JP3669909B2 - Magnetic head - Google Patents

Magnetic head Download PDF

Info

Publication number
JP3669909B2
JP3669909B2 JP2000276620A JP2000276620A JP3669909B2 JP 3669909 B2 JP3669909 B2 JP 3669909B2 JP 2000276620 A JP2000276620 A JP 2000276620A JP 2000276620 A JP2000276620 A JP 2000276620A JP 3669909 B2 JP3669909 B2 JP 3669909B2
Authority
JP
Japan
Prior art keywords
groove
end surface
magnetic
magnetic core
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000276620A
Other languages
Japanese (ja)
Other versions
JP2002092812A (en
Inventor
賢 桑原
真裕美 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2000276620A priority Critical patent/JP3669909B2/en
Publication of JP2002092812A publication Critical patent/JP2002092812A/en
Application granted granted Critical
Publication of JP3669909B2 publication Critical patent/JP3669909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は磁気記録再生装置に用いられる磁気ヘッドに係り、特にトラック幅規制溝及び補強溝にガラスを充填した磁気ヘッドに関する。
【0002】
【従来の技術】
従来のこの種の磁気ヘッドは、例えば、図18乃至図20に示すように、MnZn単結晶フェライト等の強磁性体からなる第1,第2の磁気コア半体31,32を備えてなり、これら第1,第2の磁気コア半体31,32の一面31a,32a同士が突き合わされて、磁気記録媒体が摺動する上端面33に、磁気ギャップ34とこの磁気ギャップ34のトラック幅Twを規制するトラック幅規制溝5とが形成され、上端面33の反対側の下端面36に、この下端面36から上端面33に向かうに従い磁気記録媒体の摺動方向(矢印A方向)の幅が漸次狭くなる補強溝37が設けられて、トラック幅規制溝35及び補強溝37にガラス38が充填されている(尚、図19ではガラス38に対し斜線帯を付した)。
【0003】
そして、トラック幅規制溝35が、第1の磁気コア半体31の一面31aの上端側から下端側に向かって延びる両縁に設けられた第1のテーパ部39と、第2の磁気コア半体32の一面32aの上端側から下端側に向かって延びる両縁に設けられた第2のテーパ部42とによって構成され、補強溝37が、第1の磁気コア半体31の一面31aの下端面36側に第1のテーパ部39と交叉するように形成された第1の傾斜面40と、第2の磁気コア半体32の一面32aの下端面36側に第2のテーパ部42と交叉するように形成された第2の傾斜面43とにより構成されており、トラック幅規制溝35と補強溝37とが連通した状態となっている。また、第1,第2の磁気コア半体31,32の一面31a,32aには、巻線溝41,44がそれぞれ第1,第2のテーパ部39,42を分断するように形成され、この巻線溝41,44を利用して第1,第2の磁気コア半体31,32に図示せぬ導電コイルが巻装されている。
【0004】
このように構成された従来の磁気ヘッドの製造は、先ず、図21,図22に示すように、MnZn単結晶フェライト等の強磁性体からなる第1,第2のコアブロック45,46を用意する。次に、図23に示すように、第1のコアブロック45の一面にその長手方向に沿って巻線溝41とガラス挿入溝47とを形成し、また、図24に示すように、第2のコアブロック46の一面にその長手方向に沿って巻線溝44とガラス挿入溝48とを形成する。
【0005】
次に、図25に示すように、第1のコアブロック45の一面にその短手方向に沿って複数の切欠溝49を長手方向に一定間隔を置いて形成することによって複数の突部50,51,52を形成し、また、図26に示すように、第2のコアブロック46の一面にその短手方向に沿って複数の切欠溝53を長手方向に一定間隔を置いて形成することによって複数の突部54,55,56を形成する。次に、図27に示すように、第1のコアブロック45の突部50,51,52に第1のテーパ部39を形成して、突部50の端部に傾斜面57を付けるとともに、突部51の端部に補強溝37を構成する第1の傾斜面40を形成し、また、図28に示すように、第2のコアブロック46の突部54,55,56には第2のテーパ部42を形成し、突部54の端部に傾斜面58を付けるとともに、突部55の端部に補強溝37を構成する第2の傾斜面43を形成する。
【0006】
次いで、第1,第2のコアブロック45,46の一面にそれぞれ磁性膜と非磁性膜とを順次スパッタリング等の真空薄膜形成技術により成膜し、図29に示すように、第1,第2のコアブロック45,46の一面同士を突き合わせ、第1,第2のテーパ部39,42でトラック幅規制溝35を構成させ、第1,第2の傾斜面40,43で補強溝37を構成させる。
【0007】
次に、図30,図31に示すように、棒状に形成された2本のガラス38,38の一方を第1,第2のコアブロック45,46の突き合わせ部分に配置し、他方のガラス38をガラス挿入溝47,48内に配置して第1,第2の傾斜面40,43に当接させ、この状態で両ガラス38,38を加熱溶融すると、第1,第2のコアブロック45,46の突き合わせ部分に配置された一方のガラス38が切欠溝49,53及びトラック幅規制溝35に流れ込み、ガラス挿入溝47,48内に配置された他方のガラス38が補強溝37から毛細管現象により切欠溝49,53及びトラック幅規制溝35に浸透し、切欠溝49,53及びトラック幅規制溝35内に両ガラス38,38が充填されることにより第1,第2のコアブロック45,46が一体化される。
【0008】
そして、第1,第2のコアブロック45,46に切削加工を施して図32に示す状態とした後、この第1,第2のコアブロック45,46を一点鎖線D−D及び一点鎖線E−Eに沿って切断し、こうして得られた第1,第2の磁気コア半体31,32に巻線溝41,44を利用して図示せぬ導電コイルを巻装することにより、図18乃至図20に示す従来の磁気ヘッドの製造が完了する。
【0009】
このようにして従来の磁気ヘッドの製造は完了するが、製造後においては、図19に示すように、補強溝37を構成する第1,第2の傾斜面40,43のなす角θが90°に設定された状態となっている。このため、第1,第2のコアブロック45,45を一体化する際には、図31に示すように、ガラス挿入溝47,48内に配置された他方のガラス38と補強溝37の上端との間にクリアランスCが大きく生ずるようになっていた。
【0010】
【発明が解決しようとする課題】
しかしながら、上述した従来の磁気ヘッドにあっては、第1,第2のコアブロック45,46を一体化する際に、加熱溶融された他方のガラス38が補強溝37から切欠溝49,53及びトラック幅規制溝35内に充分に行き渡らず、その結果、図33に示すように、切欠溝49,53及びトラック幅規制溝35が他方のガラス38で満たされず、巻線溝41,44の下端と補強溝37の上端との間の長さBの半分程度がガラス未充填部59となることがあった(尚、図33では他方のガラス38に対し斜線帯を付した)。
【0011】
このようにガラス未充填部59の長さFが巻線溝41,44の下端と補強溝37の上端との間の長さBの半分程度になると、ガラス未充填部59における第1,第2のコアブロック45,46の強度が弱くなり、第1,第2の磁気コア半体31,32にするための切削加工や切断の段階で、これらにひび割れ60等が発生し製造歩留まりが著しく低下するととなる。
【0012】
本発明は上述した事情に鑑みてなされたもので、その目的は、ガラス未充填部の長さを極力小さくし、製造歩留まりを向上することが可能な磁気ヘッドを提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明の磁気ヘッドは、強磁性体からなる第1,第2の磁気コア半体を備えてなり、前記第1,第2の磁気コア半体の一面同士が突き合わされて、磁気記録媒体が摺動する上端面に、磁気ギャップとこの磁気ギャップのトラック幅を規制するトラック幅規制溝とが形成され、前記上端面の反対側の下端面に、この下端面から前記上端面に向かうに従い前記磁気記録媒体の摺動方向の幅が漸次狭くなる補強溝が設けられ、前記第1,第2の磁気コア半体の少なくとも一方の前記一面には巻線溝が形成され、前記トラック幅規制溝及び前記補強溝にガラスが充填されており、前記第1の磁気コア半体の前記一面には、前記上端面側から前記下端面側に向かって延びる両縁に第1のテーパ部が設けられ、前記第1の磁気コア半体の前記一面の前記下端面側に、前記第1のテーパ部と交叉する第1の傾斜面が形成されているとともに、前記第2の磁気コア半体の前記一面には、前記上端面側から前記下端面側に向かって延びる両縁に第2のテーパ部が設けられ、前記第2の磁気コア半体の前記一面の前記下端面側に、前記第2のテーパ部と交叉する第2の傾斜面が形成されて、前記トラック幅規制溝が前記第1,第2のテーパ部によって構成され、前記補強溝が前記第1,第2の傾斜面により構成され、前記トラック幅規制溝と前記補強溝とが連通し、前記第1,第2の傾斜面のなす角が94°以上の範囲に設定されていることを最も主要な特徴としている。
【0014】
また、上記構成において、前記補強溝の上端から前記巻線溝の下端までの距離が0.9mm以下に設定されている構成とした。
【0015】
【発明の実施の形態】
以下、本発明の磁気ヘッドの一実施形態を図1乃至図17に基づいて説明する。
【0016】
図1乃至図3に示すように、この磁気ヘッドは、MnZn単結晶フェライト等の強磁性体からなる第1,第2の磁気コア半体1,2を備えてなり、これら第1,第2の磁気コア半体1,2の一面1a,2a同士が突き合わされて、磁気記録媒体が摺動する上端面3に、磁気ギャップ4とこの磁気ギャップ4のトラック幅Twを規制するトラック幅規制溝5とが形成され、上端面3の反対側の下端面6に、この下端面6から上端面3に向かうに従い磁気記録媒体の摺動方向(矢印A方向)の幅が漸次狭くなる補強溝7が設けられて、トラック幅規制溝5及び補強溝7にガラス8が充填された構造となっている(尚、図2ではガラス8に対し斜線帯を付した)。
【0017】
第1の磁気コア半体1の一面1aには、上端面3側から下端面6側に向かって延びる両縁に第1のテーパ部9が設けられ、下端面6側にこの第1のテーパ部9と交叉する第1の傾斜面10が形成されており、巻線溝11が第1のテーパ部9を分断するように形成されている。
【0018】
また、第2の磁気コア半体2の一面2aには、上端面3側から下端面6側に向かって延びる両縁に第2のテーパ部12が設けられ、下端面6側にこの第2のテーパ部12と交叉する第2の傾斜面13が形成されており、巻線溝14が第2のテーパ部12を分断するように形成されている。
【0019】
そして、トラック幅規制溝5が第1,第2のテーパ部9,12によって構成され、補強溝7が第1,第2の傾斜面10,13により構成されて、第1,第2の傾斜面10,13のなす角θが磁気ギャップ4を通り上端面3側から下端面6側に向かって第1,第2の磁気コア半体1,2の一面1a,2aと平行に延びる直線(不図示)によって二等分されるようになっており、このなす角θが106°に設定されトラック幅規制溝5と補強溝7とが連通した状態になっている。
【0020】
次に、このように構成された磁気ヘッドの製造方法を説明すると、先ず、図4,図5に示すように、MnZn単結晶フェライト等の強磁性体からなる第1,第2のコアブロック15,16を用意する。次に、図6に示すように、第1のコアブロック15の一面にその長手方向に沿って巻線溝11とガラス挿入溝17とを形成し、また、図7に示すように、第2のコアブロック16の一面にその長手方向に沿って巻線溝14とガラス挿入溝18とを形成する。
【0021】
次に、図8に示すように、第1のコアブロック15の一面にその短手方向に沿って複数の切欠溝19を長手方向に一定間隔を置いて形成することによって複数の突部20,21,22を形成し、また、図9に示すように、第2のコアブロック16の一面にその短手方向に沿って複数の切欠溝23を長手方向に一定間隔を置いて形成することによって複数の突部24,25,26を形成する。次に、図10に示すように、第1のコアブロック15の突部20,21,22に第1のテーパ部9を形成して、突部20の端部に傾斜面27を付けるとともに、突部21の端部に補強溝7を構成する第1の傾斜面10を形成し、また、図11に示すように、第2のコアブロック16の突部24,25,26には第2のテーパ部12を形成し、突部24の端部に傾斜面28を付けるとともに、突部25の端部に補強溝7を構成する第2の傾斜面13を形成する。
【0022】
次いで、第1,第2のコアブロック15,16の一面にそれぞれ磁性膜と非磁性膜とを順次スパッタリング等の真空薄膜形成技術により成膜し、図12に示すように、第1,第2のコアブロック15,16の一面同士を突き合わせ、第1,第2のテーパ部9,12でトラック幅規制溝5を構成させ、第1,第2の傾斜面10,13で補強溝7を構成させる。
【0023】
次に、図13,図14に示すように、棒状に形成された2本のガラス8,8の一方を第1,第2のコアブロック15,16の突き合わせ部分に配置し、他方のガラス8をガラス挿入溝17,18内に配置して第1,第2の傾斜面10,13に当接させ、この状態で両ガラス8,8を加熱溶融すると、第1,第2のコアブロック15,16の突き合わせ部分に配置された一方のガラス8が切欠溝19,23及びトラック幅規制溝5に流れ込み、ガラス挿入溝17,18内に配置された他方のガラス8が補強溝7から毛細管現象により切欠溝19,23及びトラック幅規制溝5に浸透し、切欠溝19,23及びトラック幅規制溝5内に両ガラス8,8が充填されることにより第1,第2のコアブロック15,16が一体化される。
【0024】
そして、第1,第2のコアブロック15,16に切削加工を施して図15に示す状態とした後、この第1,第2のコアブロック15,16を一点鎖線D−D及び一点鎖線E−Eに沿って切断し、こうして得られた第1,第2の磁気コア半体1,2に巻線溝11,14を利用して図示せぬ導電コイルを巻装することにより、図1乃至図3に示す磁気ヘッドの製造が完了する。
【0025】
しかして、このように構成・製造された磁気ヘッドにあっては、第1,第2のコアブロック15,16を一体化する際に、図14に示すように、補強溝7を構成する第1,第2の傾斜面10,13のなす角θが106°に設定されているので、ガラス挿入溝17,18内に配置された他方のカラス8と補強溝7の上端との間に生ずるクリアランスCが従来技術と比較して小さくなり、加熱溶融された他方のガラス8が補強溝7の上端に速やかに到達することができることから、他方のガラス8が補強溝7から切欠溝19,23及びトラック幅規制溝5内に容易に浸透して充分に行き渡り、切欠溝19,23及びトラック幅規制溝5が他方のガラス8で満たされないというような前述したガラス未充填部59が、切欠溝19,23及びトラック幅規制溝5内の巻線溝11,14の下端下に生じるのを抑制し、ガラス未充填部59の長さFを巻線溝11,14の下端と補強溝7の上端との間の長さBに対して極めて小さくすることができる。
【0026】
図16は、巻線溝11,14の下端と補強溝7の上端との間の長さBを0.83mmとし、補強溝7を構成する第1,第2の傾斜面10,13のなす角θを変えて測定したガラス未充填部59の長さFの平均値を示すグラフである。これより、第1,第2の傾斜面10,13のなす角θが90°のときに、ガラス未充填部59の長さFが巻線溝11,14の下端と補強溝7の上端との間の長さBの46%を占める382μmであったものが、第1,第2の傾斜面10,13のなす角θを大きくするに従いガラス未充填部59の長さFが小さくなっていくのが見て取れる。
【0027】
そして、第1,第2の磁気コア半体1,2にするための切削加工や切断の段階で第1,第2のコアブロック15,16に発生する前述したひび割れ60が、第1,第2の傾斜面10,13のなす角θを94°以上にしたときに殆ど無くなり、第1,第2の傾斜面10,13のなす角θを100°以上にしたときにはガラス未充填部59の長さFが50μm以下になって、ひび割れ60の発生が完全に無くなった。この結果より第1,第2の傾斜面10,13のなす角θを94°以上にすることによって製造歩留まりを向上でき、更に第1,第2の傾斜面10,13のなす角θを100°以上にすることにより製造歩留まりを大幅に向上できることが判る。
【0028】
また、図17は、補強溝7を構成する第1,第2の傾斜面10,13のなす角θを106°とし、巻線溝11,14の下端と補強溝7の上端との間の長さBを変えて測定したガラス未充填部59の長さFの平均値を示すグラフである。これより、巻線溝11,14の下端と補強溝7の上端との間の長さBが1.00mmのときに、ガラス未充填部59の長さFが151.87mmであったものが、巻線溝11,14の下端と補強溝7の上端との間の長さBを小さくするに従いガラス未充填部59の長さFが小さくなっていくのが見て取れる。
【0029】
そして、巻線溝11,14の下端と補強溝7の上端との間の長さBを0.9mm以下にしたときにガラス未充填部59の長さFが70μm以下になって、第1,第2の磁気コア半体1,2にするための切削加工や切断の段階で第1,第2のコアブロック15,16に前述したひび割れ60が発生することが完全に無くなった。この結果より補強溝5を構成する第1,第2の傾斜面9,12のなす角θの角度範囲を規定するのに加え、巻線溝11,14の下端と補強溝5の上端との間の長さBを0.9mm以下にすることによって製造歩留まりを一層大幅に向上できることが判る。
【0030】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0031】
本発明の磁気ヘッドは、強磁性体からなる第1,第2の磁気コア半体を備えてなり、前記第1,第2の磁気コア半体の一面同士が突き合わされて、磁気記録媒体が摺動する上端面に、磁気ギャップとこの磁気ギャップのトラック幅を規制するトラック幅規制溝とが形成され、前記上端面の反対側の下端面に、この下端面から前記上端面に向かうに従い前記磁気記録媒体の摺動方向の幅が漸次狭くなる補強溝が設けられ、前記第1,第2の磁気コア半体の少なくとも一方の前記一面には巻線溝が形成され、前記トラック幅規制溝及び前記補強溝にガラスが充填されており、前記第1の磁気コア半体の前記一面には、前記上端面側から前記下端面側に向かって延びる両縁に第1のテーパ部が設けられ、前記第1の磁気コア半体の前記一面の前記下端面側に、前記第1のテーパ部と交叉する第1の傾斜面が形成されているとともに、前記第2の磁気コア半体の前記一面には、前記上端面側から前記下端面側に向かって延びる両縁に第2のテーパ部が設けられ、前記第2の磁気コア半体の前記一面の前記下端面側に、前記第2のテーパ部と交叉する第2の傾斜面が形成されて、前記トラック幅規制溝が前記第1,第2のテーパ部によって構成され、前記補強溝が前記第1,第2の傾斜面により構成され、前記トラック幅規制溝と前記補強溝とが連通し、前記第1,第2の傾斜面のなす角が94°以上の範囲に設定されているので、ガラス未充填部の長さを極力小さくし、製造歩留まりを向上することが可能となる。
【0032】
また、前記補強溝の上端から前記巻線溝の下端までの距離が0.9mm以下に設定されているので、製造歩留まりの一層大幅な向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の磁気ヘッドの平面図。
【図2】本発明の磁気ヘッドの正面図。
【図3】本発明の磁気ヘッドの底面図。
【図4】本発明の磁気ヘッドに備わる第1の磁気コア半体となるべき第1のコアブロックの斜視図。
【図5】本発明の磁気ヘッドに備わる第2の磁気コア半体となるべき第2のコアブロックの斜視図。
【図6】本発明の磁気ヘッドに備わる第1の磁気コア半体となるべき第1のコアブロックに巻線溝とガラス挿入溝とを形成した状態を示す斜視図。
【図7】本発明の磁気ヘッドに備わる第2の磁気コア半体となるべき第2のコアブロックに巻線溝とガラス挿入溝とを形成した状態を示す斜視図。
【図8】本発明の磁気ヘッドに備わる第1の磁気コア半体となるべき第1のコアブロックに複数の切欠溝を形成することにより複数の突部を形成した状態を示す斜視図。
【図9】本発明の磁気ヘッドに備わる第2の磁気コア半体となるべき第2のコアブロックに複数の切欠溝を形成することにより複数の突部を形成した状態を示す斜視図。
【図10】本発明の磁気ヘッドに備わる第1の磁気コア半体となるべき第1のコアブロックに形成された複数の突部に第1のテーパ部及び第1の傾斜面を形成した状態を示す斜視図。
【図11】本発明の磁気ヘッドに備わる第2の磁気コア半体となるべき第2のコアブロックに形成された複数の突部に第2のテーパ部及び第2の傾斜面を形成した状態を示す斜視図。
【図12】本発明の磁気ヘッドに備わる第1,第2の磁気コア半体となるべき第1,第2のコアブロックを突き合わせた状態を示す斜視図。
【図13】本発明の磁気ヘッドに備わる第1,第2の磁気コア半体となるべき第1,第2のコアブロックの突き合わせ部分及び第1,第2のガラス挿入溝内に各々ガラスを配置した状態を示す斜視図。
【図14】本発明の磁気ヘッドに備わる第1,第2の磁気コア半体となるべき第1,第2のコアブロックの突き合わせ部分及び第1,第2のガラス挿入溝内に各々ガラスを配置した状態を示す断面図。
【図15】本発明の磁気ヘッドに備わる第1,第2の磁気コア半体となるべき一体化された第1,第2のコアブロックに切削加工を施した状態を示す斜視図。
【図16】補強溝を構成する第1,第2の傾斜面のなす角とガラス未充填部の平均長さとの関係を表すグラフを示す図。
【図17】巻線溝の下端と補強溝の上端との間の長さとガラス未充填部の平均長さとの関係を表すグラフを示す図。
【図18】従来の磁気ヘッドの平面図。
【図19】従来の磁気ヘッドの正面図。
【図20】従来の磁気ヘッドの底面図。
【図21】従来の磁気ヘッドに備わる第1の磁気コア半体となるべき第1のコアブロックの斜視図。
【図22】従来の磁気ヘッドに備わる第2の磁気コア半体となるべき第2のコアブロックの斜視図。
【図23】従来の磁気ヘッドに備わる第1の磁気コア半体となるべき第1のコアブロックに巻線溝とガラス挿入溝とを形成した状態を示す斜視図。
【図24】従来の磁気ヘッドに備わる第2の磁気コア半体となるべき第2のコアブロックに巻線溝とガラス挿入溝とを形成した状態を示す斜視図。
【図25】従来の磁気ヘッドに備わる第1の磁気コア半体となるべき第1のコアブロックに複数の切欠溝を形成することにより複数の突部を形成した状態を示す斜視図。
【図26】従来の磁気ヘッドに備わる第2の磁気コア半体となるべき第2のコアブロックに複数の切欠溝を形成することにより複数の突部を形成した状態を示す斜視図。
【図27】従来の磁気ヘッドに備わる第1の磁気コア半体となるべき第1のコアブロックに形成された複数の突部に第1のテーパ部及び第1の傾斜面を形成した状態を示す斜視図。
【図28】従来の磁気ヘッドに備わる第2の磁気コア半体となるべき第2のコアブロックに形成された複数の突部に第2のテーパ部及び第2の傾斜面を形成した状態を示す斜視図。
【図29】従来の磁気ヘッドに備わる第1,第2の磁気コア半体となるべき第1,第2のコアブロックを突き合わせた状態を示す斜視図。
【図30】従来の磁気ヘッドに備わる第1,第2の磁気コア半体となるべき第1,第2のコアブロックの突き合わせ部分及び第1,第2のガラス挿入溝内に各々ガラスを配置した状態を示す斜視図。
【図31】従来の磁気ヘッドに備わる第1,第2の磁気コア半体となるべき第1,第2のコアブロックの突き合わせ部分及び第1,第2のガラス挿入溝内に各々ガラスを配置した状態を示す断面図。
【図32】従来の磁気ヘッドに備わる第1,第2の磁気コア半体となるべき一体化された第1,第2のコアブロックに切削加工を施した状態を示す斜視図。
【図33】従来の磁気ヘッドの課題を説明するための要部断面図。
【符号の説明】
1 第1の磁気コア半体
1a 一面
2 第2の磁気コア半体
2a 一面
3 上端面
4 磁気ギャップ
5 トラック幅規制溝
6 下端面
7 補強溝
8 ガラス
9 第1のテーパ部
10 第1の傾斜面
11 巻線溝
12 第2のテーパ部
13 第2の傾斜面
14 巻線溝
15 第1のコアブロック
16 第2のコアブロック
17 ガラス挿入溝
18 ガラス挿入溝
19 切欠溝
20 突部
21 突部
22 突部
23 切欠溝
24 突部
25 突部
26 突部
27 傾斜面
28 傾斜面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic head used in a magnetic recording / reproducing apparatus, and more particularly to a magnetic head in which a track width regulating groove and a reinforcing groove are filled with glass.
[0002]
[Prior art]
A conventional magnetic head of this type includes first and second magnetic core halves 31 and 32 made of a ferromagnetic material such as MnZn single crystal ferrite, as shown in FIGS. The surfaces 31a and 32a of the first and second magnetic core halves 31 and 32 are abutted with each other, and the magnetic gap 34 and the track width Tw of the magnetic gap 34 are set on the upper end surface 33 on which the magnetic recording medium slides. A track width regulating groove 5 to be regulated is formed, and the width in the sliding direction (arrow A direction) of the magnetic recording medium is formed on the lower end surface 36 opposite to the upper end surface 33 from the lower end surface 36 toward the upper end surface 33. Reinforcing grooves 37 that are gradually narrowed are provided, and the track width restricting grooves 35 and the reinforcing grooves 37 are filled with glass 38 (note that a hatched band is attached to the glass 38 in FIG. 19).
[0003]
The track width restricting groove 35 includes a first taper portion 39 provided on both edges extending from the upper end side to the lower end side of the one surface 31a of the first magnetic core half body 31, and the second magnetic core half portion. And the second tapered portion 42 provided on both edges extending from the upper end side to the lower end side of the one surface 32a of the body 32, and the reinforcing groove 37 is formed below the one surface 31a of the first magnetic core half 31. A first inclined surface 40 formed so as to cross the first tapered portion 39 on the end surface 36 side, and a second tapered portion 42 on the lower end surface 36 side of the one surface 32a of the second magnetic core half body 32. The second inclined surface 43 is formed so as to intersect, and the track width regulating groove 35 and the reinforcing groove 37 communicate with each other. In addition, the winding grooves 41 and 44 are formed on the first surfaces 31a and 32a of the first and second magnetic core halves 31 and 32 so as to divide the first and second tapered portions 39 and 42, respectively. A conductive coil (not shown) is wound around the first and second magnetic core halves 31 and 32 using the winding grooves 41 and 44.
[0004]
In manufacturing the conventional magnetic head constructed as described above, first and second core blocks 45 and 46 made of a ferromagnetic material such as MnZn single crystal ferrite are prepared as shown in FIGS. To do. Next, as shown in FIG. 23, a winding groove 41 and a glass insertion groove 47 are formed along the longitudinal direction on one surface of the first core block 45, and as shown in FIG. A winding groove 44 and a glass insertion groove 48 are formed on one surface of the core block 46 along the longitudinal direction thereof.
[0005]
Next, as shown in FIG. 25, a plurality of protrusions 50 are formed on the surface of the first core block 45 by forming a plurality of cutout grooves 49 along the short direction at regular intervals in the longitudinal direction. In addition, as shown in FIG. 26, a plurality of cutout grooves 53 are formed on one surface of the second core block 46 along the short direction at regular intervals in the longitudinal direction. A plurality of protrusions 54, 55, and 56 are formed. Next, as shown in FIG. 27, the first taper portion 39 is formed on the protrusions 50, 51, 52 of the first core block 45, and the inclined surface 57 is attached to the end of the protrusion 50, The first inclined surface 40 constituting the reinforcing groove 37 is formed at the end of the protrusion 51, and the protrusions 54, 55, and 56 of the second core block 46 have second protrusions as shown in FIG. The tapered portion 42 is formed, an inclined surface 58 is attached to the end portion of the protruding portion 54, and a second inclined surface 43 constituting the reinforcing groove 37 is formed at the end portion of the protruding portion 55.
[0006]
Next, a magnetic film and a nonmagnetic film are sequentially formed on one surface of the first and second core blocks 45 and 46 by a vacuum thin film forming technique such as sputtering, as shown in FIG. The first and second taper portions 39 and 42 constitute a track width regulating groove 35, and the first and second inclined surfaces 40 and 43 constitute a reinforcing groove 37. Let
[0007]
Next, as shown in FIGS. 30 and 31, one of the two glasses 38, 38 formed in a rod shape is arranged at the abutting portion of the first and second core blocks 45, 46, and the other glass 38. Is placed in the glass insertion grooves 47 and 48 and brought into contact with the first and second inclined surfaces 40 and 43. When both the glasses 38 and 38 are heated and melted in this state, the first and second core blocks 45 are placed. 46, one glass 38 disposed in the butted portion flows into the notch grooves 49, 53 and the track width regulating groove 35, and the other glass 38 disposed in the glass insertion grooves 47, 48 capillarizes from the reinforcing groove 37. Penetrating into the notch grooves 49, 53 and the track width regulating groove 35, and filling the both glasses 38, 38 into the notch grooves 49, 53 and the track width regulating groove 35, thereby the first and second core blocks 45, 46 is one It is of.
[0008]
Then, after cutting the first and second core blocks 45 and 46 into the state shown in FIG. 32, the first and second core blocks 45 and 46 are changed to a one-dot chain line DD and a one-dot chain line E. By cutting along the line E and winding a conductive coil (not shown) on the first and second magnetic core halves 31 and 32 thus obtained using the winding grooves 41 and 44, FIG. Through the manufacture of the conventional magnetic head shown in FIG.
[0009]
In this way, the manufacturing of the conventional magnetic head is completed. After the manufacturing, as shown in FIG. 19, the angle θ formed by the first and second inclined surfaces 40 and 43 constituting the reinforcing groove 37 is 90. It is set to °. For this reason, when integrating the first and second core blocks 45, 45, as shown in FIG. 31, the other glass 38 disposed in the glass insertion grooves 47, 48 and the upper end of the reinforcing groove 37 A large clearance C occurs between the two.
[0010]
[Problems to be solved by the invention]
However, in the above-described conventional magnetic head, when the first and second core blocks 45 and 46 are integrated, the other glass 38 heated and melted is cut from the reinforcing groove 37 to the cutout grooves 49 and 53 and As a result, as shown in FIG. 33, the notch grooves 49 and 53 and the track width restriction groove 35 are not filled with the other glass 38, and the lower ends of the winding grooves 41 and 44 are not sufficiently spread into the track width restriction groove 35. In some cases, about half of the length B between the upper end of the reinforcing groove 37 and the upper end of the reinforcing groove 37 becomes the glass unfilled portion 59 (in FIG. 33, the other glass 38 is hatched).
[0011]
Thus, when the length F of the glass unfilled portion 59 is about half of the length B between the lower ends of the winding grooves 41 and 44 and the upper end of the reinforcing groove 37, the first and first glass unfilled portions 59 have the first and first lengths. The strength of the core blocks 45 and 46 of the second core is weakened, and cracks 60 and the like are generated in the cutting and cutting stages for forming the first and second magnetic core halves 31 and 32, so that the manufacturing yield is remarkably increased. It will decrease.
[0012]
The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a magnetic head capable of reducing the length of a glass unfilled portion as much as possible and improving the manufacturing yield.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a magnetic head of the present invention comprises first and second magnetic core halves made of a ferromagnetic material, and one surface of each of the first and second magnetic core halves is formed between them. A magnetic gap and a track width regulating groove for regulating the track width of the magnetic gap are formed on the upper end surface where the magnetic recording medium slides against each other, and the lower end surface is formed on the lower end surface opposite to the upper end surface. A reinforcing groove whose width in the sliding direction of the magnetic recording medium gradually decreases from the upper end surface toward the upper end surface, and a winding groove is formed on at least one surface of the first and second magnetic core halves. The track width regulating groove and the reinforcing groove are formed of glass, and the one surface of the first magnetic core half is formed on both edges extending from the upper end surface side toward the lower end surface side. A first taper portion is provided, and the first magnetism A first inclined surface that intersects with the first taper portion is formed on the lower end surface side of the one surface of the half, and the one surface of the second magnetic core half has the upper surface Second tapered portions are provided on both edges extending from the end surface side toward the lower end surface side, and intersect with the second tapered portion on the lower end surface side of the one surface of the second magnetic core half. A second inclined surface is formed, the track width restricting groove is constituted by the first and second tapered portions, the reinforcing groove is constituted by the first and second inclined surfaces, and the track width restricting groove is formed. The most important feature is that the groove and the reinforcing groove communicate with each other, and the angle formed by the first and second inclined surfaces is set in a range of 94 ° or more.
[0014]
In the above configuration, the distance from the upper end of the reinforcing groove to the lower end of the winding groove is set to 0.9 mm or less.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
A magnetic head according to an embodiment of the present invention will be described below with reference to FIGS.
[0016]
As shown in FIGS. 1 to 3, the magnetic head includes first and second magnetic core halves 1 and 2 made of a ferromagnetic material such as MnZn single crystal ferrite. 1a, 2a of the magnetic core halves 1 and 2 of each of the magnetic core halves face each other, and a magnetic gap 4 and a track width regulating groove for regulating the track width Tw of the magnetic gap 4 are formed on the upper end surface 3 on which the magnetic recording medium slides. 5 is formed on the lower end surface 6 opposite to the upper end surface 3, and the width of the magnetic recording medium in the sliding direction (arrow A direction) gradually decreases from the lower end surface 6 toward the upper end surface 3. Are provided so that the track width regulating groove 5 and the reinforcing groove 7 are filled with glass 8 (in FIG. 2, the glass 8 is hatched).
[0017]
One surface 1a of the first magnetic core half 1 is provided with first taper portions 9 on both edges extending from the upper end surface 3 side toward the lower end surface 6 side, and this first taper is formed on the lower end surface 6 side. A first inclined surface 10 intersecting with the portion 9 is formed, and the winding groove 11 is formed so as to divide the first tapered portion 9.
[0018]
The one surface 2a of the second magnetic core half 2 is provided with second taper portions 12 on both edges extending from the upper end surface 3 side toward the lower end surface 6 side, and the second taper portion 12 is provided on the lower end surface 6 side. A second inclined surface 13 intersecting with the tapered portion 12 is formed, and the winding groove 14 is formed so as to divide the second tapered portion 12.
[0019]
The track width regulating groove 5 is constituted by the first and second tapered portions 9 and 12, and the reinforcing groove 7 is constituted by the first and second inclined surfaces 10 and 13, so that the first and second inclined surfaces are formed. An angle θ formed by the surfaces 10 and 13 passes through the magnetic gap 4 and extends straight from the upper end surface 3 side toward the lower end surface 6 side in parallel with the first surfaces 1a and 2a of the first and second magnetic core halves 1 and 2 ( The angle θ formed is set to 106 °, and the track width regulating groove 5 and the reinforcing groove 7 are in communication with each other.
[0020]
Next, a method of manufacturing the magnetic head constructed as described above will be described. First, as shown in FIGS. 4 and 5, first and second core blocks 15 made of a ferromagnetic material such as MnZn single crystal ferrite are used. , 16 are prepared. Next, as shown in FIG. 6, the winding groove 11 and the glass insertion groove 17 are formed on one surface of the first core block 15 along the longitudinal direction thereof, and as shown in FIG. A winding groove 14 and a glass insertion groove 18 are formed on one surface of the core block 16 along the longitudinal direction thereof.
[0021]
Next, as shown in FIG. 8, a plurality of protrusions 20 are formed by forming a plurality of cutout grooves 19 at regular intervals in the longitudinal direction along the short direction on one surface of the first core block 15. 9, and a plurality of cutout grooves 23 are formed on one surface of the second core block 16 along the short direction at regular intervals in the longitudinal direction, as shown in FIG. A plurality of protrusions 24, 25, and 26 are formed. Next, as shown in FIG. 10, the first taper portion 9 is formed on the protrusions 20, 21, and 22 of the first core block 15, and the inclined surface 27 is attached to the end of the protrusion 20, A first inclined surface 10 constituting the reinforcing groove 7 is formed at the end of the protrusion 21, and as shown in FIG. 11, the protrusions 24, 25, 26 of the second core block 16 have a second The tapered portion 12 is formed, an inclined surface 28 is attached to the end portion of the protruding portion 24, and the second inclined surface 13 constituting the reinforcing groove 7 is formed at the end portion of the protruding portion 25.
[0022]
Next, a magnetic film and a non-magnetic film are sequentially formed on one surface of the first and second core blocks 15 and 16 by a vacuum thin film forming technique such as sputtering. As shown in FIG. The first and second taper portions 9 and 12 constitute the track width regulating groove 5, and the first and second inclined surfaces 10 and 13 constitute the reinforcing groove 7. Let
[0023]
Next, as shown in FIGS. 13 and 14, one of the two glasses 8, 8 formed in a rod shape is placed at the abutting portion of the first and second core blocks 15, 16, and the other glass 8 Is placed in the glass insertion grooves 17 and 18 and brought into contact with the first and second inclined surfaces 10 and 13, and the both glasses 8 and 8 are heated and melted in this state, the first and second core blocks 15. , 16, one glass 8 disposed in the butted portion flows into the notch grooves 19, 23 and the track width regulating groove 5, and the other glass 8 disposed in the glass insertion grooves 17, 18 capillarizes from the reinforcing groove 7. Penetrating into the notch grooves 19 and 23 and the track width regulating groove 5 and filling both the glasses 8 and 8 into the notch grooves 19 and 23 and the track width regulating groove 5, whereby the first and second core blocks 15, 16 is integrated.
[0024]
Then, after cutting the first and second core blocks 15 and 16 into the state shown in FIG. 15, the first and second core blocks 15 and 16 are made to show a one-dot chain line DD and a one-dot chain line E. By cutting along the line E and winding a conductive coil (not shown) on the first and second magnetic core halves 1 and 2 obtained in this manner using the winding grooves 11 and 14, FIG. The manufacture of the magnetic head shown in FIG. 3 is completed.
[0025]
Therefore, in the magnetic head constructed and manufactured in this way, when the first and second core blocks 15 and 16 are integrated, as shown in FIG. 1, the angle θ formed by the second inclined surfaces 10 and 13 is set to 106 °, and therefore occurs between the other crow 8 disposed in the glass insertion grooves 17 and 18 and the upper end of the reinforcing groove 7. The clearance C becomes smaller than that of the prior art, and the other glass 8 heated and melted can quickly reach the upper end of the reinforcing groove 7, so that the other glass 8 is notched from the reinforcing groove 7 to the notched grooves 19 and 23. In addition, the glass unfilled portion 59 described above, which easily penetrates into the track width regulation groove 5 and spreads sufficiently and the notch grooves 19 and 23 and the track width regulation groove 5 are not filled with the other glass 8, is provided in the notch groove. 19, 23 and track width Suppressing the lower end of the winding grooves 11 and 14 in the regulation groove 5 is suppressed, and the length F of the glass unfilled portion 59 is set to the length between the lower ends of the winding grooves 11 and 14 and the upper end of the reinforcing groove 7. The height B can be made extremely small.
[0026]
In FIG. 16, the length B between the lower ends of the winding grooves 11 and 14 and the upper end of the reinforcing groove 7 is 0.83 mm, and the first and second inclined surfaces 10 and 13 constituting the reinforcing groove 7 are formed. It is a graph which shows the average value of length F of the glass unfilling part 59 measured by changing angle (theta). Thus, when the angle θ formed by the first and second inclined surfaces 10 and 13 is 90 °, the length F of the glass unfilled portion 59 is such that the lower ends of the winding grooves 11 and 14 and the upper ends of the reinforcing grooves 7 The length F of the glass unfilled portion 59 becomes smaller as the angle θ formed by the first and second inclined surfaces 10 and 13 is increased. I can see it going.
[0027]
The above-described crack 60 generated in the first and second core blocks 15 and 16 at the stage of cutting and cutting to form the first and second magnetic core halves 1 and 2 is the first and second magnetic core halves 1 and 2. 2 when the angle θ formed by the two inclined surfaces 10 and 13 is 94 ° or more, and almost no when the angle θ formed by the first and second inclined surfaces 10 and 13 is 100 ° or more. When the length F was 50 μm or less, the generation of cracks 60 was completely eliminated. From this result, the manufacturing yield can be improved by setting the angle θ formed by the first and second inclined surfaces 10 and 13 to 94 ° or more, and the angle θ formed by the first and second inclined surfaces 10 and 13 is further set to 100. It can be seen that the manufacturing yield can be significantly improved by setting the angle to more than °.
[0028]
In FIG. 17, the angle θ formed by the first and second inclined surfaces 10 and 13 constituting the reinforcing groove 7 is 106 °, and the gap between the lower ends of the winding grooves 11 and 14 and the upper end of the reinforcing groove 7 is set. It is a graph which shows the average value of the length F of the glass unfilled part 59 measured by changing length B. Accordingly, when the length B between the lower ends of the winding grooves 11 and 14 and the upper end of the reinforcing groove 7 is 1.00 mm, the length F of the glass unfilled portion 59 is 151.87 mm. It can be seen that the length F of the glass unfilled portion 59 becomes smaller as the length B between the lower ends of the winding grooves 11 and 14 and the upper end of the reinforcing groove 7 is reduced.
[0029]
When the length B between the lower end of the winding grooves 11 and 14 and the upper end of the reinforcing groove 7 is 0.9 mm or less, the length F of the glass unfilled portion 59 is 70 μm or less, and the first , The above-described cracks 60 are completely eliminated from the first and second core blocks 15 and 16 at the stage of cutting and cutting to form the second magnetic core halves 1 and 2. As a result, in addition to defining the angle range of the angle θ formed by the first and second inclined surfaces 9 and 12 constituting the reinforcing groove 5, the lower end of the winding grooves 11 and 14 and the upper end of the reinforcing groove 5 are defined. It can be seen that the production yield can be further improved by setting the length B between them to 0.9 mm or less.
[0030]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
[0031]
A magnetic head according to the present invention includes first and second magnetic core halves made of a ferromagnetic material, and one surface of the first and second magnetic core halves are abutted to each other to form a magnetic recording medium. A magnetic gap and a track width regulating groove for regulating the track width of the magnetic gap are formed on the sliding upper end surface, and the lower end surface on the opposite side of the upper end surface is moved from the lower end surface toward the upper end surface. Reinforcing grooves in which the width in the sliding direction of the magnetic recording medium gradually decreases are provided, winding grooves are formed on at least one surface of the first and second magnetic core halves, and the track width regulating grooves And the reinforcing groove is filled with glass, and the one surface of the first magnetic core half is provided with a first taper portion on both edges extending from the upper end surface side toward the lower end surface side. The bottom of the one side of the first magnetic core half A first inclined surface intersecting with the first taper portion is formed on the surface side, and the one surface of the second magnetic core half is directed from the upper end surface side to the lower end surface side. A second taper portion is provided on both edges of the second magnetic core half, and a second inclined surface intersecting the second taper portion is formed on the lower end surface side of the one surface of the second magnetic core half. The track width regulating groove is constituted by the first and second tapered portions, the reinforcing groove is constituted by the first and second inclined surfaces, and the track width regulating groove and the reinforcing groove communicate with each other. Since the angle formed by the first and second inclined surfaces is set in the range of 94 ° or more, the length of the glass unfilled portion can be made as small as possible to improve the manufacturing yield.
[0032]
Further, since the distance from the upper end of the reinforcing groove to the lower end of the winding groove is set to 0.9 mm or less, the manufacturing yield can be further greatly improved.
[Brief description of the drawings]
FIG. 1 is a plan view of a magnetic head of the present invention.
FIG. 2 is a front view of the magnetic head of the present invention.
FIG. 3 is a bottom view of the magnetic head of the present invention.
FIG. 4 is a perspective view of a first core block to be a first magnetic core half provided in the magnetic head of the present invention.
FIG. 5 is a perspective view of a second core block to be a second magnetic core half of the magnetic head of the present invention.
FIG. 6 is a perspective view showing a state in which a winding groove and a glass insertion groove are formed in a first core block to be a first magnetic core half of the magnetic head of the present invention.
FIG. 7 is a perspective view showing a state in which a winding groove and a glass insertion groove are formed in a second core block to be a second magnetic core half of the magnetic head of the present invention.
FIG. 8 is a perspective view showing a state in which a plurality of protrusions are formed by forming a plurality of cutout grooves in a first core block to be a first magnetic core half of the magnetic head of the present invention.
FIG. 9 is a perspective view showing a state in which a plurality of protrusions are formed by forming a plurality of cutout grooves in a second core block to be a second magnetic core half of the magnetic head of the present invention.
FIG. 10 shows a state in which a first taper portion and a first inclined surface are formed on a plurality of protrusions formed on a first core block to be a first magnetic core half of the magnetic head of the present invention. FIG.
FIG. 11 shows a state in which a second taper portion and a second inclined surface are formed on a plurality of protrusions formed on a second core block to be a second magnetic core half of the magnetic head of the present invention. FIG.
FIG. 12 is a perspective view showing a state in which the first and second core blocks to be the first and second magnetic core halves provided in the magnetic head of the present invention are butted together.
FIG. 13 shows glass in each of the butted portions of the first and second core blocks and the first and second glass insertion grooves to be the first and second magnetic core halves of the magnetic head of the present invention. The perspective view which shows the state arrange | positioned.
FIG. 14 shows glass in each of the butted portions of the first and second core blocks and the first and second glass insertion grooves to be the first and second magnetic core halves of the magnetic head of the present invention. Sectional drawing which shows the state which has arrange | positioned.
FIG. 15 is a perspective view showing a state in which cutting is performed on the integrated first and second core blocks to be the first and second magnetic core halves included in the magnetic head of the present invention.
FIG. 16 is a graph showing the relationship between the angle formed by the first and second inclined surfaces constituting the reinforcing groove and the average length of the glass unfilled portion.
FIG. 17 is a graph showing a relationship between a length between a lower end of a winding groove and an upper end of a reinforcing groove and an average length of a glass unfilled portion.
FIG. 18 is a plan view of a conventional magnetic head.
FIG. 19 is a front view of a conventional magnetic head.
FIG. 20 is a bottom view of a conventional magnetic head.
FIG. 21 is a perspective view of a first core block to be a first magnetic core half of a conventional magnetic head.
FIG. 22 is a perspective view of a second core block to be a second magnetic core half of a conventional magnetic head.
FIG. 23 is a perspective view showing a state in which a winding groove and a glass insertion groove are formed in a first core block to be a first magnetic core half provided in a conventional magnetic head.
FIG. 24 is a perspective view showing a state in which a winding groove and a glass insertion groove are formed in a second core block to be a second magnetic core half of a conventional magnetic head.
FIG. 25 is a perspective view showing a state in which a plurality of protrusions are formed by forming a plurality of cutout grooves in a first core block to be a first magnetic core half provided in a conventional magnetic head.
FIG. 26 is a perspective view showing a state in which a plurality of protrusions are formed by forming a plurality of cutout grooves in a second core block to be a second magnetic core half of a conventional magnetic head.
FIG. 27 shows a state in which a first taper portion and a first inclined surface are formed on a plurality of protrusions formed on a first core block to be a first magnetic core half provided in a conventional magnetic head. FIG.
FIG. 28 shows a state in which a second taper portion and a second inclined surface are formed on a plurality of protrusions formed on a second core block to be a second magnetic core half of a conventional magnetic head. FIG.
FIG. 29 is a perspective view showing a state in which the first and second core blocks to be the first and second magnetic core halves provided in the conventional magnetic head are butted together.
FIG. 30 shows glass placed in the butted portions of the first and second core blocks to be the first and second magnetic core halves of the conventional magnetic head and in the first and second glass insertion grooves. The perspective view which shows the state which carried out.
FIG. 31 shows glass placed in the butted portions of the first and second core blocks to be the first and second magnetic core halves of the conventional magnetic head and in the first and second glass insertion grooves. Sectional drawing which shows the state which carried out.
FIG. 32 is a perspective view showing a state in which cutting is performed on the integrated first and second core blocks to be the first and second magnetic core halves provided in the conventional magnetic head.
FIG. 33 is a fragmentary cross-sectional view for explaining a problem of a conventional magnetic head.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st magnetic core half body 1a One surface 2 2nd magnetic core half body 2a One surface 3 Upper end surface 4 Magnetic gap 5 Track width control groove 6 Lower end surface 7 Reinforcing groove 8 Glass 9 1st taper part 10 1st inclination Surface 11 Winding groove 12 Second taper portion 13 Second inclined surface 14 Winding groove 15 First core block 16 Second core block 17 Glass insertion groove 18 Glass insertion groove 19 Notch groove 20 Projection 21 Projection 22 Projection 23 Notch groove 24 Projection 25 Projection 26 Projection 27 Inclined surface 28 Inclined surface

Claims (2)

強磁性体からなる第1,第2の磁気コア半体を備えてなり、前記第1,第2の磁気コア半体の一面同士が突き合わされて、磁気記録媒体が摺動する上端面に、磁気ギャップとこの磁気ギャップのトラック幅を規制するトラック幅規制溝とが形成され、
前記上端面の反対側の下端面に、この下端面から前記上端面に向かうに従い前記磁気記録媒体の摺動方向の幅が漸次狭くなる補強溝が設けられ、
前記第1,第2の磁気コア半体の少なくとも一方の前記一面には巻線溝が形成され、
前記トラック幅規制溝及び前記補強溝にガラスが充填されており、
前記第1の磁気コア半体の前記一面には、前記上端面側から前記下端面側に向かって延びる両縁に第1のテーパ部が設けられ、前記第1の磁気コア半体の前記一面の前記下端面側に、前記第1のテーパ部と交叉する第1の傾斜面が形成されているとともに、
前記第2の磁気コア半体の前記一面には、前記上端面側から前記下端面側に向かって延びる両縁に第2のテーパ部が設けられ、前記第2の磁気コア半体の前記一面の前記下端面側に、前記第2のテーパ部と交叉する第2の傾斜面が形成されて、
前記トラック幅規制溝が前記第1,第2のテーパ部によって構成され、
前記補強溝が前記第1,第2の傾斜面により構成され、
前記トラック幅規制溝と前記補強溝とが連通し、
前記第1,第2の傾斜面のなす角が94°以上の範囲に設定されていることを特徴とする磁気ヘッド。
The first and second magnetic core halves made of a ferromagnetic material are provided, one surface of the first and second magnetic core halves are abutted with each other, and the upper end surface on which the magnetic recording medium slides, A magnetic gap and a track width regulating groove for regulating the track width of the magnetic gap are formed,
On the lower end surface opposite to the upper end surface, a reinforcing groove is provided in which the width in the sliding direction of the magnetic recording medium gradually decreases from the lower end surface toward the upper end surface.
A winding groove is formed on the one surface of at least one of the first and second magnetic core halves,
The track width regulating groove and the reinforcing groove are filled with glass,
The one surface of the first magnetic core half is provided with first tapered portions on both edges extending from the upper end surface side toward the lower end surface side on the one surface of the first magnetic core half body. A first inclined surface intersecting with the first tapered portion is formed on the lower end surface side of the
The one surface of the second magnetic core half is provided with second tapered portions at both edges extending from the upper end surface toward the lower end surface, and the one surface of the second magnetic core half A second inclined surface intersecting the second tapered portion is formed on the lower end surface side of
The track width regulating groove is constituted by the first and second tapered portions;
The reinforcing groove is constituted by the first and second inclined surfaces;
The track width regulating groove and the reinforcing groove communicate with each other;
The magnetic head is characterized in that an angle formed by the first and second inclined surfaces is set in a range of 94 ° or more.
前記補強溝の上端から前記巻線溝の下端までの距離が0.9mm以下に設定されていることを特徴とする請求項1に記載の磁気ヘッド。2. The magnetic head according to claim 1, wherein a distance from an upper end of the reinforcing groove to a lower end of the winding groove is set to 0.9 mm or less.
JP2000276620A 2000-09-07 2000-09-07 Magnetic head Expired - Fee Related JP3669909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000276620A JP3669909B2 (en) 2000-09-07 2000-09-07 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000276620A JP3669909B2 (en) 2000-09-07 2000-09-07 Magnetic head

Publications (2)

Publication Number Publication Date
JP2002092812A JP2002092812A (en) 2002-03-29
JP3669909B2 true JP3669909B2 (en) 2005-07-13

Family

ID=18762053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000276620A Expired - Fee Related JP3669909B2 (en) 2000-09-07 2000-09-07 Magnetic head

Country Status (1)

Country Link
JP (1) JP3669909B2 (en)

Also Published As

Publication number Publication date
JP2002092812A (en) 2002-03-29

Similar Documents

Publication Publication Date Title
US6647613B2 (en) Method of making a magnetic write head and in-process head structures
US5020213A (en) Method of producing a head core slider
US5161300A (en) Method for manufacture of magnetic head
JP3669909B2 (en) Magnetic head
US4811146A (en) Composite magnetic head
JPS63146202A (en) Magnetic head and its production
US20020057524A1 (en) Servo head having rounded leading edge and methof of using the same
JP2942114B2 (en) Magnetic head and method of manufacturing the same
US5289341A (en) Slider for a floating magnetic head having tapered coil groove walls
KR0134173B1 (en) Laminated magnetic head and method for manufacturing
JPH02247815A (en) Production of core slider for stationary magnetic disk device
JPH01154309A (en) Composite type magnetic head and production thereof
JPH01173304A (en) Manufacture of magnetic head
JPH03237604A (en) Magnetic head
JPS63152003A (en) Production of magnetic head
JPH02143904A (en) Composite magnetic head and its manufacture
JPH05143919A (en) Magnetic head and production thereof
JPH06282809A (en) Magnetic head
JPS63149807A (en) Magnetic head core and its manufacture
JPH05242415A (en) Magnetic head and its manufacture
JPH087212A (en) Production of magnetic head
JPS6216215A (en) Magnetic head device
JPH10255218A (en) Magnetic head and method of manufacturing the same
JP2004103177A (en) Magnetic head and manufacturing method of magnetic head
JPS62134808A (en) Manufacture of magnetic head

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees