number Publication Date
JP2002214130A true JP2002214130A (en) 2002-07-31
JP3672827B2 JP3672827B2 (en) 2005-07-20

Family

ID=18875246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001007505A Expired - Fee Related JP3672827B2 (en) 2001-01-16 2001-01-16 Optical tomographic image measuring device

Country Status (1)

Country Link
JP (1) JP3672827B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153838A (en) * 2004-11-08 2006-06-15 Topcon Corp Optical image measuring apparatus and optical image measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153838A (en) * 2004-11-08 2006-06-15 Topcon Corp Optical image measuring apparatus and optical image measurement method
US7345770B2 (en) 2004-11-08 2008-03-18 Kabushiki Kaisha Topcon Optical image measuring apparatus and optical image measuring method for forming a velocity distribution image expressing a moving velocity distribution of the moving matter
JP4597744B2 (en) * 2004-11-08 2010-12-15 株式会社トプコン Optical image measuring device and optical image measuring method

Also Published As

Publication number Publication date
JP3672827B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
EP2066225B1 (en) In vivo structural and flow imaging
CN107595250B (en) Blood flow imaging method and system based on motion and graph mixed contrast
JP5135324B2 (en) Method, arrangement and system for polarization sensitive optical frequency domain imaging of samples
US10371614B2 (en) Diagnostic spectrally encoded endoscopy apparatuses and systems and methods for use with same
US8879070B2 (en) Two beams formed by Wollaston prism in sample arm in an optical coherence tomography apparatus
US8036732B2 (en) Hemoglobin contrast in magneto-motive optical doppler tomography, optical coherence tomography, and ultrasound imaging methods and apparatus
US7345770B2 (en) Optical image measuring apparatus and optical image measuring method for forming a velocity distribution image expressing a moving velocity distribution of the moving matter
JP5166889B2 (en) Quantitative measurement device for fundus blood flow
JP5679630B2 (en) Optical tomographic imaging apparatus and method
JP2003532112A (en) Method and system using electric field based light scattering spectroscopy
CN105559756A (en) Microangiography method and system based on total space modulation spectrum segmentation angle combining
JP2007240453A (en) Spectroscopic coherence tomography device
JP2015180863A (en) Method and apparatus for performing multidimensional velocity measurements using amplitude and phase in optical interferometry
JP7154542B2 (en) Apparatus and method for tomographic visualization of tissue viscoelasticity
JP2012502262A (en) Method and apparatus for imaging translucent materials
WO2010143572A1 (en) Subject information analysis device and subject information analysis method
Bauer-Marschallinger et al. Fiber-optic annular detector array for large depth of field photoacoustic macroscopy
JP3672827B2 (en) Optical tomographic image measuring device
JP2890309B2 (en) Form and function imaging device
JP2013113587A (en) Optical image measuring apparatus
KR101917479B1 (en) Method of performing oct imaging using a surgical microscope and hybrid beam scanning, and apparatuses for performing the same
Akiguchi et al. Examining the relationship between blood flow velocity and movement of erythrocytes in a capillary using laser doppler velocimetry
Jing et al. Optical coherence tomography
Lee et al. Implementation of spectral width Doppler in pulsatile flow measurements
Zhao et al. Review of noninvasive methods for skin blood flow imaging in microcirculation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040126

A977 Report on retrieval

Effective date: 20040625

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040706

Free format text: JAPANESE INTERMEDIATE CODE: A131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050419

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050420

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees