JP3669533B2 -   Method for producing polycarbonate resin foam - Google Patents

  Method for producing polycarbonate resin foam Download PDF

Info

Publication number
JP3669533B2
JP3669533B2 JP25785696A JP25785696A JP3669533B2 JP 3669533 B2 JP3669533 B2 JP 3669533B2 JP 25785696 A JP25785696 A JP 25785696A JP 25785696 A JP25785696 A JP 25785696A JP 3669533 B2 JP3669533 B2 JP 3669533B2
Authority
JP
Japan
Prior art keywords
resin
foam
polycarbonate
foaming
polycarbonate resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25785696A
Other languages
Japanese (ja)
Other versions
JPH09309949A (en
Inventor
邦則 廣澤
義久 石原
健 青木
泰 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP25785696A priority Critical patent/JP3669533B2/en
Priority to US08/783,206 priority patent/US5854294A/en
Priority to DE69713634T priority patent/DE69713634T2/en
Priority to EP97300257A priority patent/EP0785057B1/en
Priority to CA002195363A priority patent/CA2195363C/en
Publication of JPH09309949A publication Critical patent/JPH09309949A/en
Application granted granted Critical
Publication of JP3669533B2 publication Critical patent/JP3669533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、発泡体を製造するのに適したポリカーボネート系樹脂を用いるポリカーボネート系樹脂発泡体の製造方法に関する。
【0002】
【従来の技術】
ポリカーボネート系樹脂は、耐熱性、耐老化性、耐水性等が高く、電気的及び機械的性質にも優れているから、その発泡体は自動車や建造物の内装材、包装材、各種容器等への用途展開が期待されている。また、耐熱性が要求される電子レンジ用やレトルト食品用の容器材料としては特に有望である。このように利点が多いが、ポリカーボネート樹脂の流動開始点がポリスチレン等のそれより大幅に高い上に、溶融粘度が低く加熱シートの伸びが少ないから通常の押出発泡法で所望の発泡シートを得るのは困難である。そのため、溶解度係数6.5以上の有機物を発泡剤とする方法(特開平2−261836号公報)、沸点50〜150℃のイソパラフィンを発泡剤とする方法(特公昭47−43183号公報)等が提案されている。しかし、これらの発泡剤を用いた発泡方法によりポリカーボネート樹脂発泡シートを製造した場合、ポリオレフィンやポリスチレン等の樹脂発泡シートにおいて良好とされている独立気泡構造の発泡シートは、シート幅の狭いものや厚み、倍率の不十分なものが得られるのみであり、実用に耐え得るものではなく、また倍率や厚みが不十分なために発泡体としての断熱性にかけるという欠点があった。
またポリカーボネートは溶融張力が小さいため、ダイスリップ口から吐出された発泡シートを引取りマンドレルに掛ける際にヒビ割れ等が生じる等により、得られる押出発泡シートは表面状態が悪いという欠点もあった。
【0003】
以上のほか、従来のポリカーボネート樹脂押出発泡シートの製造では、シート幅500mmを超える発泡シート製造が困難なことも欠点の一つである。これは、管状発泡体の伸びが小さいために、サーキュラダイ直径より250%程度以上直径が大きいマンドレルでは、押し出された管状発泡体を円滑に引取るのが難かしいために起る問題である。そして、シート幅が狭いと建築資材用としては作業効率が悪いし大型の成形品製造も困難になる。また、一般に包装用容器等の連続加熱成形機は、作業効率面から最低でも500mmを超える幅のシートを使うように設計されているから、500mm幅以下のシートでは使用可能な成形機の機種が限定される。
これらを解決するために、例えば強引に直径の大きいマンドレルで管状発泡体を引取る方法を採用しても、この方法ではシートが破れてしまったりシート厚が薄くなったり表面状態が悪くなる等の問題が起り、高品質の発泡シートを得ることができない。そこで、サーキュラダイの直径を大きくして幅広のシートを得ることも試みられたが、この場合はサーキュラダイ直径が大きいから押し出し機先端のダイス圧力を保持するのが難かしく、そのためにダイス内部で発泡現象が起こって得られる発泡シートの表面状態や機械的物性等の品質が低下する。
また、近年、樹脂のリサイクル性に関する要求も高くなってきているが、発泡体用原料樹脂は流動特性等に対する厳格なコントロールが必要であり、発泡体を得る為に物性等バラツキのあるリサイクル原料樹脂を使用することは困難であった。
【0004】
【発明が解決しようとする課題】
本発明は、押出発泡法によって表面状態が良好で、独立気泡率の高い発泡体を製造するのに適し、リサイクル原料樹脂の発泡適性の指標にもなる発泡体用ポリカーボネート系樹脂、及び該樹脂を用いた成形性等に優れるポリカーボネート系樹脂発泡体の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明によれば、250℃の温度条件下で振動歪みを与える動的粘弾性測定において、角周波数ω=10−1〜10〔rad/sec.〕の範囲での貯蔵弾性率G′〔dyn/cm〕が下記近似式の関係を満足する発泡体用ポリカーボネート系樹脂を、押出機を用いて押出発泡することを特徴とするポリカーボネート系樹脂発泡体の製造方法が提供される。
【数1】
logG′=α・logω+β
α=0〜2.0
β=2.20〜5.70
(但し、α及びβはlogω=−1、logω=1に対応するlogG′の2点間の傾き及び切片である)
また、本発明によれば、250℃の温度条件下で振動歪みを与える動的粘弾性測定において、角周波数ω=10−1〜10〔rad/sec.〕の範囲でのtan(δ)の値が1〜70の範囲内であることを特徴とする前記発泡体用ポリカーボネート系樹脂を用いて押出発泡することを特徴とするポリカーボネート系樹脂発泡体の製造方法が提供される。特に、ダイス先端からブロー比2.0〜3.0で発泡体用ポリカーボネート系樹脂を押出すことを特徴とする前記ポリカーボネート系樹脂発泡体の製造方法が提供される。
【0006】
本発明者らは、ポリカーボネート系樹脂自体の発泡性及び成形性改善のために、ポリカーボネートの溶融張力、溶融粘度に着目し、それらの改良に主眼をおいて研究を重ねてきたが、発泡不可能であったり、気泡の破泡、収縮が激しかったり、発泡困難であったりと、溶融張力、溶融粘度だけの検討では特に、密度、厚みにおいて自在にコントロールして満足のいく発泡体を得ることは難かしかった。そこで、本発明者らは、溶融張力、溶融粘度は重要なファクターであることを踏まえ、更に良好な発泡適性を示すものの研究を重ねた。
その結果、フローテスターで得られる溶融粘度の値は非常に高剪断領域におけるものであり、別な方法で発泡の際の非常にミクロ的な分子の動きにおける低剪断領域における樹脂の特性を見る必要があること、又、メルトテンションの測定も大変形時の樹脂の抵抗を見るものであり、気泡が形成後、維持される時の樹脂の抵抗を見る必要があることを見い出した。
上記見解に基づき、更に鋭意研究を重ねた結果、発泡の際に必要な気泡の保持能力は、ある微妙な低剪断における樹脂の持つ弾性力に着目する必要があるという結論を得ることができた。
【0007】
ここで、ポリカーボネート系樹脂の発泡特性を評価するにあたり、角周波数ωの変化と複素弾性率G*、位相差δの変化を測定し、貯蔵弾性率G′、損失弾性率G″、tan(δ)の変化の関係を求める動的粘弾性試験により評価することを試みた。
動的粘弾性試験においては、樹脂に振動歪みをかけ、樹脂に生ずる応力および歪みと応力の位相差を測定する。純粋な弾性体であれば歪みと応力の位相差は0°で、純粋な粘性体の場合は位相差は90°であるが、樹脂の場合は弾性と粘性を合せ持つので位相差は0°と90°の間の値となる。更に、温度一定で角周波数ωを変化させると樹脂の特性に応じて応力と位相差は一義的に変化する。
【0008】
ここで、貯蔵弾性率G′は樹脂の弾性を、損失弾性率G″は樹脂の粘性を表し、
*=G′+iG″、
G′=|G*|・cos(δ)、
G″=|G*|・sin(δ)、
tan(δ)=G″/G′
の関係が成り立つ。
なお、コックス・メルツの経験則から、角周波数ωとせん断速度γは等しく、ω=γとみなすことができる。
【0009】
また、ポリカーボネート系樹脂においては、角周波数ω(rad/sec.)が103〜104付近では、G′>G″、tan(δ)<1となる。これは角周波数が大きい領域、即ち、剪断歪み速度が大きい領域では、弾性的な性質が支配的なことを意味し、発泡の初期段階の急激な変化に対応している性質であると考えることができる。
一方、10-2〜101の領域では逆にG′<G″、tan(δ)>1となる。これは角周波数が小さい低剪断領域では弾性よりも粘性的な性質が強くなることを意味する。粘性的な性質が強いことは時間の経過と共に樹脂が流動し、発泡が終了した後に気泡の形状を保持し得ないと考えることができる。
そこで、この低剪断領域において、弾性的な性質が強く特定の範囲内にあれば樹脂が流動して気泡が損なわれるのに抵抗する力が強いことになり、緩和時間が長いことにもなる。従って、低剪断領域での弾性的な性質が強く特定の範囲内であれば、冷却する時間が確保できることにもなり、良好な気泡を得ることができる。
【0010】
本発明は、一定条件下で、ある特定の貯蔵弾性率を有するポリカーボネート系樹脂を用いることにより、独立気泡率が高く、発泡倍率の高い表面状態の良好なポリカーボネート系樹脂押出発泡体が、密度、厚み、幅等広い範囲にわたって得られること、すなわち、本発明は、動的粘弾性測定装置であるレオメータ(ダイナミックアナライザーSR200型レオメトリックスファーイースト社製)を用いて、測定温度250℃で角周波数分散を測定し得られる貯蔵弾性率G′を基に、縦軸をlogG′、横軸をlogωとしてプロットした曲線を求め、次に、該曲線を下記比例式に近似し、下記近似式を満足するポリカーボネート系樹脂を用いて押出発泡を行なった場合、前記目的を達成しうることを見い出し、本発明を完成するに至った。
【数1】
logG′=α・logω+β
α=0〜2.0
β=2.20〜5.70
(但し、α及びβはlogω=−1、logω=1に対応するlogG′の2点間の傾き及び切片である)
【0011】
【発明の実施の形態】
本発明で用いた動的粘弾性装置は、ダイナミックアナライザーSR200型(レオメトリックスファーイースト社)である。
【0012】
また、貯蔵弾性率G′は、樹脂にある歪みを与えた時に一周期当たりに貯蔵され、かつ回復されるエネルギーの尺度である。
これは、このまま発泡時の樹脂に与えられる歪みに対する樹脂が持つ抵抗力に置きかえることができることを見い出した。つまり、温度条件250℃、線形領域内において角周波数ωと貯蔵弾性率G′が下記近似式を満足する場合に本発明の目的とする発泡体が得られる。
【数1】
logG′=α・logω+β
α=0〜2.0
β=2.20〜5.70
(但し、α及びβはlogω=−1、logω=1に対応するlogG′の2点間の傾き及び切片である)
しかしβが2.20を下回る場合は、発泡という歪みに対する抵抗するエネルギーが樹脂に無く、破泡を起こし満足な発泡体が得られず、逆に、βが5.70を超える様なものは、抵抗力が強すぎるために発泡が困難となってしまう。
また、αが0を下回ることはなく、一方αが2.0を超える場合は気泡を維持する力が急激に低下することになり、やはり破泡を起こし満足な発泡体が得られない。
更に、αの好ましい範囲は0.9〜1.8であり、βの好ましい範囲は2.30〜5.00である。
また、貯蔵弾性率G′により樹脂の気泡形成・維持に係る発泡の挙動を掌握できるが、更に損失弾性率G″により代表される粘性体の性質を考慮することにより、より一層、低密度、高厚み、そして広幅の発泡体を得ることができる。
つまり、前述の特定のG′挙動にに加え特定のG″とG′との比、tan(δ)=(G″/G′)の挙動を有するものが密度、厚み、幅においてより一層優れたものとなる。
上述の優れた効果が達成されるtan(δ)の好ましい範囲は、角周波数ω=10-1〜101の範囲内において1〜70の範囲内、更に好ましくは1〜20の範囲内である。
尚、動的粘弾性測定は発泡体に使用する基材樹脂(但し、添加剤を加える場合は、添加剤を含有するもの)を測定サンプルとして使用する。参考までに、基材樹脂を発泡させることにより得られた発泡体をヒートプレスにより脱泡させ樹脂板とし、該樹脂板を測定サンプルとして、動的粘弾性測定を行なった結果と、該発泡体の基材樹脂を測定サンプルとして動的粘弾性測定を行なった結果との比較を図2に示した。図2より、発泡前後においてポリカーボネート系樹脂の角周波数ωと貯蔵弾性率G′で表わされる動的粘弾性挙動は、ほぼ同様であることが判かる。よって、発泡体から前記方法により得られた動的粘弾性挙動は、ほぼ、その基材樹脂の動的粘弾性挙動であると言える。
また、動的粘弾性測定の温度条件250℃の選択理由は、次の通りである。
250℃における動的粘弾性の測定は発泡温度にて押出発泡される溶融ポリカーボネート系樹脂が押出機ダイスから押出され気泡形成から発泡体固化までの温度低下にともなう粘弾性体の弾性率変化を角周波数低下にともなう弾性率変化と対応させた場合、ポリカーボネート系樹脂の温度低下にともなう弾性率変化の挙動を顕著に表すことのできる動的粘弾性測定温度条件として採用されたものである。
尚、各ポリカーボネート系樹脂について、温度条件250℃で、角周波数ω(rad/sec.)の変化に対する貯蔵弾性率G′の変化を一次式に近似したグラフを図1に示す。
【0013】
本発明で用いる発泡体用ポリカーボネート系樹脂は、炭酸とグリコール又はビスフェノールから形成されるポリ炭酸エステルの1種又は2種以上の混合物の内、高分量成分や長鎖分岐を有するものであると考えられる。そして、分子鎖にジフェニルアルカンを有する芳香族ポリカーボネートは、結晶性が高く高融点の上に、耐熱性、耐候性及び耐酸性に優れているから好適である。このようなポリカーボネートとしては、2,2−ビス(4−オキシフェニル)プロパン(別名ビスフェノールA)、2,2−ビス(4−オキシフェニル)ブタン、1,1−ビス(4−オキシフェニル)シクロヘキサン、1,1−ビス(4−オキシフェニル)イソブタン、1,1−ビス(4−オキシフェニル)エタン等のビスフェノールから誘導されるポリカーボネートから選択されるものである。尚、上記ポリカーボネートから少なくとも高分子量タイプのものを含む2種以上を選択し混合することによるもの、上記ポリカーボネートの分岐化を行ない、分岐鎖の長さを調整することによるものが好ましいが、必ずしも上記選択、調整によって得られるもの全てが、本発明で用いる前記した特定の基材樹脂に相当するものとなるとは限らず、適宜、ポリカーボネートの選択、混合比、混合条件、分岐化剤量、分岐化条件等の調整が必要である。
【0014】
本発明において用いるポリカーボネート系樹脂から成る基材樹脂は前記したようにポリカーボネート系樹脂のうちでも、前記試験機を用いて測定温度250℃(一定)にし線形領域内において角周波数分散を測定し貯蔵弾性率G′〔dyn/cm2〕をプロットした曲線から近似される下記近似式の関係を満足するポリカーボネート系樹脂、又はポリカーボネート系樹脂混合物である。
【数1】
logG′=α・logω+β
α=0〜2.0
β=2.20〜5.70
(但し、α及びβはlogω=−1、logω=1に対応するlogG′の2点間の傾き及び切片である)
なお、本発明における動的粘弾性測定は線形領域内において行なうものとする。
上記動的粘弾性測定は、動的粘弾性試験機(例えば、レオメトリックスファーイースト社製の動的粘弾性試験機:SR200型等)によって、応力制御方式により、線形領域内で測定され、通常この線形領域内での測定は応力を2×104dyn/cm2とすることにより行なわれる。
尚、応力制御方式での測定において、ポリカーボネート系樹脂は最大周波数100rad/sec.まで測定を行う場合、応力が1×104〜3×104dyn/cm2であれば線形領域となると言える。また、言うまでもなく、線形領域とは、歪率と応力とが比例関係にある領域のこと、即ち貯蔵弾性率等の粘弾性の測定値が応力の影響を受けない範囲のことである。動的粘弾性試験では厚さ約2mmの測定サンプル樹脂板を直径25mmのパラレルプレートの間に狭み、250℃に達するまで約10分放置し、その後、樹脂板を僅かに押さえ付けて溶融樹脂板とパラレルプレートのなじみを良くし、更に溢れ出た樹脂を削り取ってから角周波数ωを変化させて、貯蔵弾性率G′、損失弾性率G″及びtan(δ)を測定する。
また、角周波数ωと該貯蔵弾性率G′の関係が上記範囲を外れるポリカーボネート系樹脂であっても、他の樹脂を混合させることにより、角周波数と該貯蔵弾性率の関係をこの範囲に調整したものも本発明の基材樹脂として用いることができる。
弾性率の調整は、一般にω=1〔rad/sec.〕の時の貯蔵弾性率が1×105dyn/cm2を超えるものと2×102dyn/cm2を下まわるものとを混合することにより行なうことが容易であり、その混合比率を変えることにより、所望の弾性率とすることができる。その他、前述の方法によっても調整される。
このことにより、リサイクル原料樹脂や従来発泡が困難であった特定のポリカーボネート樹脂も本発明の基材樹脂として用いることができる。
【0015】
このように、ポリカーボネート系樹脂の角周波数ωと貯蔵弾性率G′との関係を満足する基材樹脂を用いれば、押出機から押出される際の温度(樹脂温度)の制御を行ないながら、押出発泡することにより、発泡体、例えば発泡シートが得られる。以下、発泡体として発泡シートを例にとって説明する。本発明によるポリカーボネート系樹脂押出発泡シートの一般的製造方法を以下に記述する。
<1>押出機内に基材樹脂と気泡調整剤等の添加剤とを仕込み、該機内で加熱・溶融・混練する。
<2>混練物に所望量の発泡剤を圧入して混練物に発泡剤を練り込む。
<3>発泡剤が練り込まれている混練物を、所定温度で押出機先端のサーキュラダイから低圧域に押し出し、これを円柱形状の樹脂冷却装置(マンドレル)の円柱側面上に引取って管状発泡体を形成させてから、押し出し方向に切り開いてシート状発泡体とする。一般に押出機のダイス先端から低圧域に押し出された管状発泡体は、内部から空気によって膨らませながらバルーン(管状発泡体の径がダイス径からマンドレル径まで拡大される部分)を形成した後に、マンドレルの円柱側面上にひきとられる。この時、セルの均一化、表面状態の良化を目的に、ダイスから出た直後のバルーンの外側と内側から、エアーによる冷却をすることが好ましい。この方法によって良好なポリカーボネート系樹脂押出発泡シートが得られる。
【0016】
発泡シート製造の際に使われる発泡剤は、無機発泡剤、揮発性発泡剤、分解型発泡剤のいずれも使用可能であるが、押し出し発泡法の場合は分解型発泡剤を使うと発泡シートの気泡が微細化してしまったり、発泡倍率の高い発泡体が得られ難いから、無機発泡剤や揮発性発泡剤を使用するのが好ましい。
揮発性発泡剤としては、プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、ヘキサン等の低級脂肪族炭化水素;シクロブタン、シクロペンタン等の低級脂環式炭化水素;ベンゼン、トルエン、キシレン等の低級芳香族炭化水素;メタノール、エタノール等の脂肪族低級一価アルコール;アセトン、メチルエチルケトン等の低級脂肪族ケトン;1−クロロ−1,1−ジフルオロエタン、ペンタフルオロエタン、1,1,1,2−テトラフルオロエタン、1,1−ジフルオロエタン等の低沸点ハロゲン化炭化水素;等が例示される。
また、無機発泡剤としては、二酸化炭素、空気、窒素等が好ましく用いられる。
以上に詳記した発泡剤は、単独又は2種以上混合して使用可能であり、例えば無機発泡剤と揮発性発泡剤のように異なった型の発泡剤の併用も可能である。
【0017】
発泡剤使用量は発泡剤の種類や所望する発泡倍率によっても異なり、発泡倍率によって該発泡シートの密度が定まるから、主に所望する発泡シートの密度で発泡剤の使用量が定まると云える。そして、発泡シートは密度0.04〜0.4g/cm3、好ましくは0.06〜0.35g/cm3とするのが望ましいから、この範囲となるように発泡剤を使えばよい。なお、発泡シート密度が0.04g/cm3未満では成形品の強度が小さすぎるし、密度が0.4g/cm3を超えると断熱性低下や重量増加の上に製造原価も増加する。
そのために必要な発泡剤量は基材樹脂100重量部当り揮発性発泡剤では0.5〜10重量部、無機発泡剤では0.3〜15重量部程度である。
【0018】
本発明では、ポリカーボネート系樹脂組成物を円滑に発泡させるために、基材樹脂と発泡剤との溶融混練物中に必要に応じて気泡調整剤を添加することができる。この場合の気泡調整剤としては、タルクやシリカ等の無機粉末、多価カルボン酸の酸性塩、多価カルボン酸と炭酸ナトリウム又は重炭酸ナトリウムとの混合物等が好ましい。その添加量は、基材樹脂100重量部当り0.01〜1.0重量部、好ましくは0.05〜0.5重量部とするのが良い。
【0019】
本発明で用いる発泡体用ポリカーボネート系樹脂には、難燃剤、熱安定剤、耐候性向上剤、着色剤等のような、通常の発泡シートに添加される公知の添加剤も添加することができる。
【0020】
発泡シートは、貯蔵弾性率の調整や押し出された管状発泡体の引取り方法等に留意することにより、サーキュラダイ直径より250%以上、更には450〜500%の直径を持つマンドレルに管状発泡体を引取ることができる。そして、サーキュラダイ直径より250%以上も直径が大きいマンドレルに管状発泡体を引取っても、シート厚が部分的又は全面的に薄くなることがなく、シートの厚みを0.5〜10mm、特に0.7〜5mmの均一厚にすることができる。なお、発泡シート厚が0.5mm未満では該シートで形成される成形品の強度が小さく、厚みが10mmを超えると加熱成形の際にシート表面と内面の温度が不均一となり、そのために成形不良となることが多い。
【0021】
前記したように、発泡シートは均一な厚みのシートとして得られるが、厚みをより均質にするためには▲1▼サーキュラダイの開口部付近における樹脂流路幅を狭める;▲2▼サーキュラダイから押し出された管状発泡体をマンドレルに引取って冷却する際に、マンドレル表面及び外側から管状発泡体の内表面及び外表面に冷却空気を吹き付ける;等の方法を1種又は2種以上行なえば良い。
また、発泡シートを構成する気泡径(押出方向、幅方向、厚み方向各々の平均気泡径の総和の1/3)を100μm以上、200μm未満にする為には、前述した気泡調整剤による調整に加えてブロー比(マンドレル径/ダイス径)を2.0〜3.0とすることにより達成することができ、加熱成形性において特に良好なものが得られる。
【0022】
以上のようにして得られたポリカーボネート系樹脂発泡シートは、成形性が良い上にポリカーボネート樹脂本来の特性を持つ発泡シートであり、そのままでも成形品を作製することができる。しかし、更に発泡シートの機械的強度を強くする必要がある場合には、該発泡シートの両面又は一方の面に熱可塑性樹脂を積層するのが好ましい。そして、この場合の熱可塑性樹脂としては、発泡シートとの接着性が良いポリカーボネート樹脂を使用するのが好ましく、該ポリカーボネート樹脂には回収樹脂を使うことができる。すなわち、この場合の積層樹脂としては新樹脂を使っても回収樹脂を使っても成形品強度はほとんど変らない。なお、ガラス繊維や炭素繊維等で強化された不飽和ポリエステル樹脂や熱可塑性樹脂又は熱硬化性樹脂からなる積層材と、本発明により得られるポリカーボネート樹脂発泡シートとを積層することもできる。
【0023】
【実施例】
次に、本発明を実施例によって更に具体的に説明するが、本発明はこの実施例によって限定されるものではない。
【0024】
実施例1
基材樹脂として、分岐化剤を添加して分子量を調整したビスフェノールAよりなる分岐化ポリカーボネート樹脂であって、α=1.30、β=4.30、粘度平均分子量26000に調整されたポリカーボネート樹脂100重量部を用い、これに気泡調整剤としてタルク0.1重量部を加え、これを押出機内で加熱、溶融、混合してから、発泡剤としてn−ペンタンを0.56モル/(kg樹脂)となるように押出機内に圧入し、樹脂温度210℃で押出機先端のサーキュラダイから発泡剤を含浸した管状樹脂を押出し、これを直径418mmのマンドレルで引き取ってから押出方向にそって切り開いてシート状発泡体を得た。尚、サーキュラダイ直径は134mm、ダイスクリアーは0.7mmである。又、管状発泡体の吐出量は100kg/hとした。発泡成形条件、得られた発泡シートの密度、幅、独立気泡率、成形性等を表1に示す。
【0025】
実施例2
基材樹脂としてビスフェノールAよりなる高分子量のポリカーボネート樹脂と低分子量のポリカーボネート樹脂との混合樹脂であって、α=1.61、β=3.39、粘度平均分子量29000に調整されたポリカーボネート樹脂を用いマンドレル直径200mm、サーキュラダイ直径65mm、吐出量50kg/hとした以外は実施例1と同様にして発泡シートを得た。発泡成形条件、得られた発泡シートの密度、幅、独立気泡率、成形性等を表1に示す。
【0026】
実施例3
気泡調整剤としてタルクを0.2重量部加えマンドレル径を165mmとした以外は実施例2と同様にして発泡シートを得た。発泡成形条件、得られた発泡シートの密度、幅、独立気泡率、成形性等を表1に示す。
【0027】
実施例4
基材樹脂としてビスフェノールAよりなる高分子量成分を含むポリカーボネート樹脂であって、α=1.32、β=3.77、粘度平均分子量32000に調整されたものを用いた以外は実施例2と同様にして発泡シートを得た。発泡成形条件、得られた発泡シートの密度、幅、独立気泡率、成形性等を表1に示す。
【0028】
比較例1
実施例1において、基材樹脂をビスフェノールAよりなる市販のポリカーボネート樹脂であって、α=1.09、β=2.09、粘度平均分子量17000のポリカーボネート樹脂に変更し、押出発泡テストを行なったが、発泡剤によるセル破壊が激しく満足な発泡体は得られなかった。
【0029】
比較例2
実施例2において、基材樹脂をビスフェノールAよりなる市販のポリカーボネート樹脂であって、α=1.45、β=2.10、粘度平均分子量21000のポリカーボネート樹脂に変更し押出発泡テストを行なった。得られた発泡シートの物性を表1に示すが、発泡時のセル保持能力が満足でなかったためか、独立気泡率も低く、発泡倍率もでていなかった。
【0030】
比較例3
基材樹脂として、α=1.40、β=2.15、粘度平均分子量25000に調整されたビスフェノールAよりなる市販のポリカーボネート樹脂100重量部に気泡調整剤としてタルク0.02重量部を加え、これを押出機内で加熱、溶融、混合してから、発泡剤として塩化メチルを0.97モル/(kg樹脂)となるように押出機内に圧入し、樹脂温度200℃で押出機先端のサーキュラダイから発泡剤を含浸した管状樹脂を押出し、これをブロー比2.3にてマンドレルで引取ってから押出方向にそって切り開いてシート状発泡シートを得た。発泡成形条件、得られた発泡シートの諸物性を表1に示す。
【0031】
比較例4
比較例3において、シート幅を得るためにブロー比を3.1に変更して押出発泡シートの作成を試みたが、樹脂のセル形成力が不十分なためブロー比に負けてしまい、厚みの薄い、発泡倍率、独立気泡率の低い、不満足な発泡シートしか得られなかった。発泡成形条件、得られた発泡シートの諸物性を表1に示す。
【0032】
表1中、諸物性等の評価等は下記に示すとおりである。
α及びβの値:動的粘弾性装置:ダイナミックアナライザーSR200型(レオメトリックスファーイースト社)を使用し温度250℃一定にし、線形領域内において角周波数ω〔rad/sec.〕を変化させ、貯蔵弾性率G′〔dyn/cm2〕を求め縦軸にlogG′、横軸にlogωとしたグラフ上に曲線を得る。次にlogω=−1及びlogω=1の時のlogG′の値を曲線上から読み取り、その2点の値を基にlogG′=α・logω+βの一次式に近似し、該近似式で与えられる2点間の傾きをα、近似式の切片をβとした。なお、厚さ約2mmの測定サンプル樹脂板を直径25mmのパラレルプレート間に挟んで250℃に達するまで約10分間放置し、応力制御方式により線形領域内(応力2×104dyn/cm2)で測定を行なった。
tan(δ)の値:図3及び図4に示したtan(δ)の値はダイナミックアライザーSR200型(レオメトリックスファーイースト社)を使用し温度250℃一定にし、線形領域内において角周波数ω〔rad/sec.〕を変化させ、貯蔵弾性率G′を求めるのと同様にしてtan(δ)=G″/G′を求めた。尚、参考までにG′の値も図3及び図4に示した。
平均気泡径:シート幅方向及び押し出し方向の断面の300個以上の気泡についてX、Y、Zを測定した。
X:シート幅方向断面の厚み方向と直交する方向の平均気泡径
Y:シート押し出し方向断面の厚み方向と直交する方向の平均気泡径
Z:シート断面の厚み方向の平均気泡径
成形性:発泡シートを加熱軟化させ開口面積256cm2、深さ6cmの容器をプラグアシスト成形法により成形し、10個の成形品を得、下記の基準により評価した。
○:全ての成形品が良好なものである
△:成形品表層に亀裂が発生しているものがある
×:成形品に穴があいているものがある
表面状態:発泡シート表面を目視により観察する方法により評価した。
独立気泡率:独立気泡率はエアピクノメーター法(ASTM D2856)に準拠し、下記式により算出した。
Fo(%)=〔(Va−Vx)/Va〕×100
Fc(%)=100−Fo−〔(ρf/ρs)×100〕
Fo:連続気泡率(%)
Fc:独立気泡率(%)
Va:発泡体見掛け容積(cm3
Vx:発泡体実容積(cm3
ρf:発泡体密度(g/cm3
ρs:ポリカーボネート系樹脂密度(g/cm3
【0033】
【表1】

Figure 0003669533
【0034】
【発明の効果】
本発明によれば、押出発泡性に優れた、前記特定の貯蔵弾性率を有する発泡体用ポリカーボネート系樹脂を押出発泡することにより、用途に応じた厚み、密度、幅等広範囲な調整選択が可能になり、表面状態が良好で、独立気泡率の高い発泡体、特に発泡シートを製造することができる。また、本発明によれば、リサイクル原料樹脂を用いることもできる。また、本発明により得られる発泡体は容器素材等の食品分野、内装材、防音壁材等の建築・土木分野、自動車天井材、ピラー等の自動車分野等多種多様の分野において好適に使用できる。
【図面の簡単な説明】
【図1】各種ポリカーボネート系樹脂の、250℃の温度条件下、線形領域内における、角周波数ωの変化に対する、貯蔵弾性率G′の変化を一次式に近似して表したグラフ。
【図2】発泡前後における角周波数ωと貯蔵弾性率G′との関係の変化を比較説明するための図面。
【図3】実施例1で用いたポリカーボネート樹脂の、250℃の温度条件下、線形領域内における、角周波数ωと貯蔵弾性率G′及びtan(δ)との関係を表したグラフ。
【図4】実施例2及び3で用いたポリカーボネート樹脂の、250℃の温度条件下、線形領域内における、角周波数ωと貯蔵弾性率G′及びtan(δ)との関係を表したグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polycarbonate resin suitable for producing a foam. Use The present invention relates to a method for producing a polycarbonate resin foam.
[0002]
[Prior art]
Polycarbonate resin has high heat resistance, aging resistance, water resistance, etc., and is excellent in electrical and mechanical properties, so its foam can be used for interior materials, packaging materials, and various containers of automobiles and buildings. Is expected to expand its application. Further, it is particularly promising as a container material for microwave ovens and retort foods that require heat resistance. Although there are many advantages as described above, the flow starting point of the polycarbonate resin is significantly higher than that of polystyrene and the like, and since the melt viscosity is low and the elongation of the heated sheet is small, the desired foamed sheet can be obtained by the ordinary extrusion foaming method. It is difficult. Therefore, a method using an organic substance having a solubility coefficient of 6.5 or more as a foaming agent (Japanese Patent Laid-Open No. 2-261636), a method using an isoparaffin having a boiling point of 50 to 150 ° C. as a foaming agent (Japanese Patent Publication No. 47-43183), etc. Proposed. However, when a polycarbonate resin foam sheet is produced by a foaming method using these foaming agents, a foam sheet having a closed cell structure, which is considered good in resin foam sheets such as polyolefin and polystyrene, has a narrow sheet thickness or thickness. However, it is only possible to obtain a product having an insufficient magnification, and it cannot be practically used. Further, since the magnification and the thickness are insufficient, there is a drawback that it is applied to heat insulation as a foam.
Further, since polycarbonate has a low melt tension, there is a disadvantage that the surface of the extruded foam sheet obtained is poor due to cracks and the like that occur when the foam sheet discharged from the die slip port is taken over a mandrel.
[0003]
In addition to the above, in the production of a conventional polycarbonate resin extruded foam sheet, it is one of the drawbacks that it is difficult to produce a foam sheet having a sheet width exceeding 500 mm. This is a problem that occurs due to the difficulty in smoothly pulling out the extruded tubular foam with a mandrel whose diameter is about 250% or more larger than the diameter of the circular die because the elongation of the tubular foam is small. If the sheet width is narrow, the work efficiency is poor for building materials, and it is difficult to manufacture large molded products. In general, a continuous heating molding machine such as a packaging container is designed to use a sheet having a width exceeding 500 mm at least from the viewpoint of work efficiency. Limited.
In order to solve these problems, for example, even if a method of forcibly pulling the tubular foam with a mandrel having a large diameter is adopted, the sheet may be torn, the sheet thickness may be reduced, or the surface state may be deteriorated. Problems arise and high quality foam sheets cannot be obtained. Therefore, an attempt was made to increase the diameter of the circular die to obtain a wide sheet. However, in this case, it is difficult to maintain the die pressure at the tip of the extruder because the diameter of the circular die is large. The surface quality and mechanical properties of the foamed sheet obtained by the foaming phenomenon are deteriorated.
In recent years, the demand for resin recyclability has been increasing, but the raw material resin for foams requires strict control over the flow characteristics, etc., and there are variations in the physical properties such as physical properties in order to obtain foams. It was difficult to use.
[0004]
[Problems to be solved by the invention]
The present invention is suitable for producing a foam having a good surface state and a high closed cell ratio by an extrusion foaming method, and is also a polycarbonate-based resin for foam which can be used as an index of foaming suitability of a recycled raw material resin, and the resin. It aims at providing the manufacturing method of the polycarbonate-type resin foam excellent in the moldability etc. which were used.
[0005]
[Means for Solving the Problems]
According to the present invention, the angular frequency ω = 10 in the dynamic viscoelasticity measurement that gives vibration strain under the temperature condition of 250 ° C. -1 -10 1 [Rad / sec. ] Storage elastic modulus G ′ [dyn / cm 2 ] Satisfies the relationship of the following approximate expression A method for producing a polycarbonate resin foam, characterized in that a polycarbonate resin for foam is extruded and foamed using an extruder. Is provided.
[Expression 1]
logG ′ = α · logω + β
α = 0-2.0
β = 2.20-5.70
(Where α and β are the slope and intercept between two points of log G ′ corresponding to log ω = −1 and log ω = 1)
Further, according to the present invention, in the dynamic viscoelasticity measurement that gives vibration strain under the temperature condition of 250 ° C., the angular frequency ω = 10. -1 -10 1 [Rad / sec. The value of tan (δ) in the range of 1 to 70 is within the range of 1 to 70. For producing a polycarbonate resin foam, characterized by extrusion foaming using Will be provided . Special Further, a method for producing the polycarbonate resin foam is provided, wherein the polycarbonate resin for foam is extruded from the tip of the die at a blow ratio of 2.0 to 3.0.
[0006]
In order to improve the foamability and moldability of the polycarbonate-based resin itself, the present inventors have focused on the melt tension and melt viscosity of polycarbonate and have been researching mainly to improve them. In particular, when considering only the melt tension and melt viscosity, it is possible to obtain a satisfactory foam by freely controlling the density and thickness, such as bubble breakage, severe shrinkage, and difficulty in foaming. It was difficult. Accordingly, the present inventors have repeated research on what shows even better foaming aptitude, based on the fact that melt tension and melt viscosity are important factors.
As a result, the melt viscosity values obtained with a flow tester are in the very high shear region, and it is necessary to look at the properties of the resin in the low shear region in a very microscopic molecular movement during foaming. It has also been found that the measurement of the melt tension is also to check the resistance of the resin at the time of large deformation, and it is necessary to check the resistance of the resin when the bubbles are maintained after forming.
Based on the above view, as a result of further earnest research, we were able to conclude that the ability to retain bubbles required for foaming needs to pay attention to the elastic force of the resin at a certain low shear. .
[0007]
Here, in evaluating the foaming characteristics of the polycarbonate-based resin, the change in the angular frequency ω and the complex elastic modulus G * The change of the phase difference δ was measured, and an attempt was made to evaluate it by a dynamic viscoelasticity test for determining the relationship between the storage elastic modulus G ′, the loss elastic modulus G ″, and tan (δ).
In the dynamic viscoelasticity test, vibration strain is applied to the resin, and the stress generated in the resin and the phase difference between the strain and the stress are measured. In the case of a pure elastic body, the phase difference between strain and stress is 0 °. In the case of a pure viscous body, the phase difference is 90 °. In the case of a resin, the phase difference is 0 ° because it has both elasticity and viscosity. And a value between 90 °. Further, when the angular frequency ω is changed at a constant temperature, the stress and the phase difference are uniquely changed according to the characteristics of the resin.
[0008]
Here, the storage elastic modulus G ′ represents the elasticity of the resin, the loss elastic modulus G ″ represents the viscosity of the resin,
G * = G '+ iG ",
G '= | G * | · Cos (δ),
G ″ = | G * | · Sin (δ),
tan (δ) = G ″ / G ′
The relationship holds.
From the Cox-Mertz rule of thumb, the angular frequency ω and the shear rate γ are equal and can be regarded as ω = γ.
[0009]
In the case of polycarbonate resin, the angular frequency ω (rad / sec.) Is 10 Three -10 Four In the vicinity, G ′> G ″ and tan (δ) <1. This means that the elastic property is dominant in the region where the angular frequency is large, that is, the region where the shear strain rate is large. It can be considered that this property corresponds to a sudden change in the initial stage.
Meanwhile, 10 -2 -10 1 Conversely, G ′ <G ″ and tan (δ)> 1 in the region of 1. This means that the viscous property is stronger than the elasticity in the low shear region where the angular frequency is small. It can be considered that the resin flows with time and the shape of the bubbles cannot be maintained after the foaming is completed.
Therefore, in this low shear region, if the elastic property is strong and within a specific range, the resin flows and has a strong resistance to damage the bubbles, and the relaxation time is long. Therefore, if the elastic property in the low shear region is strong and within a specific range, the cooling time can be secured, and good bubbles can be obtained.
[0010]
The present invention Person By using a polycarbonate-based resin having a specific storage elastic modulus under a certain condition, a polycarbonate-based resin extruded foam having a high closed cell ratio and a high foaming ratio in a surface state has a density, thickness, Obtained over a wide range such as width, that is, the present invention Person Is based on the storage elastic modulus G ′ obtained by measuring the angular frequency dispersion at a measurement temperature of 250 ° C. using a rheometer (dynamic analyzer SR200 type, manufactured by Rheometrics Far East), which is a dynamic viscoelasticity measuring device. Obtain a curve plotted with the log G 'on the axis and log ω on the horizontal axis, then approximate the curve to the following proportional expression and use a polycarbonate resin that satisfies the following approximate expression: Extrusion foaming In this case, the present inventors have found that the object can be achieved, and have completed the present invention.
[Expression 1]
logG ′ = α · logω + β
α = 0-2.0
β = 2.20-5.70
(Where α and β are the slope and intercept between two points of log G ′ corresponding to log ω = −1 and log ω = 1)
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The dynamic viscoelastic device used in the present invention is a dynamic analyzer SR200 type (Rheometrics Far East).
[0012]
The storage elastic modulus G ′ is a measure of energy stored and recovered per cycle when a certain strain is applied to the resin.
It has been found that this can be replaced by the resistance of the resin to the strain applied to the resin during foaming. That is, when the angular frequency ω and the storage elastic modulus G ′ satisfy the following approximate expression in a linear region at a temperature condition of 250 ° C., the foamed object of the present invention is obtained.
[Expression 1]
logG ′ = α · logω + β
α = 0-2.0
β = 2.20-5.70
(Where α and β are the slope and intercept between two points of log G ′ corresponding to log ω = −1 and log ω = 1)
However, if β is less than 2.20, the resin does not have the energy to resist the distortion of foaming, causing foam breakage and not obtaining a satisfactory foam, and conversely, β exceeding 5.70 Since the resistance is too strong, foaming becomes difficult.
In addition, α does not fall below 0. On the other hand, when α exceeds 2.0, the force for maintaining the bubbles is abruptly reduced, and bubbles are broken and a satisfactory foam cannot be obtained.
Furthermore, the preferable range of α is 0.9 to 1.8, and the preferable range of β is 2.30 to 5.00.
In addition, the storage elastic modulus G ′ can control the foaming behavior related to the formation and maintenance of the bubbles of the resin, but by considering the properties of the viscous material represented by the loss elastic modulus G ″, the density can be further reduced. A foam having a high thickness and a wide width can be obtained.
In other words, in addition to the above-mentioned specific G ′ behavior, a material having a specific G ″ to G ′ ratio, tan (δ) = (G ″ / G ′) behavior is more excellent in density, thickness and width. It will be.
A preferable range of tan (δ) in which the above-described excellent effect is achieved is an angular frequency ω = 10. -1 -10 1 Is within the range of 1 to 70, more preferably within the range of 1 to 20.
The dynamic viscoelasticity measurement uses a base resin used for the foam (however, when an additive is added, one containing an additive) as a measurement sample. For reference, the foam obtained by foaming the base resin is defoamed by heat press to form a resin plate, the result of dynamic viscoelasticity measurement using the resin plate as a measurement sample, and the foam FIG. 2 shows a comparison with the results of dynamic viscoelasticity measurement using the base resin as a measurement sample. FIG. 2 shows that the dynamic viscoelastic behavior represented by the angular frequency ω and the storage elastic modulus G ′ of the polycarbonate-based resin before and after foaming is almost the same. Therefore, it can be said that the dynamic viscoelastic behavior obtained from the foam by the above method is almost the dynamic viscoelastic behavior of the base resin.
The reason for selecting the temperature condition of 250 ° C. for the dynamic viscoelasticity measurement is as follows.
The measurement of dynamic viscoelasticity at 250 ° C. is based on the change in elastic modulus of the viscoelastic body as the molten polycarbonate resin extruded and foamed at the foaming temperature is extruded from the extruder die and the temperature decreases from foam formation to foam solidification. When it is made to correspond to the elastic modulus change accompanying a frequency fall, it was employ | adopted as a dynamic viscoelasticity measurement temperature condition which can express notably the behavior of the elastic modulus change accompanying the temperature fall of polycarbonate-type resin.
For each polycarbonate resin, a graph approximating the change in the storage elastic modulus G ′ to the change in the angular frequency ω (rad / sec.) Under a temperature condition of 250 ° C. is shown in FIG.
[0013]
The present invention Used in The polycarbonate-based resin for foams is considered to have a high content component or a long-chain branch in one or a mixture of two or more kinds of polycarbonate formed from carbonic acid and glycol or bisphenol. An aromatic polycarbonate having a diphenylalkane in the molecular chain is preferred because of its high crystallinity and high melting point, and excellent heat resistance, weather resistance and acid resistance. Such polycarbonates include 2,2-bis (4-oxyphenyl) propane (also known as bisphenol A), 2,2-bis (4-oxyphenyl) butane, and 1,1-bis (4-oxyphenyl) cyclohexane. 1,1-bis (4-oxyphenyl) isobutane, 1,1-bis (4-oxyphenyl) ethane, and other polycarbonates derived from bisphenols. In addition, it is preferable to select two or more types including at least a high molecular weight type from the polycarbonate and to mix them, or to branch the polycarbonate and adjust the length of the branched chain, but not necessarily the above All that can be obtained by selection and adjustment is the present invention. Used in It does not necessarily correspond to the specific base resin described above, and it is necessary to appropriately adjust the selection of the polycarbonate, the mixing ratio, the mixing conditions, the amount of the branching agent, the branching conditions, and the like.
[0014]
As described above, the base resin composed of the polycarbonate resin used in the present invention is, among the polycarbonate resins, measured at a measurement temperature of 250 ° C. (constant) using the test machine, measured for angular frequency dispersion in a linear region, and stored elastic. Rate G '[dyn / cm 2 ] Is a polycarbonate-based resin or a polycarbonate-based resin mixture that satisfies the relationship of the following approximate expression approximated from the curve plotted.
[Expression 1]
logG ′ = α · logω + β
α = 0-2.0
β = 2.20-5.70
(Where α and β are the slope and intercept between two points of log G ′ corresponding to log ω = −1 and log ω = 1)
In addition, the dynamic viscoelasticity measurement in this invention shall be performed in a linear area | region.
The dynamic viscoelasticity measurement is measured in a linear region by a dynamic viscoelasticity tester (for example, a dynamic viscoelasticity tester manufactured by Rheometrics Far East Co., Ltd .: SR200 type) by a stress control method. Measurements in this linear region give a stress of 2 × 10 Four dyn / cm 2 It is done by doing.
In the measurement by the stress control method, the polycarbonate resin has a maximum frequency of 100 rad / sec. When measuring up to 1 × 10 Four ~ 3x10 Four dyn / cm 2 If so, it can be said to be a linear region. Needless to say, the linear region is a region in which the strain rate and the stress are in a proportional relationship, that is, a range in which a measured value of viscoelasticity such as storage elastic modulus is not affected by the stress. In the dynamic viscoelasticity test, a measurement resin plate with a thickness of about 2 mm is narrowed between parallel plates with a diameter of 25 mm and left for about 10 minutes until it reaches 250 ° C., and then the resin plate is slightly pressed down to melt the resin. The fit between the plate and the parallel plate is improved, and the overflowing resin is scraped off, and then the angular frequency ω is changed, and the storage elastic modulus G ′, loss elastic modulus G ″ and tan (δ) are measured.
In addition, even if the polycarbonate resin has a relationship between the angular frequency ω and the storage elastic modulus G ′ outside the above range, the relationship between the angular frequency and the storage elastic modulus is adjusted to this range by mixing other resins. Those obtained can also be used as the base resin of the present invention.
Adjustment of the elastic modulus is generally ω = 1 [rad / sec. ], The storage elastic modulus is 1 × 10 Five dyn / cm 2 Over 2 and 10 2 dyn / cm 2 It is easy to carry out by mixing with those below, and the desired elastic modulus can be obtained by changing the mixing ratio. In addition, it is adjusted by the above-described method.
Thus, a recycled raw material resin and a specific polycarbonate resin that has been difficult to foam can be used as the base resin of the present invention.
[0015]
Thus, the base resin that satisfies the relationship between the angular frequency ω of the polycarbonate resin and the storage elastic modulus G ′. Use to A foam, for example, a foamed sheet, is obtained by extrusion foaming while controlling the temperature (resin temperature) at the time of extrusion from the unloader. Hereinafter, a foam sheet will be described as an example of the foam. A general method for producing a polycarbonate resin extruded foam sheet according to the present invention will be described below.
<1> A base resin and an additive such as a bubble adjusting agent are charged into an extruder and heated, melted and kneaded in the machine.
<2> A desired amount of foaming agent is pressed into the kneaded product, and the foaming agent is kneaded into the kneaded product.
<3> The kneaded material in which the foaming agent is kneaded is extruded from the circular die at the tip of the extruder to the low pressure region at a predetermined temperature, and this is taken up on the cylindrical side surface of a cylindrical resin cooling device (mandrel). After forming the foam, it is cut open in the extrusion direction to form a sheet-like foam. Generally, a tubular foam extruded from the die tip of an extruder into a low pressure region is formed by forming a balloon (a portion where the diameter of the tubular foam is expanded from the die diameter to the mandrel diameter) while being inflated by air from the inside. It is drawn on the side of the cylinder. At this time, for the purpose of making the cells uniform and improving the surface condition, it is preferable to cool with air from the outside and inside of the balloon immediately after coming out of the die. By this method, a good polycarbonate resin extruded foam sheet can be obtained.
[0016]
The foaming agent used in the production of foamed sheets can be any of inorganic foaming agents, volatile foaming agents, and decomposable foaming agents. It is preferable to use an inorganic foaming agent or a volatile foaming agent because the bubbles are miniaturized or it is difficult to obtain a foam having a high foaming ratio.
Examples of volatile blowing agents include lower aliphatic hydrocarbons such as propane, n-butane, i-butane, n-pentane, i-pentane and hexane; lower alicyclic hydrocarbons such as cyclobutane and cyclopentane; benzene, toluene Lower aliphatic hydrocarbons such as methanol and ethanol; lower aliphatic ketones such as acetone and methyl ethyl ketone; 1-chloro-1,1-difluoroethane, pentafluoroethane, 1,1, Examples include low-boiling halogenated hydrocarbons such as 1,2-tetrafluoroethane and 1,1-difluoroethane.
Further, as the inorganic foaming agent, carbon dioxide, air, nitrogen or the like is preferably used.
The foaming agents described in detail above can be used alone or in combination of two or more. For example, different types of foaming agents such as inorganic foaming agents and volatile foaming agents can be used in combination.
[0017]
The amount of foaming agent used depends on the type of foaming agent and the desired foaming ratio, and the density of the foamed sheet is determined by the foaming ratio. Therefore, it can be said that the amount of foaming agent used is mainly determined by the density of the desired foamed sheet. The foam sheet has a density of 0.04 to 0.4 g / cm. Three , Preferably 0.06-0.35 g / cm Three It is desirable to use a foaming agent within this range. The foam sheet density is 0.04 g / cm. Three If it is less than this, the strength of the molded product is too small and the density is 0.4 g / cm. Three Above this, the cost of manufacture increases as well as a decrease in thermal insulation and an increase in weight.
The amount of foaming agent required for this purpose is about 0.5 to 10 parts by weight for volatile foaming agents and about 0.3 to 15 parts by weight for inorganic foaming agents per 100 parts by weight of the base resin.
[0018]
In this invention, in order to foam a polycarbonate-type resin composition smoothly, a bubble regulator can be added to the melt-kneaded material of base resin and a foaming agent as needed. In this case, as the air conditioner, inorganic powders such as talc and silica, acidic salts of polyvalent carboxylic acids, mixtures of polyvalent carboxylic acids and sodium carbonate or sodium bicarbonate are preferable. The addition amount is 0.01 to 1.0 part by weight, preferably 0.05 to 0.5 part by weight per 100 parts by weight of the base resin.
[0019]
The present invention Used in Known additives such as flame retardants, heat stabilizers, weather resistance improvers, colorants, and the like that are added to ordinary foam sheets can also be added to the polycarbonate-based resin for foams.
[0020]
Foam sheets are tubular foams on mandrels with a diameter of 250% or more, and 450-500% of the diameter of the circular die by paying attention to the storage elastic modulus adjustment and the method of pulling out the extruded tubular foam. Can be taken over. And even if the tubular foam is drawn on a mandrel whose diameter is 250% or more larger than the circular die diameter, the sheet thickness does not become partially or entirely thin, and the thickness of the sheet is 0.5 to 10 mm. A uniform thickness of 0.7 to 5 mm can be obtained. If the thickness of the foamed sheet is less than 0.5 mm, the strength of the molded product formed from the sheet is small. If the thickness exceeds 10 mm, the temperature of the sheet surface and the inner surface becomes non-uniform during the heat molding, resulting in poor molding. Often.
[0021]
As described above, the foamed sheet can be obtained as a sheet having a uniform thickness, but in order to make the thickness more uniform, (1) the resin flow path width near the opening of the circular die is narrowed; (2) from the circular die When the extruded tubular foam is taken up by the mandrel and cooled, cooling air is blown from the mandrel surface and the outside to the inner surface and the outer surface of the tubular foam; one or more methods may be performed. .
In order to make the bubble diameter (1/3 of the total of the average bubble diameters in the extrusion direction, the width direction, and the thickness direction) constituting the foamed sheet 100 μm or more and less than 200 μm, the adjustment with the above-described bubble regulator is used. In addition, it can be achieved by setting the blow ratio (mandrel diameter / die diameter) to 2.0 to 3.0, and a particularly good heat moldability can be obtained.
[0022]
The polycarbonate resin foam sheet obtained as described above is a foam sheet having good moldability and inherent properties of the polycarbonate resin, and a molded product can be produced as it is. However, when it is necessary to further increase the mechanical strength of the foamed sheet, it is preferable to laminate a thermoplastic resin on both surfaces or one surface of the foamed sheet. In this case, as the thermoplastic resin, it is preferable to use a polycarbonate resin having good adhesion to the foamed sheet, and a recovered resin can be used as the polycarbonate resin. That is, in this case, the strength of the molded product hardly changes regardless of whether a new resin or a recovered resin is used as the laminated resin. In addition, a laminated material made of unsaturated polyester resin, thermoplastic resin, or thermosetting resin reinforced with glass fiber or carbon fiber, and the present invention Obtained by A polycarbonate resin foam sheet can also be laminated.
[0023]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited by this Example.
[0024]
Example 1
As a base resin, a branched polycarbonate resin made of bisphenol A having a molecular weight adjusted by adding a branching agent, wherein the polycarbonate resin is adjusted to α = 1.30, β = 4.30, and a viscosity average molecular weight of 26000. Using 100 parts by weight, 0.1 parts by weight of talc as a foam control agent was added thereto, and this was heated, melted and mixed in an extruder, and then n-pentane was added as a foaming agent at 0.56 mol / (kg resin). ), And a tubular resin impregnated with a foaming agent is extruded from a circular die at the tip of the extruder at a resin temperature of 210 ° C., and this is taken up by a mandrel having a diameter of 418 mm and then cut along the extrusion direction. A sheet-like foam was obtained. The circular die diameter is 134 mm, and the die clear is 0.7 mm. The discharge amount of the tubular foam was 100 kg / h. Table 1 shows the foam molding conditions, the density, width, closed cell ratio, moldability, and the like of the obtained foam sheet.
[0025]
Example 2
A mixed resin of a high molecular weight polycarbonate resin made of bisphenol A and a low molecular weight polycarbonate resin as a base resin, wherein the polycarbonate resin is adjusted to α = 1.61, β = 3.39, and a viscosity average molecular weight of 29000. A foam sheet was obtained in the same manner as in Example 1 except that the mandrel diameter was 200 mm, the circular die diameter was 65 mm, and the discharge rate was 50 kg / h. Table 1 shows the foam molding conditions, the density, width, closed cell ratio, moldability, and the like of the obtained foam sheet.
[0026]
Example 3
A foamed sheet was obtained in the same manner as in Example 2 except that 0.2 parts by weight of talc was added as a foam regulator and the mandrel diameter was 165 mm. Table 1 shows the foam molding conditions, the density, width, closed cell ratio, moldability, and the like of the obtained foam sheet.
[0027]
Example 4
Example 2 except that a polycarbonate resin containing a high molecular weight component made of bisphenol A as a base resin and adjusted to α = 1.32, β = 3.77, and a viscosity average molecular weight of 32000 was used. Thus, a foam sheet was obtained. Table 1 shows the foam molding conditions, the density, width, closed cell ratio, moldability, and the like of the obtained foam sheet.
[0028]
Comparative Example 1
In Example 1, the base resin was a commercially available polycarbonate resin made of bisphenol A, which was changed to a polycarbonate resin having α = 1.09, β = 2.09, and a viscosity average molecular weight of 17000, and an extrusion foaming test was performed. However, the cell destruction by the foaming agent was severe, and a satisfactory foam was not obtained.
[0029]
Comparative Example 2
In Example 2, the base resin was a commercially available polycarbonate resin made of bisphenol A, which was changed to a polycarbonate resin having α = 1.45, β = 2.10, and a viscosity average molecular weight of 21,000, and an extrusion foaming test was performed. The physical properties of the obtained foamed sheet are shown in Table 1. However, the cell holding ability at the time of foaming was not satisfactory, the closed cell ratio was low, and the expansion ratio was not achieved.
[0030]
Comparative Example 3
As a base resin, α = 1.40, β = 2.15, 0.02 parts by weight of talc as a foam regulator is added to 100 parts by weight of a commercially available polycarbonate resin made of bisphenol A adjusted to a viscosity average molecular weight of 25000, This is heated, melted and mixed in the extruder, and then methyl chloride as a foaming agent is pressed into the extruder so as to be 0.97 mol / (kg resin). Then, a tubular resin impregnated with a foaming agent was extruded, taken with a mandrel at a blow ratio of 2.3, and then cut along the extrusion direction to obtain a sheet-like foamed sheet. Table 1 shows the foam molding conditions and various physical properties of the obtained foam sheet.
[0031]
Comparative Example 4
In Comparative Example 3, an attempt was made to produce an extruded foam sheet by changing the blow ratio to 3.1 in order to obtain the sheet width. However, the resin cell formation ability was insufficient, and thus the blow ratio was lost. Only an unsatisfactory foam sheet having a thin foam ratio and a low closed cell ratio was obtained. Table 1 shows the foam molding conditions and various physical properties of the obtained foam sheet.
[0032]
In Table 1, evaluations of various physical properties and the like are as shown below.
Values of α and β: Dynamic viscoelastic device: Dynamic analyzer SR200 (Rheometrics Far East) is used, the temperature is kept constant at 250 ° C., and the angular frequency ω [rad / sec. ], And the storage elastic modulus G ′ [dyn / cm 2 ] Is obtained on a graph with log G ′ on the vertical axis and log ω on the horizontal axis. Next, the value of log G ′ at the time of log ω = −1 and log ω = 1 is read from the curve and approximated to a linear expression of log G ′ = α · log ω + β based on the values of the two points, and given by the approximate expression The slope between the two points was α, and the intercept of the approximate expression was β. In addition, a measurement sample resin plate having a thickness of about 2 mm is sandwiched between parallel plates having a diameter of 25 mm, and is left for about 10 minutes until reaching 250 ° C., and within a linear region (stress 2 × 10 10 by a stress control method). Four dyn / cm 2 ).
The value of tan (δ): The value of tan (δ) shown in FIG. 3 and FIG. 4 is obtained by using a dynamic analyzer SR200 type (Rheometrics Far East) and keeping the temperature constant at 250 ° C., and the angular frequency ω within the linear region. [Rad / sec. Tan (δ) = G ″ / G ′ was obtained in the same manner as the storage elastic modulus G ′ was determined. For reference, the value of G ′ is also shown in FIGS.
Average bubble diameter: X, Y, and Z were measured for 300 or more bubbles in the cross section in the sheet width direction and the extrusion direction.
X: Average bubble diameter in a direction perpendicular to the thickness direction of the sheet width direction cross section
Y: Average bubble diameter in a direction perpendicular to the thickness direction of the sheet extrusion direction cross section
Z: Average cell diameter in the thickness direction of the sheet cross section
Formability: Opening area 256cm by heating and softening the foam sheet 2 A container having a depth of 6 cm was molded by a plug assist molding method to obtain 10 molded products, which were evaluated according to the following criteria.
○: All molded products are good
Δ: Some of the surface layer of the molded product has cracks
×: Some molded product has holes
Surface condition: Evaluated by a method of visually observing the surface of the foam sheet.
Closed cell ratio: The closed cell ratio was calculated according to the following formula based on the air pycnometer method (ASTM D2856).
Fo (%) = [(Va−Vx) / Va] × 100
Fc (%) = 100−Fo − [(ρf / ρs) × 100]
Fo: Open cell ratio (%)
Fc: Closed cell ratio (%)
Va: Apparent volume of foam (cm Three )
Vx: actual volume of foam (cm Three )
ρf: Foam density (g / cm Three )
ρs: Polycarbonate resin density (g / cm Three )
[0033]
[Table 1]
Figure 0003669533
[0034]
【The invention's effect】
According to the present invention, the polycarbonate-based resin for foam having the specific storage elastic modulus, which is excellent in extrusion foamability. Press By foaming, a wide range of adjustments such as thickness, density, width, etc. can be selected according to the application, producing foams with a good surface condition and high closed cell ratio, especially foam sheets. Ruko You can. Further, according to the present invention, a recycled raw material resin can also be used. Further, the foam obtained by the present invention can be suitably used in various fields such as food fields such as container materials, construction / civil engineering fields such as interior materials and soundproof wall materials, automobile fields such as automobile ceiling materials and pillars.
[Brief description of the drawings]
FIG. 1 is a graph showing changes in storage elastic modulus G ′ with respect to changes in angular frequency ω in a linear region under a temperature condition of 250 ° C. approximated to a linear expression for various polycarbonate resins.
FIG. 2 is a drawing for comparing and explaining changes in the relationship between the angular frequency ω and the storage elastic modulus G ′ before and after foaming.
FIG. 3 is a graph showing the relationship between the angular frequency ω and the storage elastic modulus G ′ and tan (δ) in the linear region of the polycarbonate resin used in Example 1 under a temperature condition of 250 ° C.
FIG. 4 is a graph showing the relationship between the angular frequency ω and the storage elastic modulus G ′ and tan (δ) in the linear region of the polycarbonate resin used in Examples 2 and 3 under a temperature condition of 250 ° C.

Claims (3)

250℃の温度条件下で振動歪みを与える動的粘弾性測定において、角周波数ω=10−1〜10〔rad/sec.〕の範囲での貯蔵弾性率G′〔dyn/cm〕が下記近似式の関係を満足する発泡体用ポリカーボネート系樹脂を、押出機を用いて押出発泡することを特徴とするポリカーボネート系樹脂発泡体の製造方法。
Figure 0003669533
(但し、α及びβはlogω=−1、logω=1に対応するlogG′の2点間の傾き及び切片である)
In the dynamic viscoelasticity measurement that gives vibration strain under a temperature condition of 250 ° C., the angular frequency ω = 10 −1 to 10 1 [rad / sec. ] Polycarbonate-based resin foam characterized by extrusion-foaming a polycarbonate-based resin for foams having a storage elastic modulus G ′ [dyn / cm 2 ] in the range of Body manufacturing method.
Figure 0003669533
(Where α and β are the slope and intercept between two points of log G ′ corresponding to log ω = −1 and log ω = 1)
動的粘弾性測定において角周波数ω=10−1〜10〔rad/sec.〕の範囲でのtan(δ)の値が1〜70の範囲内である発泡体用ポリカーボネート系樹脂を用いて押出発泡することを特徴とする請求項1記載のポリカーボネート系樹脂発泡体の製造方法。 In the dynamic viscoelasticity measurement, the angular frequency ω = 10 -1 ~10 1 [rad / sec. 2. The method for producing a polycarbonate resin foam according to claim 1 , wherein extrusion foaming is performed using a polycarbonate resin for a foam having a value of tan (δ) in the range of 1 to 70. . ダイス先端からブロー比2.0〜3.0で発泡体用ポリカーボネート系樹脂を押出すことを特徴とする請求項1又は2記載のポリカーボネート系樹脂発泡体の製造方法。The method for producing a polycarbonate resin foam according to claim 1 or 2 , wherein the polycarbonate resin for foam is extruded from the tip of the die at a blow ratio of 2.0 to 3.0.
JP25785696A 1996-01-19 1996-09-06   Method for producing polycarbonate resin foam Expired - Fee Related JP3669533B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP25785696A JP3669533B2 (en) 1996-01-19 1996-09-06   Method for producing polycarbonate resin foam
US08/783,206 US5854294A (en) 1996-01-19 1997-01-14 Process for producing foamed body of polycarbonate resin and foamed body obtained thereby
DE69713634T DE69713634T2 (en) 1996-01-19 1997-01-16 A process for producing a foamed article made of polycarbonate resin and a foamed article produced by the process
EP97300257A EP0785057B1 (en) 1996-01-19 1997-01-16 Process for producing foamed body of polycarbonate resin and foamed body obtained thereby
CA002195363A CA2195363C (en) 1996-01-19 1997-01-17 Process for producing foamed body of polycarbonate resin and foamed body obtained thereby

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2584796 1996-01-19
JP9023596 1996-03-19
JP8-90235 1996-03-19
JP8-25847 1996-03-19
JP25785696A JP3669533B2 (en) 1996-01-19 1996-09-06   Method for producing polycarbonate resin foam

Publications (2)

Publication Number Publication Date
JPH09309949A JPH09309949A (en) 1997-12-02
JP3669533B2 true JP3669533B2 (en) 2005-07-06

Family

ID=27285175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25785696A Expired - Fee Related JP3669533B2 (en) 1996-01-19 1996-09-06   Method for producing polycarbonate resin foam

Country Status (1)

Country Link
JP (1) JP3669533B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9259874B2 (en) 2011-04-26 2016-02-16 Jsp Corporation Polycarbonate resin foamed blow-molded article and process for producing same

Also Published As

Publication number Publication date
JPH09309949A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
JP4213200B2 (en) Polylactic acid resin foamed particles for in-mold foam molding, production method thereof, and production method of polylactic acid resin foam molding
JP4084209B2 (en) Foam molded body and method for producing the same
JP4761916B2 (en) Polylactic acid resin foam molding
JP4276489B2 (en) Method for producing polypropylene resin expanded particles and polypropylene resin expanded particles
JP5182841B2 (en) Method for producing extruded polycarbonate resin foam
JP4238032B2 (en) Blends of ethylene polymers with improved modulus and melt strength and articles made from these blends
JP3619154B2 (en) Crystalline aromatic polyester resin pre-foamed particles, in-mold foam molded article and foam laminate using the same
JP3669533B2 (en)   Method for producing polycarbonate resin foam
JP3007943B2 (en) Extruded polycarbonate resin foam sheet
US5854294A (en) Process for producing foamed body of polycarbonate resin and foamed body obtained thereby
JP3791699B2 (en) Polycarbonate resin extruded foam laminated sheet
JP3692411B2 (en) Method for producing polycarbonate resin sheet foam
JP3861188B2 (en) Polycarbonate resin extruded foam
JP3907077B2 (en) Polycarbonate resin open cell plate extrusion foam
JP4299490B2 (en) Lightweight structural material with good decomposability, heat insulating material, and manufacturing method thereof
JP2926635B2 (en) Polycarbonate resin extruded foam sheet
JP3932071B2 (en) Polycarbonate resin plate foam
JP3631821B2 (en) Method for producing polycarbonate resin extruded foam sheet
JP3859334B2 (en) Method for producing polyethylene resin foam, polyethylene resin foam and molded product thereof
JP3631820B2 (en) Polycarbonate resin extruded foam and method for producing the same
JP3792806B2 (en) Method for producing extruded polycarbonate resin foam
JP4928920B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
US20030113527A1 (en) Extruded polyolefin foam in thicker grades and plank and process therefor
JP3587593B2 (en) Method for producing extruded polycarbonate resin foam
JP3058183U (en) Non-crosslinked polypropylene resin foam sheet for molding

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees