JP3670886B2 - Method for growing artificial quartz and quartz plate using the same - Google Patents

Method for growing artificial quartz and quartz plate using the same Download PDF

Info

Publication number
JP3670886B2
JP3670886B2 JP13449699A JP13449699A JP3670886B2 JP 3670886 B2 JP3670886 B2 JP 3670886B2 JP 13449699 A JP13449699 A JP 13449699A JP 13449699 A JP13449699 A JP 13449699A JP 3670886 B2 JP3670886 B2 JP 3670886B2
Authority
JP
Japan
Prior art keywords
plate
crystal
axis
rotation angle
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13449699A
Other languages
Japanese (ja)
Other versions
JP2000327492A (en
Inventor
俊彦 加賀見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP13449699A priority Critical patent/JP3670886B2/en
Publication of JP2000327492A publication Critical patent/JP2000327492A/en
Application granted granted Critical
Publication of JP3670886B2 publication Critical patent/JP3670886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の技術分野】
本発明は線状の格子欠陥(線状欠陥とする)密度が小さな人工水晶の育成方法及びこれによる水晶板を産業上の技術分野とし、特に人工水晶の線状欠陥密度を小さくする種子水晶、及び線状欠陥に起因してエッチングによって生ずるエッチチャンネルのチャンネル密度を減少するATカットの水晶板(AT板)に関する。
【0002】
【従来の技術】
(発明の背景)人工水晶は、エレクトロニクスの発展とともに、圧電現象及び光学特性から、振動子(発振子、共振子)、弾性表面波素子及び光学素子等を含む水晶素子の原材料として有用されている。近年では、量産化あるいは小型化、薄型化の傾向から、エッチング処理による外形加工が行われている。そして、これに伴い、人工水晶の特に線状欠陥及びこれに起因してエッチングによって発生するエッチチャンネルを抑止する人工水晶の育成方法が提案されている(参照:特開平9−227294号公報)。
【0003】
【従来技術】
(従来技術の一例)第8図は人工水晶の育成方法(概略)を説明する模式図である。人工水晶はオートクレーブ(金属筒炉)1内で、水熱合成法によって育成される。通常では、バッフル板(対流制御板)2で仕切られた上方に水晶種子3を下方にラスカ(屑水晶)4を配置し、育成溶液5としての水酸化ナトリウム(NaOH)溶液を注入する。金属筒炉1はヒータ6によって加熱され、水晶種子側は300〜350℃、ラスカ側は360〜400℃の温度に制御される。なお、金属筒炉1の上端開口部は、圧力計7を有する金属蓋8で閉塞される。
【0004】
このようなものでは、ラスカ4が育成溶液5中に飽和分まで溶解し、オートクレーブ1内の温度差による対流によって、水晶種子3の周囲に接近する。そして、水晶種子板3の周囲での温度低下により、育成溶液中の過飽和状態となったSiO2分子が水晶種子板3に析出し、3方晶系の人工水晶に成長する。
【0005】
水晶種子3は、結晶軸(XYZ)のY軸方向に長い水晶板が適用される。そして、水晶種子3は、Y軸方向には殆ど成長することなく、特に±X軸及びZ軸方向に成長する(第9図)。第9図はY軸に垂直に切断した断面図(Yカット図、X−Z平面図)である。通常では、±X軸方向に成長した領域では不純物を多く含み、Q値が低くて振動特性を劣化させる。
【0006】
このことから、水晶種子3は、一般に、主面(X−Y平面)がZ軸に直交する水晶板(所謂Z板)が適用される(第10図)。なお、主面がX、Y及びZ軸に直交する各水晶板をX、Y及びZ板と称し、X、Y及びZ軸に直交する各平面をX、Y及びZ面と称している。そして、育成後に、X軸方向に成長した部分を切断除去して、Z軸方向の両主面側に成長領域9(ab)を有する角柱水晶体(所謂ランバード人工水晶)10を得る(第11図)。
【0007】
そして、角柱水晶体10を例えばATカットで切断した水晶板(水晶ウェハ、AT板)を得て、エッチング処理により凹部の形成や分割等の外形加工をして個々の水晶片を得る。ATカットとは、主面がY軸に直交した水晶板(Y板)を+X軸から見て、X軸を中心としてZ軸からY軸方向へ反時計回りにφ度(φ=35゜15’)回転した切断角度である(第12図)。また、回転した新たな軸をY’及びZ’軸と称している。
【0008】
【発明が解決しようとする課題】
(従来技術の問題点)しかしながら、人工水晶の育成にあたっては、水晶種子3の完全な結晶構造を望まれるが、水晶種子3をZ板とした場合には、特にZ軸方向に線状欠陥11aを多く含む(第13図)。そして、オートクレーブ1内での水晶種子3の成長とともに、線状欠陥11aもそのまま引継がれて人工水晶中に線状欠陥11(bc)を形成する。但し、線状欠陥11(bc)は種子水晶3の成長過程における成長面の凹凸等に起因し、Z軸方向に対して約±20度の範囲内で進行する。
【0009】
このような線状欠陥部分は、エッチング液に対する化学的強度が弱く、液中に投入すると優先的にエッチングされる。したがって、第14図の断面図に示したように、人工水晶を切断した水晶板(AT板)12をエッチング液中に投入すると、Z軸方向の線状欠陥11が交差(斜交)した表面に窪(通称エッチピット)13を生じる。さらに、線状欠陥11の欠陥程度やエッチングの強弱に応じて、エッチピット13から線状欠陥に沿って、穴14aや貫通孔14bのエッチチャンネル14を生ずる。
【0010】
そして、チャンネル密度が高ければ高いほど、水晶板12に対する空間部の占有積を多くする。したがって、エッチングによって周波数調整及び洗浄等を含む外形加工をした場合には、水晶振動子の性能(Q値やクリスタルインピーダンス)を悪化させる問題があった。特に、水晶振動子の高周波数化に対応して、エッチングによってAT板に凹部を形成する場合には問題が顕在化する。
【0011】
このことから、冒頭の参照公報では、バッフル板の形状によって育成溶液の対流速度を制御し、種子水晶3(Z板)におけるY軸方向の両端側でのZ方向への成長速度を異ならせる。すなわち、種子水晶3のZ軸方向に対してθ度傾斜する方向に向って成長させ、結果としてZ面に対してθ度傾斜したZ’面を得る(未図示)。これにより、種子水晶3に内在する線状欠陥はZ軸方向の育成領域内への引継を防止して、結果的にエッチチャンネルを減少できるとしている。
【0012】
しかしながら、このような育成方法では、育成溶液の対流速度を自在に設定することが困難で、種子水晶からの成長方向及びZ面に対するZ’面の傾斜角θを任意に制御できない問題があった。
【0013】
(発明の目的)本発明は線状欠陥密度が小さく、Z面に対するZ’面の傾斜角を容易に制御できる人工水晶の育成方法及び切断角度との相関から幾何学的に主面と交差する線状欠陥密度(チャンネル密度)を小さくできる水晶板を提供することを目的とする。
【0014】
【課題を解決するための手段】
(着目点)本発明は、前記参照公報に記載された通り、Z面に対してθ度傾斜したZ’面を得るように育成して線状欠陥を低減できるのであれば、種子水晶の主面を予めθ度傾斜したZ’面にして育成すれば同様にして線状欠陥及びこれに相関したエッチチャンネルを減少できるのでないかとの点に着目した。
【0015】
(解決手段) 本発明は、このような着目点に基づき、種子結晶を、結晶軸(XYZ)のZ軸に直交した主面(X−Y平面、Z面)がX軸を中心としY軸からZ軸の方向へθ度回転したZ’板として育成したことを基本的な解決手段とする。
【0016】
【作用】
本発明では、種子水晶をZ’板としたので、着目したとおり線状欠陥に相関したエッチチャンネルが減少した。また、種子水晶と水晶板の切断角度との関係から、幾何学的に見ても水晶板の主面と交差する線状欠陥密度を減少できる。以下、本発明の実施例を実験結果により説明する。
【0017】
【実施例】
第1図は本発明の一実施例(種子水晶)を説明する図で、種子水晶原石(種子原石とする)の断面図である。なお、前従来例と同一部分には同番号を付与してその説明は簡略又は省略する。
種子水晶3は、主面(X−Y平面、Z面)がZ軸方向に直交した、Y軸方向に長いZ板の種子原石15から切出される。この例では、Z軸に直交する主面(X−Y平面、Z面)がX軸を中心とし、+X軸から見てY軸からZ軸方向へ反時計回りに回転角θ度をもって傾斜したZ’板として、切出される。要するに、種子水晶3は主面がZ軸に直交するZ板をY軸からZ軸の方向に反時計回りにθ度回転させたZ’板とする。図中の点線で示す種子水晶3は主面がZ軸に直交した従来のZ板である。なお、これ以降では、必要に応じてZ板とした種子水晶3をZ板種子3aとし、Z’板とした種子水晶3をZ’板種子3bとする。
【0018】
そして、前述した水熱合成法により、Z’板種子3bをオートクレーブ内で育成し、人工水晶(Z’板人工水晶とする)16bを得る。このようなものでは、第2図に示したように、Z’板人工水晶16bは、Z’種子3aのZ’面に対して垂直方向(Z’軸方向)に成長し、両主面はいずれもZ’面と平行になる。そして、Z’板種子3bの線状欠陥11bもZ’板人工水晶16bの成長方向と同一方向に引継がれて、新たな線状欠陥11(bc)を形成する。なお、Z板種子3aにより育成された従来の人工水晶を、Z板人工水晶16aとする。
【0019】
表1は、Z板種子3a、Z板人工水晶16a及びZ’板人工水晶16bのチャンネル密度A本/cm、並びにZ板人工水晶16a及びZ’板人工水晶16bのZ板種子3aに対する減少密度数B本/cm及び減少率C(B/A×100)である。但し、Z板人工水晶16aのZ板種子3aはY軸からの回転角θが0度であり、Z’板人工水晶16bのZ’板種子3bの回転角θは5、10、15、20度として測定した。また、チャンネル密度Aは、IEC及びJIS規格により、水晶種子3及び人工水晶をATカットで切断した水晶板(AT板)で評価した。第4図及び第5図(曲線イ)は表1に基いた、回転角θに対するチャンネル密度A及び減少率Cを示すグラフである。
【0020】

Figure 0003670886
【0021】
また、この実験での種子水晶(ZZ’板種子とする)3cは、第3図に示したように、一方の主面D1がY軸からの回転角(傾斜角)θを0度とし、他方の主面D2が回転角θを5、10、15、20度とする。すなわち、Xカット断面をY軸方向に長い直角三角形とした水晶板とする。そして、これらのZZ’板種子3cを育成した同一原石からなる人工水晶(ZZ’板人工水晶とする)16cにおける各領域(ZZ’種子3c、Z面及びZ’面からの成長領域9a、9b)のチャンネル密度Aを測定した。
【0022】
すなわち、このようなZZ’板種子3cを育成すると、Z及びZ’面側からそれぞれ垂直方向に成長し、Z面側からはZ板人工水晶16aが、Z’面側からはZ’板人工水晶16bが育成される。したがって、両主面が不平行となる例えばY軸に対して非対称の人工水晶となる。また、成長領域9(ab)の線状欠陥11(bc)も、基本的には両主面側で人工水晶の成長方向と同方向に引継がれて形成される。
【0023】
そして、このように育成されたZZ’板人工水晶16cを、Z軸からY軸方向へ主面がφ度(35゜15’)回転した角度で切断し、AT板17を得る。これにより、ZZ’板種子3cを切断したAT板17a、並びにZ板及びZ’板を種子水晶としたZ及びZ’板人工水晶16(ab)を切断したAT板17(bc)が一体的に得られる。
【0024】
本実施例では、このようにして同一原石から得た3枚一組となるAT板17(abc)の各チャンネル密度Aをそれぞれ測定した。但し、表1の種子水晶のチャンネル密度Aは、各回転角θ時におけるZZ’板種子3cをAT板17aとしたときの平均値である。このような実験方法では、ZZ’板種子3cを育成した同一原石のZZ’板人工水晶16cから切出され、切断角度が全く同一の3枚一組としたAT板17(abc)のチャンネル密度Aを対比するので、正確な評価を下すことができる。
【0025】
これらの表1及び第4図、第5図(各曲線イ)から明らかなとおり、Z’板人工水晶16bのチャンネル密度Aは、Z’板種子3bのY軸からの回転角θが大きくなるほど小さくなる。例えば回転角θを20度として育成した場合には、種子水晶3のチャンネル密度128本/cmに対して、23本/cmとなり(18%)、チャンネル密度Aは大幅に減少した(減少率が82%)。
【0026】
なお、回転角θが0度(Z板種子3a)を育成したZ板人工水晶16aのチャンネル密度Aは124本/cmであり、種子水晶(128本/cm)とほぼ同一密度で、減少率Cは概ね0となる。すなわち、前述のようにZ板種子3aの線状欠陥11aが同方向にそのまま引継がれる結果と推察される。
【0027】
ところで、本実施例の育成方法においては、Y軸から反時計回りに回転角θで傾斜させたZ’板種子3bを使用する。したがって、この場合には、幾何学的に見て、Z’板種子3bの主面と交差する線状欠陥密度は、従来のZ板種子3aよりも必然的に減少する。すなわち、前第1図に示したように、Z板種子3aのY軸に直交する線状欠陥密度をP0本/cmとすると、Z’板種子3bでは、Z板種子3aと同一本数の線状欠陥11が斜交する主面は大きく(Y’軸方向の長さが大きく)なる。したがって、Z’板種子3bの主面と交差する線状欠陥密度P1はZ板種子3aの同密度P0より小さくなる。すなわち、P1=P0cosθ本/cmとなる。
【0028】
そして、Z板及びZ’板種子3(ab)を育成したZ板及びZ’板人工水晶16(ab)の線状欠陥密度(チャンネル密度)は、ATカット(φ=35゜15’)として評価される。したがって、Z板及びZ’板人工水晶16(ab)から切出したAT板の主面と交差する線状欠陥密度P2又はP3(本/cm)は、Z及びZ ’板のときよりもそれぞれ小さくなる。すなわち、Z板人工水晶16aから切出したAT板17bの場合には(1)式となる「前第13図参照」。また、Z’板人工水晶16bから切出したAT板17cの場合には(2)式となる「前第2図参照」。
【0029】
したがって、Z板人工水晶16aに対するZ’板人工水晶16bのAT板での線状欠陥密度P3の減少率Pcは(3)式になる。第6図は(3)式に基づくグラフである。
Figure 0003670886
【0030】
これらの式及びグラフから明らかなように、回転角θがθ=φ(この場合φは35゜15’)のとき、線状欠陥密度P3は0となり「(2)式」、減少率Pcは100%になる「(3)式」。すなわち、ATカットでの切断角度φと回転角θが一致する場合には、線状欠陥11はAT板の主面方向と同一になる。したがって、線状欠陥11はAT板の主面とは交差しないので、その密度P3は幾何学的には0になる。
【0031】
また、0<θ<φのときは、回転角θが大きくなるほど、AT板17cの主面に対する線状欠陥11の傾斜角が0度に接近するので、主面に交差する線状欠陥密度P3は小さくなる。また、θ>φを越えると線状欠陥の傾斜角が逆方向に大きくなってその密度P3も大きくなり、減少率は小さくなる。そして、θ≒60゜で極値を有し、減少率は90度で再び100%になる(前第6図)。なお、回転角θが90度では、Z’種子3bの主面と線状欠陥11が平行になり、線状欠陥が主面と交差しないためである。
【0032】
第7図は、Z板種子3aの成長速度L(mm/日)と、Z’板種子3bの回転角θをパラメータとした成長速度M(mm/日)との成長速度比M/Lを示したグラフである。但し、育成溶液をNaOHとしたときのグラフであり、曲線イは回転角θを反時計回り、同ロは時計回りである。これから明らかなように、Z’板種子3bの成長速度はZ板種子3aに比較し、回転角θを時計回りとしたときには40度近傍以降で遅くなる。また、反時計回りとしたときには20度近傍以降で遅くなる(参照:窯業協会誌 77 [4] 1969 pp. 118)。
【0033】
したがって、回転角θが反時計回りに20度を越えたZ’板種子3bを育成したZ’板人工水晶からAT板を得て、AT板の主面と交差する線状欠陥密度P3が減少しても生産性の点で劣る。したがって、Z板種子3aに対して成長速度比M/Lが約1となる回転角θを最大回転角Q(この場合は約20度)として0<θ<Qに設定すれば、AT板の主面と交差する幾何学的な線状欠陥密度を小さくして、生産性を維持することができる。
【0034】
上表2は、種子水晶3の回転角θを0度としたZ板人工水晶3a及び5、10、15、20度としたZ’板人工水晶3bの幾何学的に求められるAT板でのチャンネル密度a、並びに減少密度b及び減少率でcある。また、第4図及び第5図(曲線ロ)は表2に基づいた、回転角θに対するチャンネル密度a及び減少率cを示すグラフである。但し、ここでのチャンネル密度aは、種子水晶3の実測によるチャンネル密度128本/cmを基準として、幾何学的に求められるAT板の主面と交差する線状欠陥密度とチャンネル密度とは同一と仮定した場合である。
【0035】
これらからも明らかなように、本実施例のZ’板種子3bによって育成したZ’板人工水晶16bをAT板17cに切断したときの、幾何学的なチャンネル密度aは回転角θ(但し、0<θ<φ=35゜)に比例して減少する。例えば回転角θを20度としたときには128本/cmから54本/cmに減少し、減少率cは58%となる。
【0036】
ここで、表1と表2とを比較すると、実測値と幾何学的な計算値(幾何計算値)とによるチャンネル密度(A、a)は相違し、各回転角θ(5、10、15、20度)のいずれにおいても実測値の方が幾何計算値よりもチャンネル密度Aは小さく、減少率Cは大きい(第4図及び第5図参照)。例えば回転角θが5度では、幾何計算値111本/cmに対して実測値87本/cmであり、幾何計算値に対して実測値の方が約23%少なく、同様にしてθが10度では33%、15度では43%、20度では57%少なくなる。
【0037】
これらのことから、本実施例では回転角θで切出したZ’板種子3bを育成したZ’板人工水晶16bをATカットで切断するので、幾何学的に見て主面と交差する線状欠陥密度が減少する。さらに、実測値では幾何計算値よりもチャンネル密度が減少することから、Z’板人工水晶16bの線状欠陥11(bc)そのものが減少したと推定できる。例えば回転角θが5度のときにおける、実測値(87本/cm)と幾何計算値(111本/cm)とのチャンネル密度(A、a)の差24本/cmは、線状欠陥自体が育成時に減少したことによると考えられる。
【0038】
同様にして、回転角θが10度のときの実測値と幾何計算値とのチャンネル密度(A、a)の差は31本/cm、15度で32本/cm 、20度で31本となる。したがって、回転角θが大きくなるほど線状欠陥密度は減少し、10〜20度以降で飽和すると考えられる。すなわち、0を越える10〜20度の範囲では、Z’板の回転角θが大きいほど線状欠陥自体の引継が抑止され、それ以降では抑止効果に変化はないと推察される。
【0039】
(実施例の作用効果)ここで、本実施例の結果を整理すると、本実施例では種子水晶3をY軸から反時計回りに回転したZ’板種子3bとしてZ’板人工水晶16bを育成するので、実測値と幾何学的なチャンネル密度の比較から従来のZ板人工水晶16aより線状欠陥密度を小さくできる。線状欠陥密度は、回転角θに比例して減少し、特に10度以上になると線状欠陥密度の減少を最大にする。また、Z’板人工水晶16bの成長速度Mは回転角θが反時計回りに約20度(最大回転角Q)以内であれば、Z板人工水晶16aの成長速度Lと同等であり、生産性を良好にする。したがって、この実施例では回転角θを0<θ≦Q゜特に10<θ≦Q(=20)゜とすることにり、線状欠陥密度を小さくして生産性を良好に維持する人工水晶を得ることができる。
【0040】
また、本実施例では、このように育成されたZ’板人工水晶16bをAT板に切断して評価すると、主面と交差する幾何学的な線状欠陥密度の減少に伴い、チャンネル密度を減少できる。特に、Z’板種子3bの回転角θをAT板の回転角φである35゜15’にすると、線状欠陥11cとAT板の主面とが平行になり、幾何計算値による線状欠陥密度(チャンネル密度)を0にする。また、回転角θを約40゜としたZ’板種子3bのZ板種子3aに対する成長速度比M/Lは0.7程度であり、生産性は極端には低下しない。したがって、回転角θを35゜15’を中心として10<θ≦40゜とすれば、線状欠陥密度を最大に減少して、幾何学的に見た主面と交差する線状欠陥密度を小さくし、しかも生産性を良好としたAT板を得ることができる。
【0041】
また、Z’板種子3bの回転角θを必要に応じて最適角度に設定すればよいので、従来のように育成溶液の対流速度を制御することなく、成長方向を容易に制御できる。したがって、例えば品質を一定にした人工水晶を得ることができる。
【0042】
【他の事項】
(請求項1及び2の趣旨)上記実施例では、水晶種子3は回転角θをY軸からZ軸方向へ反時計回りに傾斜したZ’板種子3bとして説明したが、Y軸から時計回りに傾斜したZ’種子であっても、人工水晶及び線状欠陥は主面に垂直方向に育成(形成)されるので、線状欠陥密度は小さくなる。また、時計回りに回転したZ’種子の成長速度は反時計回りの場合とは異なるが(前第7図参照)、Z板種子に比較して成長速度比M/Lが1となる最大回転角Qであれば生産性も良好にする。
【0043】
これにより、請求項1では、時計回り及び反時計回りのZ’種子を含み回転角θを0<θ≦Qとしている。但し、JIS規格(JISC6704−1997)に規定され、水晶種子として存在する回転角θが1.5、2、5、8.5゜としたXカット水晶振動子用のものは除いている。なお、これらは、線状欠陥密度の引継を防止して減少させることを意図したものではなく、本質的に本実施例とは異なる。また、請求項2では、回転角θを8.5<θ≦Q゜として、従来の種子水晶と明確に区別している。
【0044】
(請求項3の趣旨)請求項3では、回転角θを10<θ≦Q゜とすることにより、人工水晶の線状欠陥密度を最小にして生産性を良好に維持する水晶振動子の育成方法を趣旨としている。
【0045】
(請求項4、5及び6の趣旨)請求項4では回転角θが反時計回りとしたZ’板種子を用いた育成方法であることを明確にする。請求項5ではこれによる人工水晶をY軸に主面が直交したY板が反時計回りに回転した回転角度φで切断した水晶板とすることにより、線状欠陥の減少のみならず、幾何学的に見て主面と交差する線状欠陥密度を小さくできることを趣旨とし、請求項6では、反時計回りに回転したAT板又はST板であることを明確にする。
【0046】
(請求項7、8及び9の趣旨)請求項7では、回転角θが時計回りとしたZ板趣旨を用いた育成方法であることを明確にする。請求項8ではこれによる人工水晶をY板が時計回りに回転角φで切断した水晶板とすることにより、線状欠陥の減少のみならず、幾何学的に見て主面と交差する線状欠陥密度を小さくできることを趣旨とし、請求項9では、反時計回りに回転したBT板であることを明確にする。
【0047】
(請求項10及び11の趣旨)請求項10では、実施例でのAT板用の人工水晶の育成方法を趣旨とし、特に回転角θを10<θ≦40゜として前述したように人工水晶の線状欠陥密度自体を減少して、幾何学的に見て主面と交差する線状欠陥密度をも小さくし、しかも生産性を良好にするAT板用の人工水晶の育成方法を趣旨とする。請求項11は、これによるAT板を技術的範囲とする。
【0048】
なお、人工水晶には、右水晶とこれに全く対称な左水晶とが存在するが、本実施例では全て右水晶を前提として回転角度θ及びφを示している。したがって、左水晶の場合には回転角θ及びφに−(マイナス)を付したものが右水晶のそれぞれに一致し、本発明はこれを排除するものではない。
【0049】
また、実施例での成長速度比M/Lは育成溶液をNaOHとした場合について述べたが、例えばNaCOの場合であっても成長速度自体はNaOHと多少は相違するものの成長速度比M/Lは同様であり、本発明はこれらも排除するものではない。
【0050】
【発明の効果】
本発明は、種子水晶3を結晶軸(XYZ)のZ軸に直交した主面(X−Y平面、Z面)がX軸を中心としY軸からZ軸の方向へθ度回転したZ’板として人工水晶を育成したので、基本的に線状欠陥の少ない人工水晶及び切断角度との相関から幾何学的に見て主面と交差する線状欠陥密度に基づくチャンネル密度の小さな水晶板を提供できる。しかも、種子水晶からの成長方向を容易に制御できて簡便な人工水晶の育成方法を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例を説明する種子水晶の切断方位を示す種子原石のXカット図(YZ平面図)である。
【図2】本発明の一実施例を説明する人工水晶のXカット図である。
【図3】本発明の一実施例を説明するZZ’種子水晶及びこれによるZZ’板人工水晶のXカット図である。
【図4】本発明の一実施例による作用効果を説明する回転角θに対して発生するチャンネル密度のグラフである。
【図5】本発明の一実施例による作用効果を説明する回転角θに対するチャンネル密度の減少率を示すグラフである。
【図6】本実施例一実施例を説明するZ’種子の回転角θをパラメータしたZ’人工水晶の幾何学的なチャンネル密度の減少率を示すグラフである。
【図7】本実施例の一実施例を説明するZ板種子とZ’板との成長速度比を示すグラフである。
【図8】従来例を説明する人工水晶を育成するオートクレーブの断面図である。
【図9】従来例を説明する水熱合成法によって育成された人工水晶のYカット図(XZ平面図)である。
【図10】従来例を説明するZカットとした水晶種子の切断方位図である。
【図11】従来例を説明する角柱水晶体の図である。
【図12】従来例を説明するATカットとした水晶板の切断方位図である。
【図13】従来例を説明するATカットの水晶板を人工水晶から切出すXカット平面図である。
【図14】従来例の問題点(エッチチャンネル)を説明する水晶板(ATカット)の模式的な断面図である。
【符号の説明】
1 金属楚筒炉、2 バッフル板、3 水晶種子、4 ラスカ、5 育成溶液、6、15 ヒータ、7 圧力計、8 金属蓋、9 成長領域、10 角柱水晶体、11 線状欠陥、12 水晶ウェハ(ATカット)、13 エッチピット、14 エッチチャンネル、15 種子原石、16 人工水晶、17 AT板.[0001]
[Industrial technical field]
The present invention relates to a method of growing an artificial quartz crystal having a small density of linear lattice defects (referred to as a linear defect) and a quartz crystal plate based on the method, and particularly a seed crystal for reducing the linear defect density of the artificial quartz crystal, The present invention also relates to an AT-cut quartz plate (AT plate) that reduces the channel density of etch channels caused by etching due to linear defects.
[0002]
[Prior art]
(Background of the Invention) With the development of electronics, artificial quartz is being used as a raw material for crystal elements including vibrators (oscillators, resonators), surface acoustic wave elements, optical elements, and the like due to piezoelectric phenomena and optical characteristics. . In recent years, outer shape processing by etching processing has been performed due to the tendency of mass production, miniaturization, and thinning. Along with this, there has been proposed a method for growing an artificial quartz crystal that suppresses, in particular, linear defects in the artificial quartz crystal and etch channels caused by etching due to this (refer to JP-A-9-227294).
[0003]
[Prior art]
(Example of Prior Art) FIG. 8 is a schematic diagram for explaining a method (outline) for growing an artificial quartz crystal. The artificial quartz is grown in the autoclave (metal cylinder furnace) 1 by a hydrothermal synthesis method. Normally, a crystal seed 3 is placed above the baffle plate (convection control plate) 2 and a laska (scrap crystal) 4 is placed below, and a sodium hydroxide (NaOH) solution as a growth solution 5 is injected. The metal cylinder furnace 1 is heated by a heater 6 and controlled to a temperature of 300 to 350 ° C. on the crystal seed side and 360 to 400 ° C. on the Lasker side. The upper end opening of the metal cylinder furnace 1 is closed with a metal lid 8 having a pressure gauge 7.
[0004]
In such a case, the Lasca 4 is dissolved in the growing solution 5 up to the saturation, and approaches the periphery of the crystal seed 3 by convection due to a temperature difference in the autoclave 1. Then, due to the temperature drop around the crystal seed plate 3, the supersaturated SiO 2 molecules in the growing solution are deposited on the crystal seed plate 3 and grow into trigonal artificial quartz.
[0005]
The crystal seed 3 is a crystal plate that is long in the Y-axis direction of the crystal axis (XYZ). The crystal seed 3 grows in the Y-axis direction with little growth, particularly in the ± X-axis and Z-axis directions (FIG. 9). FIG. 9 is a cross-sectional view (Y cut view, XZ plan view) cut perpendicular to the Y axis. Normally, a region grown in the ± X axis direction contains a large amount of impurities, and the Q value is low, so that the vibration characteristics are deteriorated.
[0006]
For this reason, the crystal seed 3 is generally a crystal plate (so-called Z plate) whose main surface (XY plane) is orthogonal to the Z axis (FIG. 10). Each crystal plate whose principal surface is orthogonal to the X, Y, and Z axes is referred to as an X, Y, and Z plate, and each plane that is orthogonal to the X, Y, and Z axes is referred to as an X, Y, and Z plane. Then, after the growth, the portion grown in the X-axis direction is cut and removed to obtain a prismatic crystalline lens (so-called Lambert artificial crystal) 10 having growth regions 9 (ab) on both principal surface sides in the Z-axis direction (FIG. 11). ).
[0007]
Then, a crystal plate (crystal wafer, AT plate) obtained by cutting the prismatic crystal body 10 with, for example, an AT cut is obtained, and each crystal piece is obtained by performing external processing such as formation of a recess or division by an etching process. AT cut refers to a crystal plate (Y plate) whose main surface is orthogonal to the Y axis, viewed from the + X axis, and counterclockwise from the Z axis to the Y axis around the X axis (φ = 35 ° 15) ') The rotated cutting angle (Fig. 12). Further, the new rotated axes are referred to as Y ′ and Z ′ axes.
[0008]
[Problems to be solved by the invention]
(Problem of the prior art) However, in growing an artificial quartz crystal, a complete crystal structure of the crystal seed 3 is desired. However, when the crystal seed 3 is a Z plate, a linear defect 11a is particularly formed in the Z-axis direction. (Fig. 13). And with the growth of the crystal seed 3 in the autoclave 1, the linear defect 11a is also taken over as it is to form the linear defect 11 (bc) in the artificial quartz. However, the linear defect 11 (bc) is caused by unevenness of the growth surface in the growth process of the seed crystal 3 and proceeds within a range of about ± 20 degrees with respect to the Z-axis direction.
[0009]
Such a linear defect portion has a low chemical strength with respect to the etching solution and is preferentially etched when it is put into the solution. Therefore, as shown in the cross-sectional view of FIG. 14, when a quartz crystal plate (AT plate) 12 cut from an artificial quartz crystal is put into the etching solution, the surface where the linear defects 11 in the Z-axis direction intersect (obliquely intersect). A recess (commonly called etch pit) 13 is formed in Further, the etch channel 14 of the hole 14a and the through hole 14b is formed from the etch pit 13 along the linear defect according to the degree of defect of the linear defect 11 and the strength of etching.
[0010]
The higher the channel density, the greater the occupied product of the space portion with respect to the crystal plate 12. Therefore, when the external shape processing including frequency adjustment and cleaning is performed by etching, there is a problem that the performance (Q value and crystal impedance) of the crystal resonator is deteriorated. In particular, when a concave portion is formed in the AT plate by etching in response to the increase in the frequency of the crystal resonator, a problem becomes obvious.
[0011]
For this reason, in the reference publication at the beginning, the convection speed of the growth solution is controlled by the shape of the baffle plate, and the growth rate in the Z direction on both ends in the Y-axis direction of the seed crystal 3 (Z plate) is varied. That is, the seed crystal 3 is grown in a direction inclined by θ degrees with respect to the Z-axis direction, and as a result, a Z ′ plane inclined by θ degrees with respect to the Z plane is obtained (not shown). As a result, the linear defects inherent in the seed crystal 3 are prevented from being taken over into the growing region in the Z-axis direction, and as a result, etch channels can be reduced.
[0012]
However, in such a growth method, it is difficult to freely set the convection velocity of the growth solution, and there is a problem that the growth direction from the seed crystal and the tilt angle θ of the Z ′ plane with respect to the Z plane cannot be arbitrarily controlled. .
[0013]
(Object of the Invention) The present invention has a low linear defect density, and can easily control the inclination angle of the Z ′ surface with respect to the Z surface, and geometrically intersects the main surface from the correlation with the cutting angle. An object of the present invention is to provide a quartz plate capable of reducing the linear defect density (channel density).
[0014]
[Means for Solving the Problems]
(Points of interest) As described in the above-mentioned reference, the present invention can be applied to the seed crystal as long as it can grow to obtain a Z ′ plane inclined by θ degrees with respect to the Z plane and reduce linear defects. Attention was focused on whether linear defects and etch channels correlated therewith could be reduced in the same manner if the surface was grown in the Z ′ plane inclined in advance by θ degrees.
[0015]
(Solution) In the present invention, based on such a point of interest, the seed crystal has a principal surface (XY plane, Z plane) orthogonal to the Z axis of the crystal axis (XYZ) and the Y axis as the center. The basic solution is to grow as a Z ′ plate rotated by θ degrees in the direction of the Z axis.
[0016]
[Action]
In the present invention, since the seed crystal is a Z ′ plate, etch channels correlated with linear defects are reduced as noted. In addition, from the relationship between the seed crystal and the cutting angle of the crystal plate, it is possible to reduce the density of linear defects intersecting with the main surface of the crystal plate even when viewed geometrically. Examples of the present invention will be described below based on experimental results.
[0017]
【Example】
FIG. 1 is a diagram for explaining one embodiment (seed crystal) of the present invention, and is a cross-sectional view of a seed crystal gemstone (referred to as a seed gemstone). In addition, the same number is attached | subjected to the same part as a prior art example, and the description is simplified or abbreviate | omitted.
The seed crystal 3 is cut out from the raw seed stone 15 of a Z plate whose main surface (XY plane, Z plane) is orthogonal to the Z-axis direction and is long in the Y-axis direction. In this example, the principal plane (XY plane, Z plane) orthogonal to the Z axis is tilted with the rotation angle θ degrees counterclockwise from the Y axis to the Z axis direction when viewed from the + X axis, with the X axis as the center. Cut out as a Z 'plate. In short, the seed crystal 3 is a Z ′ plate obtained by rotating a Z plate whose main surface is orthogonal to the Z axis by rotating counterclockwise θ degrees from the Y axis to the Z axis. A seed crystal 3 indicated by a dotted line in the figure is a conventional Z plate whose principal surface is orthogonal to the Z axis. In the following, the seed crystal 3 made into a Z plate will be referred to as a Z plate seed 3a, and the seed crystal 3 made into a Z 'plate will be referred to as a Z' plate seed 3b as required.
[0018]
Then, the Z ′ plate seed 3b is grown in the autoclave by the hydrothermal synthesis method described above to obtain an artificial crystal (Z ′ plate artificial crystal) 16b. In such a case, as shown in FIG. 2, the Z ′ plate artificial crystal 16b grows in a direction perpendicular to the Z ′ surface of the Z ′ seed 3a (Z ′ axis direction), and both main surfaces are Both are parallel to the Z ′ plane. Then, the linear defect 11b of the Z ′ plate seed 3b is also taken over in the same direction as the growth direction of the Z ′ plate artificial crystal 16b to form a new linear defect 11 (bc). The conventional artificial quartz grown with the Z-plate seed 3a is referred to as a Z-plate artificial quartz 16a.
[0019]
Table 1 shows the channel density A / cm 2 of the Z plate seed 3a, the Z plate artificial crystal 16a and the Z ′ plate artificial crystal 16b, and the decrease of the Z plate artificial crystal 16a and the Z ′ plate artificial crystal 16b with respect to the Z plate seed 3a. Density number B / cm 2 and reduction rate C (B / A × 100). However, the Z plate seed 3a of the Z plate artificial crystal 16a has a rotation angle θ from the Y axis of 0 degree, and the rotation angle θ of the Z ′ plate seed crystal 3b of the Z ′ plate artificial crystal 16b has 5, 10, 15, 20 Measured as degrees. The channel density A was evaluated with a crystal plate (AT plate) obtained by cutting the crystal seed 3 and the artificial crystal with AT cut according to IEC and JIS standards. 4 and 5 (curve A) are graphs showing the channel density A and the decrease rate C with respect to the rotation angle θ based on Table 1. FIG.
[0020]
Figure 0003670886
[0021]
In addition, as shown in FIG. 3, the seed crystal (referred to as ZZ ′ plate seed) 3c in this experiment has a rotation angle (inclination angle) θ of one main surface D1 from the Y axis of 0 degrees, The other main surface D2 has a rotation angle θ of 5, 10, 15, 20 degrees. That is, a crystal plate having an X-cut cross section that is a right triangle that is long in the Y-axis direction is used. And each area | region (the growth area | region 9a, 9b from the ZZ 'seed 3c, Z surface, and Z' surface) in the artificial quartz crystal (it makes ZZ 'board artificial quartz crystal) 16c which consists of the same rough stone which grew these ZZ' board seeds 3c ) Was measured.
[0022]
That is, when such a ZZ ′ plate seed 3c is grown, it grows in the vertical direction from the Z and Z ′ plane sides, respectively, and the Z plate artificial crystal 16a is formed from the Z plane side and the Z ′ plate artificial crystal is formed from the Z ′ plane side. Crystal 16b is grown. Therefore, for example, an artificial quartz crystal that is asymmetric with respect to the Y axis is formed in which both main surfaces are not parallel. Further, the linear defect 11 (bc) in the growth region 9 (ab) is basically formed by being taken over in the same direction as the growth direction of the artificial quartz on both main surface sides.
[0023]
Then, the ZZ ′ plate artificial quartz crystal 16c grown in this way is cut at an angle in which the principal surface rotates φ degrees (35 ° 15 ′) from the Z axis to the Y axis direction, and the AT plate 17 is obtained. As a result, the AT plate 17a obtained by cutting the ZZ ′ plate seed 3c and the AT plate 17 (bc) obtained by cutting the Z and Z ′ plate artificial crystals 16 (ab) using the Z plate and the Z ′ plate as seed crystals are integrated. Is obtained.
[0024]
In this example, each channel density A of the AT plate 17 (abc), which is a set of three pieces obtained from the same raw stone, was measured. However, the channel density A of the seed crystal in Table 1 is an average value when the ZZ ′ plate seed 3c at each rotation angle θ is the AT plate 17a. In such an experimental method, the channel density of the AT plate 17 (abc) cut out from the same raw stone ZZ 'plate artificial crystal 16c on which the ZZ' plate seed 3c was grown and made into a set of three pieces having exactly the same cutting angle. Since A is contrasted, accurate evaluation can be made.
[0025]
As is clear from Table 1 and FIGS. 4 and 5 (each curve A), the channel density A of the Z ′ plate artificial crystal 16b increases as the rotation angle θ of the Z ′ plate seed 3b from the Y axis increases. Get smaller. For example, when grown at a rotation angle θ of 20 degrees, the channel density of the seed crystal 3 is 128 lines / cm 2 and is 23 lines / cm 2 (18%), and the channel density A is greatly reduced (decrease). Rate is 82%).
[0026]
In addition, the channel density A of the Z-plate artificial quartz crystal 16a in which the rotation angle θ is 0 degree (Z-plate seed 3a) is 124 / cm 2 , which is almost the same density as the seed crystal (128 / cm 2 ), The decrease rate C is approximately zero. That is, it is presumed that the linear defect 11a of the Z plate seed 3a is inherited as it is in the same direction as described above.
[0027]
By the way, in the growing method of the present embodiment, the Z ′ plate seed 3b tilted at the rotation angle θ counterclockwise from the Y axis is used. Therefore, in this case, the geometrical defect density intersecting with the main surface of the Z ′ plate seed 3b is inevitably reduced as compared with the conventional Z plate seed 3a. That is, as shown in FIG. 1, if the density of linear defects perpendicular to the Y axis of the Z plate seed 3a is P0 / cm 2 , the Z ′ plate seed 3b has the same number as the Z plate seed 3a. The main surface on which the line defect 11 crosses is large (the length in the Y′-axis direction is large). Therefore, the linear defect density P1 intersecting with the main surface of the Z ′ plate seed 3b is smaller than the same density P0 of the Z plate seed 3a. That is, P1 = P0 cos θ / cm 2 .
[0028]
The linear defect density (channel density) of the Z plate and the Z ′ plate artificial crystal 16 (ab) on which the Z plate and the Z ′ plate seed 3 (ab) are grown is AT cut (φ = 35 ° 15 ′). Be evaluated. Therefore, the linear defect density P2 or P3 (lines / cm 2 ) intersecting the main surface of the AT plate cut out from the Z plate and the Z ′ plate artificial crystal 16 (ab) is larger than that in the Z and Z ′ plates, respectively. Get smaller. That is, in the case of the AT plate 17b cut out from the Z plate artificial crystal 16a, the equation (1) is obtained (see the previous FIG. 13). Further, in the case of the AT plate 17c cut out from the Z ′ plate artificial crystal 16b, the equation (2) is obtained (see the previous FIG. 2).
[0029]
Therefore, the reduction rate Pc of the linear defect density P3 on the AT plate of the Z ′ plate artificial crystal 16b with respect to the Z plate artificial crystal 16a is expressed by equation (3). FIG. 6 is a graph based on equation (3).
Figure 0003670886
[0030]
As is apparent from these equations and graphs, when the rotation angle θ is θ = φ (in this case, φ is 35 ° 15 ′), the linear defect density P3 is 0, and the reduction rate Pc is “Equation (2)”. “Equation (3)” becomes 100%. That is, when the cutting angle φ and the rotation angle θ in the AT cut coincide with each other, the linear defect 11 becomes the same as the main surface direction of the AT plate. Therefore, since the linear defect 11 does not intersect with the main surface of the AT plate, its density P3 is geometrically zero.
[0031]
Further, when 0 <θ <φ, the inclination angle of the linear defect 11 with respect to the main surface of the AT plate 17c approaches 0 degrees as the rotation angle θ increases, so the linear defect density P3 intersecting with the main surface is increased. Becomes smaller. When θ> φ is exceeded, the inclination angle of the linear defect increases in the opposite direction, the density P3 increases, and the reduction rate decreases. Then, it has an extreme value at θ≈60 °, and the reduction rate becomes 90% again at 90 degrees (the previous FIG. 6). This is because, when the rotation angle θ is 90 degrees, the main surface of the Z ′ seed 3b and the linear defect 11 are parallel, and the linear defect does not intersect the main surface.
[0032]
FIG. 7 shows the growth rate ratio M / L between the growth rate L (mm / day) of the Z plate seed 3a and the growth rate M (mm / day) with the rotation angle θ of the Z ′ plate seed 3b as a parameter. It is the shown graph. However, it is a graph when the growing solution is NaOH, and curve A is the counterclockwise rotation angle θ, and the same is clockwise. As is clear from this, the growth rate of the Z ′ plate seed 3b is slower than the vicinity of 40 degrees when the rotation angle θ is clockwise as compared with the Z plate seed 3a. In addition, when it is counterclockwise, it becomes slower after around 20 degrees (see: Ceramic Industry Association Journal 77 [4] 1969 pp. 118).
[0033]
Therefore, an AT plate is obtained from the Z ′ plate artificial crystal grown on the Z ′ plate seed 3b whose rotation angle θ exceeds 20 degrees counterclockwise, and the linear defect density P3 intersecting with the main surface of the AT plate is reduced. Even in terms of productivity. Therefore, if the rotation angle θ at which the growth rate ratio M / L is about 1 with respect to the Z plate seed 3a is set to 0 <θ <Q with the maximum rotation angle Q (about 20 degrees in this case), Productivity can be maintained by reducing the density of geometrical line defects intersecting the main surface.
[0034]
The above Table 2 shows the Z-plate artificial quartz crystal 3a in which the rotation angle θ of the seed crystal 3 is 0 degree and the Z'-plate artificial quartz crystal 3b in which the rotation angle θ is 5, 10, 15, and 20 degrees in the geometrically required AT plate. The channel density a, the reduction density b, and the reduction rate c. FIGS. 4 and 5 (curve (b)) are graphs showing the channel density a and the decrease rate c with respect to the rotation angle θ based on Table 2. FIG. However, the channel density a here refers to the linear defect density intersecting with the main surface of the AT plate geometrically determined on the basis of the channel density of 128 lines / cm 2 obtained by actual measurement of the seed crystal 3 and the channel density. This is a case where they are assumed to be the same.
[0035]
As is clear from these figures, when the Z ′ plate artificial crystal 16b grown by the Z ′ plate seed 3b of the present embodiment is cut into the AT plate 17c, the geometric channel density a is the rotation angle θ (however, It decreases in proportion to 0 <θ <φ = 35 °. For example, when the rotation angle θ is 20 degrees, the number decreases from 128 / cm 2 to 54 / cm 2 , and the reduction rate c is 58%.
[0036]
Here, when Table 1 and Table 2 are compared, the channel density (A, a) according to the actually measured value and the geometrically calculated value (geometrically calculated value) is different, and each rotation angle θ (5, 10, 15) is different. , 20 degrees), the measured value has a smaller channel density A and a larger decrease rate C than the geometrically calculated value (see FIGS. 4 and 5). For example, when the rotation angle θ is 5 degrees, the actual measurement value is 87 lines / cm 2 with respect to the geometric calculation value of 111 lines / cm 2 , and the actual measurement value is about 23% less than the geometric calculation value. Is 33% at 10 degrees, 43% at 15 degrees and 57% at 20 degrees.
[0037]
Therefore, in this embodiment, the Z ′ plate artificial quartz crystal 16b grown from the Z ′ plate seed 3b cut out at the rotation angle θ is cut by the AT cut. Defect density is reduced. Furthermore, since the channel density is smaller than the geometric calculation value in the actual measurement value, it can be estimated that the linear defect 11 (bc) itself of the Z′-plate artificial quartz crystal 16 b has decreased. For example, when the rotation angle θ is 5 degrees, the difference in channel density (A, a) between the measured value (87 lines / cm 2 ) and the calculated geometric value (111 lines / cm 2 ) is 24 lines / cm 2 . This is thought to be due to the fact that the defects themselves decreased during the growth.
[0038]
Similarly, the difference in channel density (A, a) between the actually measured value and the geometrically calculated value when the rotation angle θ is 10 degrees is 31 lines / cm 2 , 32 lines / cm 2 at 15 degrees, and 31 at 20 degrees. Become a book. Therefore, it is considered that the linear defect density decreases as the rotation angle θ increases, and saturates after 10 to 20 degrees. That is, in the range of 10 to 20 degrees exceeding 0, it is surmised that as the rotation angle θ of the Z ′ plate increases, the inheritance of the linear defect itself is suppressed, and thereafter the suppression effect does not change.
[0039]
(Effects of the Example) Here, the results of this example are arranged. In this example, the Z 'plate artificial crystal 16b is grown as the Z' plate seed 3b obtained by rotating the seed crystal 3 counterclockwise from the Y axis. Therefore, from the comparison between the actual measurement value and the geometric channel density, the linear defect density can be made smaller than that of the conventional Z-plate artificial crystal 16a. The linear defect density decreases in proportion to the rotation angle θ, and the decrease in the linear defect density is maximized particularly when the linear defect density is 10 degrees or more. The growth rate M of the Z′-plate artificial quartz crystal 16b is equivalent to the growth rate L of the Z-plate artificial quartz crystal 16a as long as the rotation angle θ is within about 20 degrees counterclockwise (maximum rotation angle Q). Make good. Therefore, in this embodiment, the rotation angle θ is set to 0 <θ ≦ Q °, particularly 10 <θ ≦ Q (= 20) °, and the artificial quartz crystal that maintains the productivity by reducing the linear defect density. Can be obtained.
[0040]
Further, in this example, when the Z ′ plate artificial quartz crystal 16b grown in this way is evaluated by cutting it into an AT plate, the channel density is reduced as the geometric linear defect density intersecting the main surface decreases. Can be reduced. In particular, when the rotation angle θ of the Z ′ plate seed 3b is set to 35 ° 15 ′ which is the rotation angle φ of the AT plate, the linear defect 11c and the main surface of the AT plate become parallel, and the linear defect due to the geometric calculation value is obtained. Set the density (channel density) to zero. Further, the growth rate ratio M / L of the Z ′ plate seed 3b with respect to the Z plate seed 3a having a rotation angle θ of about 40 ° is about 0.7, and the productivity does not extremely decrease. Therefore, if the rotation angle θ is set to 10 <θ ≦ 40 ° centered on 35 ° 15 ′, the linear defect density is reduced to the maximum, and the linear defect density intersecting with the geometrically viewed main surface is reduced. An AT plate having a small size and good productivity can be obtained.
[0041]
In addition, since the rotation angle θ of the Z ′ plate seed 3b may be set to an optimum angle as necessary, the growth direction can be easily controlled without controlling the convection velocity of the growth solution as in the prior art. Therefore, for example, an artificial quartz crystal with a constant quality can be obtained.
[0042]
[Other matters]
In the above embodiment, the crystal seed 3 has been described as the Z ′ plate seed 3b having the rotation angle θ inclined in the counterclockwise direction from the Y axis to the Z axis direction. Even in the case of Z ′ seeds inclined in a straight line, the artificial quartz crystal and the linear defects are grown (formed) in the direction perpendicular to the main surface, so that the linear defect density becomes small. Further, the growth speed of the Z ′ seed rotated clockwise is different from that of the counterclockwise rotation (see FIG. 7), but the maximum rotation at which the growth rate ratio M / L is 1 as compared with the Z plate seed. If the angle is Q, productivity is improved.
[0043]
Accordingly, in claim 1, the rotation angle θ is set to 0 <θ ≦ Q including the clockwise and counterclockwise Z ′ seeds. However, those for X-cut quartz resonators that are specified in JIS standard (JISC6704-1997) and have a rotation angle θ of 1.5, 2, 5, 8.5 ° as crystal seeds are excluded. These are not intended to prevent and reduce the inheritance of linear defect density, and are essentially different from the present embodiment. Further, in claim 2, the rotation angle θ is clearly distinguished from the conventional seed crystal as 8.5 <θ ≦ Q °.
[0044]
(Purpose of Claim 3) In Claim 3, the rotation angle θ is set to 10 <θ ≦ Q °, thereby minimizing the linear defect density of the artificial quartz and maintaining the good productivity. The method is intended.
[0045]
(Purpose of claims 4, 5 and 6) In claim 4, it is clarified that this is a growing method using Z ′ plate seeds with a rotation angle θ counterclockwise. According to the fifth aspect of the present invention, the artificial quartz crystal is a quartz crystal plate cut at a rotation angle φ in which a Y plate whose main surface is orthogonal to the Y axis is rotated counterclockwise. In view of this, it is possible to reduce the density of linear defects intersecting the main surface, and in claim 6, it is clarified that the AT plate or the ST plate is rotated counterclockwise.
[0046]
(Purpose of claims 7, 8 and 9) In claim 7, it is clarified that this is a growing method using a Z-plate purpose in which the rotation angle θ is clockwise. According to the eighth aspect of the present invention, the artificial quartz crystal is a quartz crystal plate in which the Y plate is cut at a rotation angle φ in the clockwise direction. The gist of the present invention is that the defect density can be reduced. In claim 9, it is clarified that the BT plate is rotated counterclockwise.
[0047]
(Purpose of Claims 10 and 11) Claim 10 is directed to the method of growing an artificial quartz for an AT plate in the embodiment, and in particular, as described above with a rotation angle θ of 10 <θ ≦ 40 °, The purpose of the method is to grow an artificial quartz crystal for an AT plate that reduces the linear defect density itself, reduces the linear defect density geometrically intersecting the main surface, and improves the productivity. . The technical scope of claim 11 is the AT plate.
[0048]
The artificial quartz crystal includes a right quartz crystal and a left quartz crystal that is completely symmetrical to the right quartz crystal. In this embodiment, the rotation angles θ and φ are all shown on the assumption that the right quartz crystal is used. Therefore, in the case of the left crystal, the rotation angles θ and φ with − (minus) are the same as those of the right crystal, and the present invention does not exclude this.
[0049]
Further, the growth rate ratio M / L in the examples is described for the case where the growth solution is NaOH. For example, even in the case of Na 2 CO 3 , the growth rate itself is slightly different from that of NaOH, but the growth rate ratio is M / L. M / L is the same, and the present invention does not exclude these.
[0050]
【The invention's effect】
In the present invention, the main surface (XY plane, Z plane) orthogonal to the Z axis of the crystal axis (XYZ) of the seed crystal 3 is rotated by θ degrees from the Y axis to the Z axis with the X axis as the center. Since artificial quartz was grown as a plate, basically a quartz plate with a small channel density based on a linear defect density that intersects the main surface geometrically as seen from the correlation with the artificial crystal with few linear defects and the cutting angle. Can be provided. In addition, the growth direction from the seed crystal can be easily controlled, and a simple method for growing an artificial quartz crystal can be provided.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an X-cut diagram (YZ plan view) of a raw seed stone showing a cutting direction of a seed crystal for explaining an embodiment of the present invention.
FIG. 2 is an X-cut diagram of an artificial quartz for explaining one embodiment of the present invention.
FIG. 3 is an X-cut diagram of a ZZ ′ seed crystal and a ZZ ′ plate artificial crystal according to an embodiment of the present invention.
FIG. 4 is a graph of a channel density generated with respect to a rotation angle θ, illustrating an operation effect according to an embodiment of the present invention.
FIG. 5 is a graph showing a reduction rate of channel density with respect to a rotation angle θ for explaining an operation effect according to an embodiment of the present invention.
FIG. 6 is a graph showing the reduction rate of the geometric channel density of the Z ′ artificial quartz using the rotation angle θ of the Z ′ seed as a parameter for explaining one embodiment of the present invention.
FIG. 7 is a graph showing a growth rate ratio between a Z plate seed and a Z ′ plate for explaining one embodiment of the present embodiment.
FIG. 8 is a cross-sectional view of an autoclave for growing an artificial quartz for explaining a conventional example.
FIG. 9 is a Y-cut diagram (XZ plan view) of an artificial quartz grown by a hydrothermal synthesis method for explaining a conventional example.
FIG. 10 is a cutting orientation diagram of a crystal seed having a Z-cut for explaining a conventional example.
FIG. 11 is a diagram of a prismatic crystalline lens for explaining a conventional example.
FIG. 12 is a cutting orientation view of a quartz plate having an AT cut for explaining a conventional example.
FIG. 13 is an X-cut plan view for cutting out an AT-cut quartz plate for explaining a conventional example from an artificial quartz crystal.
FIG. 14 is a schematic cross-sectional view of a crystal plate (AT cut) for explaining a problem (etch channel) of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal barrel furnace, 2 Baffle plate, 3 Crystal seed, 4 Lasca, 5 Growth solution, 6, 15 Heater, 7 Pressure gauge, 8 Metal lid, 9 Growth area, 10 prismatic crystal, 11 Linear defect, 12 Crystal wafer (AT cut), 13 etch pit, 14 etch channel, 15 seed rough, 16 artificial quartz, 17 AT plate.

Claims (11)

水熱合成法により種子水晶から人工水晶を育成する人工水晶の育成方法において、前記種子水晶は結晶軸(XYZ)のZ軸に主面が直交したZ板を+X軸方向から見てY軸からZ軸の方向へ反時計回り又は時計回りに回転角θをもって傾斜したZ’板からなり、かつZ板及びZ’板の成長速度L及M(mm/日)の成長速度比M/Lが1以上となる回転角θを最大回転角Qとしたとき、前記回転角θを0<θ≦Q°(但し、回転角θは1.5、2、5、8.5°を除く)であって、前記反時計回りとしたときの回転角θを0<θ≦20°とし、前記時計回りとしたときの回転角θを0<θ<30としたことを特徴とする人工水晶の育成方法。In the method for growing an artificial crystal from a seed crystal by a hydrothermal synthesis method, the seed crystal is viewed from the Y axis when a Z plate whose principal surface is orthogonal to the Z axis of the crystal axis (XYZ) is viewed from the + X axis direction. The growth rate ratio M / L of the growth rates L and M (mm / day) of the Z plate and the Z ′ plate is composed of a Z ′ plate that is inclined counterclockwise or clockwise in the direction of the Z axis with a rotation angle θ. When the rotation angle θ that is 1 or more is the maximum rotation angle Q, the rotation angle θ is 0 <θ ≦ Q ° (however, the rotation angle θ excludes 1.5, 2, 5, and 8.5 °) . The artificial quartz crystal is characterized in that the rotation angle θ when counterclockwise is 0 <θ ≦ 20 °, and the rotation angle θ when clockwise is 0 <θ <30. Method. 請求項1において、前記回転角θは8.5<θ≦20°である人工水晶の育成方法。The method for growing an artificial quartz crystal according to claim 1, wherein the rotation angle θ is 8.5 <θ ≦ 20 ° . 請求項1において、前記回転角θは10<θ≦20°である人工水晶の育成方法。The method for growing an artificial quartz crystal according to claim 1, wherein the rotation angle θ is 10 <θ ≦ 20 ° . 請求項1、請求項2又は請求項3において、前記回転角θは反時計回りに回転したZ’板である人工水晶の育成方法。4. The method for growing an artificial quartz crystal according to claim 1, wherein the rotation angle [theta] is a Z 'plate rotated counterclockwise. 請求項4によって得られた人工水晶を、結晶軸(XYZ)のY軸に直交した主面が+X軸方向から見てZ軸からY軸の方向へ反時計回りに回転した回転角φで切断した水晶板。The artificial quartz obtained by claim 4 is cut at a rotation angle φ in which the principal plane perpendicular to the Y axis of the crystal axis (XYZ) rotates counterclockwise from the Z axis to the Y axis when viewed from the + X axis direction. Crystal board. 請求項5において、前記回転角φは35°15’又は29〜45°を基準としたATカット又はSTカットの水晶板。6. The AT-cut or ST-cut quartz plate according to claim 5, wherein the rotation angle φ is based on 35 ° 15 ′ or 29-45 °. 請求項1、請求項2又は請求項3において、前記回転角θは時計回りに回転したZ’板である人工水晶の育成方法。4. The method for growing an artificial quartz crystal according to claim 1, wherein the rotation angle [theta] is a Z 'plate rotated clockwise. 請求項7によって得られた人工水晶を、結晶軸(XYZ)のY軸に直交した主面が+X軸方向から見てZ軸からY軸の方向へ時計回りに回転角φで切断した水晶板。A quartz crystal plate obtained by cutting the artificial quartz obtained by claim 7 with a main surface perpendicular to the Y-axis of the crystal axis (XYZ) cut from the Z-axis to the Y-axis in a clockwise direction when viewed from the + X-axis direction at a rotation angle φ. . 請求項8において、前記回転角φは49°であるBTカットの水晶板。9. The BT cut quartz plate according to claim 8, wherein the rotation angle φ is 49 °. 水熱合成法により種子水晶から人工水晶を育成し、結晶軸(XYZ)のY軸に主面が直交したY板を+X軸方向から見てZ軸からY軸の方向へ反時計回りに35°15’回転したAT板に切断される人工水晶の育成方法において、前記種子水晶は結晶軸(XYZ)のZ軸に主面が直交したZ板を+X軸方向から見てY軸からZ軸の方向へ反時計回りに回転角θをもって傾斜したZ’板からなり、かつ前記回転角θを10≦θ≦20°としたことを特徴とする人工水晶の育成方法。An artificial quartz crystal is grown from a seed crystal by a hydrothermal synthesis method, and a Y plate whose principal surface is perpendicular to the Y axis of the crystal axis (XYZ) is viewed in the counterclockwise direction from the Z axis to the Y axis when viewed from the + X axis direction. ° In the method for growing an artificial quartz crystal cut to an AT plate rotated by 15 ', the seed crystal is a Z-axis from the Y-axis when the Z-plane whose principal surface is orthogonal to the Z-axis of the crystal axis (XYZ) is viewed from the + X-axis direction. A method for growing an artificial quartz crystal, comprising: a Z ′ plate inclined in a counterclockwise direction with a rotation angle θ, wherein the rotation angle θ is 10 ≦ θ ≦ 20 ° . 請求項10によって得られた人工水晶を、結晶軸(XYZ)のY軸に主面が直交したY板を+X軸方向から見てZ軸からY軸の方向へ反時計回りに35°15’回転した角度で切断したAT板。The artificial quartz obtained according to claim 10 is 35 ° 15 ′ counterclockwise from the Z-axis to the Y-axis when viewed from the + X-axis direction of the Y plate whose principal surface is orthogonal to the Y-axis of the crystal axis (XYZ). AT plate cut at a rotated angle.
JP13449699A 1999-05-14 1999-05-14 Method for growing artificial quartz and quartz plate using the same Expired - Fee Related JP3670886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13449699A JP3670886B2 (en) 1999-05-14 1999-05-14 Method for growing artificial quartz and quartz plate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13449699A JP3670886B2 (en) 1999-05-14 1999-05-14 Method for growing artificial quartz and quartz plate using the same

Publications (2)

Publication Number Publication Date
JP2000327492A JP2000327492A (en) 2000-11-28
JP3670886B2 true JP3670886B2 (en) 2005-07-13

Family

ID=15129688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13449699A Expired - Fee Related JP3670886B2 (en) 1999-05-14 1999-05-14 Method for growing artificial quartz and quartz plate using the same

Country Status (1)

Country Link
JP (1) JP3670886B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055094A (en) * 2001-08-08 2003-02-26 Kinseki Ltd Method of growing artificial quartz crystal, artificial quartz crystal and wafer obtainable from the same
JP4525061B2 (en) * 2003-12-08 2010-08-18 セイコーエプソン株式会社 Quartz lumbard ore, method for producing quartz plate, and quartz lumbard ore
JP4500043B2 (en) * 2003-12-25 2010-07-14 セイコーインスツル株式会社 Manufacturing method of crystal plate for display device
JP4847836B2 (en) * 2006-09-29 2011-12-28 京セラキンセキ株式会社 Wafer manufacturing method
JP2009013010A (en) * 2007-07-04 2009-01-22 Nippon Dempa Kogyo Co Ltd Compact as-grown artificial quartz crystal for decoration and its production method
US8514316B2 (en) 2007-10-25 2013-08-20 Nikon Corporation Image device and optical device for providing dust removing capabilities

Also Published As

Publication number Publication date
JP2000327492A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
CN105393455B (en) Elastic wave device
JP3622202B2 (en) Method for adjusting temperature characteristics of surface acoustic wave device
JP3670886B2 (en) Method for growing artificial quartz and quartz plate using the same
JP3096472B2 (en) SC-cut crystal unit
US4755314A (en) Single crystal wafer of lithium tantalate
JPH09227294A (en) Production of artificial quartz crystal
JP3722638B2 (en) Method for suppressing etch channel generated in artificial quartz, method for processing artificial quartz, and high-quality artificial quartz, quartz wafer, and quartz piece
JP3866887B2 (en) Piezoelectric single crystal wafer
JPH08204483A (en) Manufacture of surface acoustic wave device and surface acoustic wave device manufactured by using the method
JP2864242B2 (en) Crystal oscillator
JP4303221B2 (en) High-quality artificial quartz, quartz wafer and quartz piece
EP0243215B1 (en) A single crystal wafer of lithium tantalate
JP4493292B2 (en) How to grow artificial quartz
JP2003063893A (en) ZnO/SAPPHIRE SUBSTRATE AND METHOD FOR PRODUCING THE SAME
JP3980972B2 (en) Strip-shaped IT-cut crystal unit
JP3384546B2 (en) Piezoelectric single crystal wafer for pseudo-surface acoustic wave device and method of manufacturing the same
Klemenz et al. High‐Quality 2 Inch La3Ga5. 5Ta0. 5O14 and Ca3TaGa3Si2O14 Crystals for Oscillators and Resonators
JPH0124367B2 (en)
JP4455929B2 (en) Method for producing seed crystal plate
JP2003226599A (en) Method of manufacturing single crystal
JP4016096B2 (en) Crystal seed and method for growing artificial quartz crystal using the same
JP2545692B2 (en) Manufacturing method of thickness-sliding crystal unit
JP2003055094A (en) Method of growing artificial quartz crystal, artificial quartz crystal and wafer obtainable from the same
JP2000264786A (en) Production of synthetic quartz, synthetic quartz produced with the same and quartz wafer from the same synthetic quartz
JP4455930B2 (en) Method for producing seed crystal plate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050415

R150 Certificate of patent or registration of utility model

Ref document number: 3670886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees