JP3669430B2 - Transparent and impact-resistant resin composition with excellent contamination resistance - Google Patents

Transparent and impact-resistant resin composition with excellent contamination resistance Download PDF

Info

Publication number
JP3669430B2
JP3669430B2 JP2001247332A JP2001247332A JP3669430B2 JP 3669430 B2 JP3669430 B2 JP 3669430B2 JP 2001247332 A JP2001247332 A JP 2001247332A JP 2001247332 A JP2001247332 A JP 2001247332A JP 3669430 B2 JP3669430 B2 JP 3669430B2
Authority
JP
Japan
Prior art keywords
rubber
weight
resin composition
resin
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001247332A
Other languages
Japanese (ja)
Other versions
JP2003055524A (en
Inventor
竜児 鴨下
和之 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Japan Corp
Original Assignee
PS Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Japan Corp filed Critical PS Japan Corp
Priority to JP2001247332A priority Critical patent/JP3669430B2/en
Publication of JP2003055524A publication Critical patent/JP2003055524A/en
Application granted granted Critical
Publication of JP3669430B2 publication Critical patent/JP3669430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、果汁、インキ等の色素を含む物質が付着したまま放置されても染着しない、いわゆる耐汚染性に優れた、透明で、耐衝撃性を有する成形製品を得ることができる樹脂組成物に関するものである。
【0002】
【従来の技術】
ポリスチレンはその優れた成形生産性や寸法安定性を生かして電器、機器の外郭、外装部品に好ましく使用されている。それら電器、機器の外郭、外装部品には、機能面あるいは意匠面から透明で内側、乃至向こう側が見える必要があるものがある。透明なポリスチレンとしてはスチレンホモポリマー、所謂、GPポリスチレンがあるが、これは耐衝撃性に乏しいため大型部品、薄肉部品では実用強度が不足するという欠点があった。
一方、電器、機器の外郭、外装部品に要求される性能のひとつに、果汁、インキ、等の色素を含む物質が付着、放置されても染着せず、付着物質を拭き取れば元通りの外観になること、所謂、耐汚染性がある。セットメーカーはその電器、機器の使用中に付着する可能性が高い物質を選んで汚染試験をおこない、著しい染着が認められるばあいには「付着したら放置せずにすぐ拭き取る」旨の注意表示をしていた。
【0003】
【発明が解決しようとする課題】
機能面あるいは意匠面から、透明で内側、乃至向こう側が見える必要のある電器、機器の外郭、外装部品は増加し続けており、生活風景の中に溢れるほどになっている。このような外郭、外装部品の材料として、ポリスチレンの優れた成形生産性や寸法安定性はそのままに、透明で、耐衝撃性を有し、耐汚染性に優れた樹脂組成物を開発し、実用化することが本発明の課題である。
【0004】
【課題を解決するための手段】
本発明者はこの課題達成のため鋭意検討した結果、芳香族ビニル単量体と共重合可能な単量体としてアルキル(メタ)アクリレート単量体を導入し、これらの単量体からなる共重合体を連続相としゴム状弾性体を分散相とするゴム変性スチレン系樹脂であって、分散相のゴム状弾性体の粒子径および含有量を最適化するとともに、このゴム変性スチレン系樹脂に特定量の高級脂肪酸を含有させることにより、耐汚染性に優れた、透明で、耐衝撃性を有する成形製品を得ることができる樹脂組成物となることを見出し、本発明に到達したのである。
【0005】
本発明は、ゴム状弾性体を分散粒子として含有するゴム変性スチレン系樹脂であって、(1)連続相が、構成単位(A)芳香族ビニル単量体20乃至70重量%、構成単位(B)アルキル(メタ)アクリレート単量体30乃至80重量%(ただし(A)+(B)=100重量%)の共重合体からなり、(2)分散相の平均粒子径が0.1乃至1.2μm、ゴム状弾性体の含有量が1乃至20重量%(但し、ゴム変性スチレン系樹脂=100重量%)であり、(3)さらに、該ゴム変性スチレン系樹脂100重量部あたり0.5乃至3.0重量部の高級脂肪酸を含有することを特徴とする耐汚染性に優れた透明・耐衝撃性樹脂組成物、である。
【0006】
以下、本発明の樹脂組成物を詳細に説明する。
先ず、ゴム変性スチレン系樹脂の連続相を形成する構成単位(A)芳香族ビニル単量体としては、スチレン、α−メチルスチレン、p−メチルスチレン、ジビニルベンゼン、クロルスチレン等が挙げられる。これら芳香族ビニル単量体は単独でも、又は二種以上を複合の形態で用いてもよい。好ましくは、スチレンである。芳香族ビニル単量体の量は20乃至70重量%、より好ましくは30乃至65重量%である。この量が20重量%未満では樹脂組成物の溶融粘度が高くなることから、成形生産性が低下して好ましくなく、一方、70重量%を超えると樹脂組成物の透明性と耐衝撃性が両立できなくなり好ましくない。
【0007】
連続相を形成するもう一つの構成単位(B)アルキル(メタ)アクリレート単量体としては、メチルアクリレート、エチルアクリレート、ブチルアクリレート、2−エチルヘキシルアクリレート等のアルキルアクリレート類と、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート等のアルキルメタクリレート類が挙げられる。これらアルキル(メタ)アクリレート単量体は単独でも、又は二種以上を複合の形態で用いてもよい。アルキル(メタ)アクリレート単量体の種類、複合の場合にはその組み合わせと量比を適宜選択することによって、透明度、伸度、剛性、軟化温度等を調整することができる。アルキル(メタ)アクリレート単量体の量は30乃至80重量%、より好ましくは35乃至70重量%である。この量が30重量%未満では樹脂組成物の透明性と耐衝撃性が両立できなくなり好ましくなく、一方、80重量%を越えると樹脂組成物の溶融粘度が高くなることから、成形生産性が低下して好ましくない。
【0008】
各構成単位、(A)芳香族ビニル単量体、(B)アルキル(メタ)アクリレート単量体の量は以下の方法で測定する。
樹脂組成物をメチルエチルケトンに溶解後、メタノールを加える。遠心分離機で20、000rpmで30分処理した後、沈澱物と上澄み液に分離する。上澄み液に多量のメタノールを加え、ゴム変性スチレン系樹脂の連続相を沈澱させる。この沈澱物を50℃、10mmHgの減圧下で乾燥する。このようにして得られたサンプルを用いて、日本分光(株)製、FT−NMR、JNM−G400を用いて、以下に記す測定条件で 1Hを測定する。
【0009】
1Hの測定条件)
パルス幅=8.4μs
データーポイント=16384
繰り返し時間=7.559sec
ADコンバーター=16bit
積算回数=1000
サンプル濃度=10wt%
溶媒=1,1,2,2−テトラクロロエタン−(d2)
サンプル管=5mm
測定温度=120℃
【0010】
構成単位(A)芳香族ビニル単量体のフェニル基の水素に由来するピークが6.2〜7.4ppmに現れる。構成単位(B)アルキル(メタ)アクリレート単量体のメチル基の水素に由来するピークが0.2〜1.1ppmに現れる。ピーク分離操作を行ってピーク面積比より各構成単位、芳香族ビニル単量体、アルキル(メタ)アクリレート単量体の重量%を求める。
連続相の重合度は特に限定されるものではないが、樹脂組成物の成形生産性を考慮して、25℃における10重量%トルエン溶液の粘度で15乃至80cpの領域で、より好ましくは20乃至70cpの領域で設定することが出来る。なお、上記の重合度の尺度である10重量%トルエン溶液の粘度は、オストワルドキャノンフェンスケ粘度管#350を用いて25℃の恒温槽で測定する。
【0011】
一方、ゴム変性スチレン系樹脂の分散相たるゴム状弾性体としては、常温でゴム的性質を示すものであればよく、かかるゴム状弾性体としては、具体的にはポリブタジエン、スチレン−ブタジエン共重合ゴム、ポリイソプレン、スチレン−ブタジエンブロック共重合ゴム等が挙げられる。これらのゴム状弾性体の中で、好ましくはスチレンーブタジエン共重合ゴム、特に好ましくはスチレン含有量が10乃至50重量%であるスチレン−ブタジエン共重合ゴムが用いられる。スチレン−ブタジエン共重合ゴムを用いることによって先に説明した連続相と分散相のゴム状弾性体との屈折率の差が小さくなり、透明性が向上する。ここでゴム状弾性体の分子量や分岐度等は何ら限定されるものではない。
【0012】
ゴム変性スチレン系樹脂の分散相の平均粒子径は0.1乃至1.2μmである。より好ましい平均粒子径は0.3乃至0.9μmである。平均粒子径が0.1μm未満の場合は樹脂組成物の透明性は良いが耐衝撃性が不足となる。一方、平均粒子径が1.2μmを越える場合は樹脂組成物の耐衝撃性は十分だが透明性が悪くなる。本発明で言う平均粒子径は特に断らない限り数平均粒子径を意味する。分散粒子の平均粒子径は樹脂の超薄切片法による透過型電子顕微鏡拡大写真10、000倍を撮影し、写真中の分散粒子約1000乃至2000個の粒子径を測定し、次式により求めたものである。
分散粒子の平均粒子径=ΣDi/n
Di=i番目の粒子径
n=測定した粒子の数
なお、電子顕微鏡写真に映った分散粒子は完全な円形ではないので、粒子径の測定は粒子の長軸(a)と短軸(b)の長さの測定値を用いて次式により算出する。
粒子径={(a)+(b)}/2
【0013】
ゴム変性スチレン系樹脂に含有されるゴム状弾性体の量は1乃至20重量%である。より好ましくは5乃至18重量%である。ゴム状弾性体の量が1重量%未満の時は樹脂組成物の耐衝撃性が低く好ましくない。又、20重量%を越える場合は樹脂組成物の剛性が低下し、薄肉成形製品の変形が大きくなって好ましくない。ゴム状弾性体の量は、重合時に目標とする量になるように原材料、重合率を調整することにより達成できるが、別々に重合した高濃度のゴム状弾性体を含むグラフト重合体とゴム状弾性体を含まない共重合体と混合することによっても達成できる。但し、本発明の構成要件を全て満たすことは当然のことである。
【0014】
上記したゴム変性スチレン系樹脂は、ゴム状弾性体の存在下に、芳香族ビニル単量体、アルキル(メタ)アクリレート単量体をグラフト重合させて得ることができる。芳香族ビニル単量体、アルキル(メタ)アクリレート単量体に加えて、必要に応じてこれらと共重合可能な他の単量体を併せて使用することもできる。ゴム変性スチレン系樹脂は、ゴム状弾性体に芳香族ビニル単量体、アルキル(メタ)アクリレート単量体をグラフト重合させて得られるグラフト重合体のみからなる場合と該グラフト重合体と芳香族ビニル単量体、アルキル(メタ)アクリレート単量体を共重合させて得られる共重合体との混合物からなる場合とがある。芳香族ビニル単量体、アルキル(メタ)アクリレート単量体を共重合させて得られる共重合体は、グラフト重合体を製造する過程で生成したものであっても、あるいはグラフト重合体の製造とは別の過程で製造したものであってもよい。ゴム状弾性体の含有割合の高いグラフト重合体をまず製造し、その後、芳香族ビニル単量体、アルキル(メタ)アクリレート単量体からなる共重合体を混合してゴム変性スチレン系樹脂としてもよい。グラフト重合体及び共重合体の製造方法としては、特に限定はされず、乳化重合、懸濁重合、塊状重合、溶液重合、およびこれら重合法の組み合わせ等の方法がある。
【0015】
ゴム変性スチレン系樹脂に含有される芳香族ビニル単量体、アルキル(メタ)アクリレート単量体、重合溶媒の総量は0.15重量%以下、好ましくは0.1重量%以下である。0.15重量%を越える場合は環境衛生上好ましくない。又、これらの単量体から作られる二量体、三量体の総量は0.8重量%以下、好ましくは0.7重量%以下、より好ましくは0.6重量%以下である。これら低分子量化合物の総量が0.8重量%を越える場合は製品成形時に金型付着物の発生の原因となり好ましくない。
【0016】
本発明の樹脂組成物は、ゴム変性スチレン系樹脂100重量部あたり0.5乃至3.0重量部の高級脂肪酸を含有している。高級脂肪酸としては、脂肪酸炭素数8乃至22の飽和脂肪酸、具体的には、ラウリン酸、パルミチン酸、ステアリン酸等が挙げられる。これら高級脂肪酸はそもそも市販の状態では混合物である。例えば、ステアリン酸は脂肪酸炭素数18を主成分とするが、脂肪酸炭素数14、16、20も数乃至数十重量%含まれている。さらに、複数の高級脂肪酸を意図的に混合して使用することもできる。高級脂肪酸の量はゴム変性スチレン系樹脂100重量部あたり0.5乃至3.0重量部の範囲である。より好ましくは0.8乃至2.0重量部の範囲である。0.5重量部未満の場合は樹脂組成物の耐汚染性が劣り好ましくない。一方、3.0重量部を越える場合には樹脂組成物の熱安定性が低下することから、成形製品が着色して好ましくない。また、樹脂組成物の軟化温度が下がることから、成形生産性が低下して好ましくない。
【0017】
本発明の樹脂組成物は、ゴム変性スチレン系樹脂に高級脂肪酸を添加することによって得られる。ゴム変性スチレン系樹脂の製造における、未反応単量体及び重合溶媒を回収する前又は後の任意の段階で、高級脂肪酸を添加することができる。また、ゴム変性スチレン系樹脂と高級脂肪酸をバンバリーミキサー、二軸押出機、ニーダールーダー等を用いて、溶融、混練、造粒することもできる。さらには、製品成形を行う射出成形機、シート成形機、押出ブロー成形機等にゴム変性スチレン系樹脂と高級脂肪酸の混合物を供給することもできる。
本発明の樹脂組成物には、酸化防止剤、着色剤、紫外線吸収剤、光安定剤、帯電防止剤といったポリスチレン樹脂に慣用されている添加剤を添加することができる。
【0018】
本発明の樹脂組成物を得るには、ゴム強化ポリスチレン(以下「HIポリスチレン」と称す)の製造で多用されている方法を用いることが出来る。例えば、ゴム状弾性体をスチレン単量体、アルキル(メタ)アクリレート単量体、重合溶媒及び重合開始剤からなる原料溶液に溶解し、このゴム状弾性体が溶解した原料溶液を攪拌機付反応機に供給し重合を行う。この時、重合溶媒としてエチルベンゼン、トルエン、キシレン等を用いることが可能である。又、重合開始剤として有機過酸化物を用いることが可能である。
【0019】
重合方法は、HIポリスチレンの製法で常用されている塊状重合法、溶液重合法が用いられる。又、回分式重合法、連続式重合法いずれの方法も用いることができる。分散粒子の粒子径の制御は一般的に行われている方法、攪拌羽根の回転数を変化させることにより制御する。又、必要に応じて重合途中に単量体を添加するか、あるいは連続的に追添加する。重合開始剤を途中添加してもよい。反応機を出た重合溶液は回収装置に導かれる。回収装置はHIポリスチレンの製造で常用されている装置、例えばフラッシュタンクシステム、多段ベント付き押出機等を用いることができる。操作条件もHIポリスチレンの製造と同等の条件を用いることが出来る。未反応単量体及び重合溶媒を回収する前又は後の任意の段階で、前記したHIポリスチレンに慣用の種々の添加剤を添加できる。
【0020】
本発明の樹脂組成物は、射出成形、押出成形、ブロー成形といったポリスチレンで一般的におこなわれている成形方法によって成形製品となる。
本発明の樹脂組成物からなる成形製品は、透明で、耐衝撃性を有し、耐汚染性に優れるため、電器、機器の外郭、外装部品に好ましく用いられる。
【0021】
【発明の実施の形態】
以下、実施例を挙げて本発明をさらに説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。なお、実施例における物性の測定、判定の方法は以下のとおりである。
〔透明性〕
試験片として、厚さ2.5mmの平板を射出成形した。生計した平板の曇度の測定を、JIS−K−7105に準拠して行い、以下の基準で評価した。

Figure 0003669430
【0022】
〔耐衝撃性〕
ノッチ付試験片を、射出成形、切削加工により作成した。得られた試験片のシャルピー衝撃値の測定を、ISO−179に準拠して行い、以下の基準で評価した。
Figure 0003669430
【0023】
〔耐汚染性−1〕
試験片として、厚さ2.5mmの平板を射出成形した。汚染物質として白色ワセリンと顔料用カーボンブラックを、重量比で10:1に混合したものを用意した。布に1gの汚染物質を取り、試験片の表面に縦横それぞれ5往復、計10回均等に力を入れて擦り込んだ。時計皿で汚染部分を覆い、室温で60分間放置した後、汚染物質を拭き取った。透過色差計でY刺激値を測定し、次式によって汚染回復率を求め、以下の基準で評価した。
汚染回復率(%)=(汚染拭取後のY刺激値/汚染前のY刺激値)×100
Figure 0003669430
【0024】
〔耐汚染性−2〕
試験片として、厚さ0.4mmのシートを押出成形した。汚染物質としてサンビー(株)製;顔料系赤インクを用意した。試験片の表面に滴下した汚染物質を、直径2cm程度に塗り広げた。時計皿で汚染部分を覆い、室温で24時間放置した後、汚染物質を拭き取った。透過色差計でハンター座標のa値を測定し、次式によって汚染度を求め、以下の基準で評価した。
残留汚染度(%)=(汚染拭取後のa値−汚染前のa値)×100
Figure 0003669430
【0025】
〔熱安定性〕
試験片として、厚さ2.5mmの平板を射出成形した。得られた平板を透過色差計でYI値を測定し、以下の基準で評価した。
Figure 0003669430
〔軟化温度〕
試験片を、射出成形により作製した。得られた試験片のビカット軟化温度の測定を、ISO−306に準拠して行い、以下の基準で評価した。
Figure 0003669430
【0026】
<ゴム変性スチレン系樹脂の製造>(ゴム変性スチレン系樹脂−1)
攪拌機を備えた反応機2基を直列連結し、その後に二段ベント付き二軸押出機を配置した重合装置を用いてゴム変性スチレン系樹脂を製造した。
スチレン46重量部、メチルメタクリレート38.5重量部、ブチルアクリレート6重量部、ゴム状弾性体としてスチレン含有量が35重量%であるスチレン−ブタジエンブロック共重合ゴム12重量部、エチルベンゼン2.8重量部、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.01重量部からなる原料溶液を反応機に供給し、130℃、150℃の重合温度で反応液の固形分が80重量%になるまで重合した。得られたゴム変性スチレン系樹脂の連続相の構成単位、芳香族ビニル単量体、アルキル(メタ)アクリレート単量体はそれぞれ、54重量%、46重量%であった。一方、ゴム変性スチレン系樹脂中の分散相の平均粒子径は0.8μmであった。又、ゴム状弾性体の量は計算上15重量%である。
【0027】
<ゴム変性スチレン系樹脂の製造>(ゴム変性スチレン系樹脂−2)
攪拌機を備えた反応機2基を直列連結し、その後に二段ベント付き二軸押出機を配置した重合装置を用いてゴム変性スチレン系樹脂を製造した。スチレン43重量部、メチルメタクリレート46重量部、ゴム状弾性体としてスチレン含有量が30重量%であるスチレン−ブタジエンブロック共重合ゴム9.6重量部、エチルベンゼン2.8重量部、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.01重量部からなる原料溶液を反応機に供給し、130℃、150℃の重合温度で反応液の固形分が80重量%になるまで重合した。得られたゴム変性スチレン系樹脂の連続相の構成単位、芳香族ビニル単量体、メチルメタクリレート、アルキル(メタ)アクリレート単量体(メチルメタクリレートは除く)はそれぞれ、49重量%、51重量%であった。一方、ゴム変性スチレン系樹脂中の分散相の平均粒子径は0.6μmであった。又、ゴム状弾性体の量は計算上12重量%である。
【0028】
【実施例1〜6、比較例1〜2】
(表1)に示す割合で、ゴム変性スチレン系樹脂と高級脂肪酸を計量、混合し、30mm二軸押出機で溶融、混練、造粒して、実施例および比較例の樹脂組成物を得た。ここで用いた高級脂肪酸は、日本油脂(株)製;NAA−171(パルミチン酸)、NAA−175(ステアリン酸)、NAA−222(べへニン酸)である。
【比較例3】
ゴム変性スチレン系樹脂−1と大日化学(株)製;ダイワックスZP(ステアリン酸亜鉛)を計量、混合し、30mm二軸押出機で溶融、混練、造粒して、比較例の樹脂組成物を得た。
【0029】
【比較例4】
ゴム変性スチレン系樹脂−1と花王(株)製;花王ワックスEB−FF(エチレン・ビス・ステアリルアマイド)を計量、混合し、30mm二軸押出機で溶融、混練、造粒して、比較例の樹脂組成物を得た。
【比較例5】
エー・アンド・エムスチレン(株)製;HH203(GPポリスチレン)とNAA−175を計量、混合し、30mm二軸押出機で溶融、混練、造粒して、比較例の樹脂組成物を得た。
【比較例6】
エー・アンド・エムスチレン(株)製;403R(HIポリスチレン)とNAA−175を計量、混合し、30mm二軸押出機で溶融、混練、造粒して、比較例の樹脂組成物を得た。
【0030】
各実施例、比較例で得られた樹脂組成物の物性の判定を(表1)に示す。
【表1】
Figure 0003669430
【0031】
表1に示す実施例1乃至6は、本発明の範囲に合致した、ゴム変性スチレン系樹脂と高級脂肪酸からなる樹脂組成物であり、良好な透明性、高い耐衝撃性、優れた耐汚染性を併せもっている。成形生産性に関わる熱安定性と軟化温度にも問題がない。
一方、比較例1は本発明の範囲から外れて高級脂肪酸の含有量が少ない樹脂組成物であり、耐汚染性が不十分である。比較例2は本発明の範囲から外れて高級脂肪酸の含有量が多い樹脂組成物であり、熱安定性と軟化温度に難がある。
【0032】
次に、比較例3、比較例4はそれぞれ、本発明の樹脂組成物の高級脂肪酸に代えて、ステアリン酸亜鉛、エチレン・ビス・ステアリルアマイドを含有するゴム変性スチレン系樹脂であり、前者は透明性が、後者は耐汚染性が悪い。
さらに、比較例5、比較例6はそれぞれ、本発明の樹脂組成物のゴム変性スチレン系樹脂に代えて、GPポリスチレン、HIポリスチレンを用いており、前者は耐衝撃性に、後者は透明性に欠ける。
【0033】
【発明の効果】
本発明の範囲の樹脂組成物は、良好な透明性、高い耐衝撃性、優れた耐汚染性を兼ね備えている。成形生産性も良い。したがって、本発明の範囲の樹脂組成物は電器、機器の外郭、外装部品の材料として好適に用いられる。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a resin composition that can obtain a molded product having excellent impact resistance and transparency, which is excellent in so-called stain resistance, and does not dye even if it is left to stand with substances containing pigments such as fruit juice and ink. It is about things.
[0002]
[Prior art]
Polystyrene is preferably used for electrical appliances, outer shells of equipment, and exterior parts by taking advantage of its excellent molding productivity and dimensional stability. Some of the outer casings and exterior parts of these electric appliances, devices, and the like must be transparent from the functional surface or design surface, and the inner side or the other side must be visible. As transparent polystyrene, there is a styrene homopolymer, so-called GP polystyrene. However, since this has poor impact resistance, there has been a drawback that practical strength is insufficient for large parts and thin parts.
On the other hand, one of the performances required for electrical appliances, equipment shells, and exterior parts is that substances containing pigments such as fruit juice, ink, etc. are attached and will not stain even if left unattended. That is, it has so-called contamination resistance. The set maker selects a substance that has a high possibility of adhering during the use of the electric appliance and equipment, conducts a contamination test, and if noticeable dyeing is observed, indicate that it should be wiped off immediately after adhering. I was doing.
[0003]
[Problems to be solved by the invention]
From the functional or design aspects, the electrical appliances, equipment exteriors, and exterior parts that need to be transparent and visible from the inside or the other side continue to increase, and are overflowing in the living landscape. As a material for such shells and exterior parts, we developed a resin composition that is transparent, impact resistant, and excellent in stain resistance, while maintaining the excellent molding productivity and dimensional stability of polystyrene. It is an object of the present invention to make it.
[0004]
[Means for Solving the Problems]
As a result of diligent study to achieve this problem, the present inventor introduced an alkyl (meth) acrylate monomer as a monomer copolymerizable with an aromatic vinyl monomer, and a copolymer consisting of these monomers. A rubber-modified styrenic resin in which the coalescence is a continuous phase and a rubber-like elastic body is the dispersed phase, and the particle size and content of the rubber-like elastic body in the dispersed phase are optimized and specified as this rubber-modified styrene resin It has been found that by containing an amount of higher fatty acid, a resin composition can be obtained which is excellent in stain resistance and can provide a transparent molded product having impact resistance.
[0005]
The present invention is a rubber-modified styrenic resin containing a rubber-like elastic body as dispersed particles, wherein (1) the continuous phase is a structural unit (A) 20 to 70% by weight of an aromatic vinyl monomer, a structural unit ( B) It is composed of a copolymer of 30 to 80% by weight (provided that (A) + (B) = 100% by weight) of an alkyl (meth) acrylate monomer, and (2) the average particle size of the dispersed phase is from 0.1 to The content of the rubber-like elastic body is 1 to 20% by weight (provided that the rubber-modified styrenic resin = 100% by weight). A transparent and impact resistant resin composition excellent in stain resistance, characterized by containing 5 to 3.0 parts by weight of a higher fatty acid.
[0006]
Hereinafter, the resin composition of the present invention will be described in detail.
First, examples of the structural unit (A) aromatic vinyl monomer forming the continuous phase of the rubber-modified styrene resin include styrene, α-methylstyrene, p-methylstyrene, divinylbenzene, chlorostyrene and the like. These aromatic vinyl monomers may be used alone or in combination of two or more. Styrene is preferable. The amount of the aromatic vinyl monomer is 20 to 70% by weight, more preferably 30 to 65% by weight. If this amount is less than 20% by weight, the melt viscosity of the resin composition becomes high, which is not preferable because the molding productivity is lowered. On the other hand, if it exceeds 70% by weight, the transparency and impact resistance of the resin composition are compatible. It is not possible to do this.
[0007]
As another structural unit (B) alkyl (meth) acrylate monomer forming a continuous phase, alkyl acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, Examples thereof include alkyl methacrylates such as butyl methacrylate. These alkyl (meth) acrylate monomers may be used alone or in combination of two or more. Transparency, elongation, rigidity, softening temperature, and the like can be adjusted by appropriately selecting the combination and amount ratio of the alkyl (meth) acrylate monomer in the case of a composite. The amount of the alkyl (meth) acrylate monomer is 30 to 80% by weight, more preferably 35 to 70% by weight. If this amount is less than 30% by weight, the transparency and impact resistance of the resin composition cannot be achieved at the same time. On the other hand, if it exceeds 80% by weight, the melt viscosity of the resin composition becomes high, resulting in a decrease in molding productivity. It is not preferable.
[0008]
The amount of each structural unit, (A) aromatic vinyl monomer, and (B) alkyl (meth) acrylate monomer is measured by the following method.
After the resin composition is dissolved in methyl ethyl ketone, methanol is added. After processing for 30 minutes at 20,000 rpm in a centrifuge, the precipitate is separated into a supernatant. A large amount of methanol is added to the supernatant to precipitate a continuous phase of the rubber-modified styrenic resin. The precipitate is dried at 50 ° C. under a reduced pressure of 10 mmHg. Using the sample thus obtained, 1 H is measured under the measurement conditions described below using FT-NMR and JNM-G400 manufactured by JASCO Corporation.
[0009]
(Measurement conditions for 1 H)
Pulse width = 8.4 μs
Data point = 16384
Repeat time = 7.559 sec
AD converter = 16 bits
Integration count = 1000
Sample concentration = 10 wt%
Solvent = 1,1,2,2-tetrachloroethane- (d2)
Sample tube = 5mm
Measurement temperature = 120 ° C
[0010]
A peak derived from hydrogen of the phenyl group of the structural unit (A) aromatic vinyl monomer appears at 6.2 to 7.4 ppm. The peak derived from the hydrogen of the methyl group of a structural unit (B) alkyl (meth) acrylate monomer appears in 0.2-1.1 ppm. A peak separation operation is performed, and the weight percent of each constituent unit, aromatic vinyl monomer, and alkyl (meth) acrylate monomer is determined from the peak area ratio.
The degree of polymerization of the continuous phase is not particularly limited, but considering the molding productivity of the resin composition, the viscosity of a 10 wt% toluene solution at 25 ° C. is in the region of 15 to 80 cp, more preferably 20 to It can be set in the area of 70 cp. The viscosity of the 10 wt% toluene solution, which is a measure of the degree of polymerization, is measured in a thermostatic bath at 25 ° C. using an Ostwald Cannon Fenceke viscosity tube # 350.
[0011]
On the other hand, the rubber-like elastic body that is a dispersed phase of the rubber-modified styrene resin may be any rubber-like elastic body that exhibits rubber properties at room temperature. Specifically, such a rubber-like elastic body may be polybutadiene or styrene-butadiene copolymer. Examples thereof include rubber, polyisoprene, and styrene-butadiene block copolymer rubber. Among these rubber-like elastic bodies, styrene-butadiene copolymer rubber, preferably styrene-butadiene copolymer rubber having a styrene content of 10 to 50% by weight is used. By using a styrene-butadiene copolymer rubber, the difference in refractive index between the rubber-like elastic body of the continuous phase and the dispersed phase described above is reduced, and transparency is improved. Here, the molecular weight, the degree of branching, and the like of the rubber-like elastic body are not limited at all.
[0012]
The average particle size of the dispersed phase of the rubber-modified styrenic resin is 0.1 to 1.2 μm. A more preferable average particle diameter is 0.3 to 0.9 μm. When the average particle size is less than 0.1 μm, the resin composition has good transparency, but the impact resistance is insufficient. On the other hand, when the average particle diameter exceeds 1.2 μm, the impact resistance of the resin composition is sufficient, but the transparency is deteriorated. The average particle diameter in the present invention means the number average particle diameter unless otherwise specified. The average particle diameter of the dispersed particles was obtained by taking a transmission electron microscope magnified photograph 10,000 times by an ultrathin section method of the resin, measuring the particle diameter of about 1000 to 2000 dispersed particles in the photograph, and obtaining by the following formula: Is.
Average particle diameter of dispersed particles = ΣDi / n
Di = i-th particle diameter n = number of measured particles Since the dispersed particles shown in the electron micrograph are not completely circular, the particle diameter is measured using the major axis (a) and minor axis (b) of the particles. Using the measured value of the length of
Particle size = {(a) + (b)} / 2
[0013]
The amount of the rubber-like elastic material contained in the rubber-modified styrene resin is 1 to 20% by weight. More preferably, it is 5 to 18% by weight. When the amount of the rubber-like elastic body is less than 1% by weight, the impact resistance of the resin composition is low, which is not preferable. On the other hand, when it exceeds 20% by weight, the rigidity of the resin composition is lowered, and deformation of the thin molded product is increased, which is not preferable. The amount of rubber-like elastic body can be achieved by adjusting the raw materials and the polymerization rate so that it becomes the target amount at the time of polymerization, but the graft polymer and rubber-like material containing high-concentration rubber-like elastic bodies polymerized separately It can also be achieved by mixing with a copolymer containing no elastic body. However, it is a matter of course that all the constituent requirements of the present invention are satisfied.
[0014]
The rubber-modified styrenic resin described above can be obtained by graft polymerization of an aromatic vinyl monomer and an alkyl (meth) acrylate monomer in the presence of a rubber-like elastic body. In addition to the aromatic vinyl monomer and the alkyl (meth) acrylate monomer, other monomers copolymerizable therewith can be used as necessary. The rubber-modified styrenic resin is composed of a graft polymer obtained by graft-polymerizing an aromatic vinyl monomer and an alkyl (meth) acrylate monomer to a rubber-like elastic body, and the graft polymer and aromatic vinyl. In some cases, it is a mixture of a monomer and a copolymer obtained by copolymerizing an alkyl (meth) acrylate monomer. The copolymer obtained by copolymerizing the aromatic vinyl monomer and the alkyl (meth) acrylate monomer may be one produced in the process of producing the graft polymer, or the production of the graft polymer. May be manufactured in a different process. First, a graft polymer having a high rubber-like elastic content is manufactured, and then a copolymer made of an aromatic vinyl monomer and an alkyl (meth) acrylate monomer is mixed to form a rubber-modified styrene resin. Good. The method for producing the graft polymer and the copolymer is not particularly limited, and examples thereof include emulsion polymerization, suspension polymerization, bulk polymerization, solution polymerization, and combinations of these polymerization methods.
[0015]
The total amount of aromatic vinyl monomer, alkyl (meth) acrylate monomer and polymerization solvent contained in the rubber-modified styrene resin is 0.15% by weight or less, preferably 0.1% by weight or less. When it exceeds 0.15% by weight, it is not preferable for environmental hygiene. Further, the total amount of dimers and trimers produced from these monomers is 0.8% by weight or less, preferably 0.7% by weight or less, more preferably 0.6% by weight or less. When the total amount of these low molecular weight compounds exceeds 0.8% by weight, it is not preferable because it causes generation of mold deposits during product molding.
[0016]
The resin composition of the present invention contains 0.5 to 3.0 parts by weight of higher fatty acid per 100 parts by weight of the rubber-modified styrenic resin. Examples of higher fatty acids include saturated fatty acids having 8 to 22 fatty acids, such as lauric acid, palmitic acid, and stearic acid. These higher fatty acids are originally a mixture in the commercially available state. For example, stearic acid contains fatty acid carbon number 18 as a main component, but fatty acid carbon numbers 14, 16, and 20 are also contained in several to several tens of weight%. Furthermore, a plurality of higher fatty acids can be intentionally mixed and used. The amount of higher fatty acid is in the range of 0.5 to 3.0 parts by weight per 100 parts by weight of the rubber-modified styrenic resin. More preferably, it is in the range of 0.8 to 2.0 parts by weight. When the amount is less than 0.5 parts by weight, the stain resistance of the resin composition is inferior. On the other hand, when the amount exceeds 3.0 parts by weight, the thermal stability of the resin composition is lowered, and thus the molded product is unfavorably colored. Moreover, since the softening temperature of a resin composition falls, shaping | molding productivity falls and it is unpreferable.
[0017]
The resin composition of the present invention can be obtained by adding a higher fatty acid to a rubber-modified styrene resin. In the production of the rubber-modified styrenic resin, higher fatty acid can be added at any stage before or after recovering the unreacted monomer and polymerization solvent. Further, the rubber-modified styrenic resin and the higher fatty acid can be melted, kneaded and granulated using a Banbury mixer, a twin screw extruder, a kneader ruder or the like. Furthermore, a mixture of a rubber-modified styrenic resin and a higher fatty acid can be supplied to an injection molding machine, a sheet molding machine, an extrusion blow molding machine or the like that performs product molding.
Additives commonly used in polystyrene resins such as antioxidants, colorants, ultraviolet absorbers, light stabilizers, and antistatic agents can be added to the resin composition of the present invention.
[0018]
In order to obtain the resin composition of the present invention, a method frequently used in the production of rubber-reinforced polystyrene (hereinafter referred to as “HI polystyrene”) can be used. For example, a rubber-like elastic body is dissolved in a raw material solution comprising a styrene monomer, an alkyl (meth) acrylate monomer, a polymerization solvent and a polymerization initiator, and the raw material solution in which the rubber-like elastic body is dissolved is reacted with a stirrer. To be polymerized. At this time, ethylbenzene, toluene, xylene or the like can be used as a polymerization solvent. Moreover, it is possible to use an organic peroxide as a polymerization initiator.
[0019]
As the polymerization method, a bulk polymerization method or a solution polymerization method commonly used in the production method of HI polystyrene is used. In addition, either a batch polymerization method or a continuous polymerization method can be used. The particle diameter of the dispersed particles is controlled by changing the rotation speed of a generally used method and stirring blade. If necessary, a monomer is added during the polymerization, or continuously added. A polymerization initiator may be added during the process. The polymerization solution exiting the reactor is guided to a recovery device. As the recovery device, a device commonly used in the production of HI polystyrene, for example, a flash tank system, a multistage vented extruder, or the like can be used. The operating conditions can be the same as those for the production of HI polystyrene. Various conventional additives can be added to the above-mentioned HI polystyrene at any stage before or after recovering the unreacted monomer and the polymerization solvent.
[0020]
The resin composition of the present invention becomes a molded product by a molding method generally performed with polystyrene such as injection molding, extrusion molding, or blow molding.
Since the molded product made of the resin composition of the present invention is transparent, has impact resistance, and is excellent in stain resistance, it is preferably used for electrical appliances, equipment shells, and exterior parts.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further, this invention is not limited to a following example, unless the summary is exceeded. In addition, the method of the measurement of the physical property in an Example and the determination are as follows.
〔transparency〕
A flat plate having a thickness of 2.5 mm was injection molded as a test piece. The measurement of the haze of the flat plate measured was performed according to JIS-K-7105 and evaluated according to the following criteria.
Figure 0003669430
[0022]
(Impact resistance)
A notched specimen was prepared by injection molding and cutting. The Charpy impact value of the obtained test piece was measured according to ISO-179 and evaluated according to the following criteria.
Figure 0003669430
[0023]
[Contamination resistance-1]
A flat plate having a thickness of 2.5 mm was injection molded as a test piece. As a contaminant, white petrolatum and carbon black for pigment were mixed at a weight ratio of 10: 1. 1 g of contaminants was taken on the cloth, and rubbed into the surface of the test piece evenly in a total of 10 times, 5 times in each direction. The contaminated part was covered with a watch glass and allowed to stand at room temperature for 60 minutes, and then the contaminant was wiped off. The Y stimulus value was measured with a transmission color difference meter, the contamination recovery rate was determined by the following formula, and evaluated according to the following criteria.
Contamination recovery rate (%) = (Y stimulation value after wiping contamination / Y stimulation value before contamination) × 100
Figure 0003669430
[0024]
[Contamination resistance-2]
A sheet having a thickness of 0.4 mm was extruded as a test piece. A pigment red ink manufactured by Sunbee Co., Ltd. was prepared as a contaminant. The contaminant dropped onto the surface of the test piece was spread to a diameter of about 2 cm. The contaminated part was covered with a watch glass and allowed to stand at room temperature for 24 hours, and then the contaminant was wiped off. The a value of Hunter coordinates was measured with a transmission color difference meter, the degree of contamination was determined by the following equation, and evaluated according to the following criteria.
Residual degree of contamination (%) = (a value after wiping contamination−a value before contamination) × 100
Figure 0003669430
[0025]
[Thermal stability]
A flat plate having a thickness of 2.5 mm was injection molded as a test piece. The obtained flat plate was measured for YI value with a transmission color difference meter and evaluated according to the following criteria.
Figure 0003669430
[Softening temperature]
A test piece was produced by injection molding. The Vicat softening temperature of the obtained test piece was measured according to ISO-306 and evaluated according to the following criteria.
Figure 0003669430
[0026]
<Manufacture of rubber-modified styrene resin> (Rubber-modified styrene resin-1)
A rubber-modified styrenic resin was produced using a polymerization apparatus in which two reactors equipped with a stirrer were connected in series, and then a twin-screw extruder with a two-stage vent was arranged.
46 parts by weight of styrene, 38.5 parts by weight of methyl methacrylate, 6 parts by weight of butyl acrylate, 12 parts by weight of a styrene-butadiene block copolymer rubber having a styrene content of 35% by weight as a rubbery elastic body, and 2.8 parts by weight of ethylbenzene A raw material solution consisting of 0.01 parts by weight of 1,1-bis (t-butylperoxy) cyclohexane is fed to the reactor, and the solid content of the reaction solution becomes 80% by weight at polymerization temperatures of 130 ° C. and 150 ° C. Until polymerization. The constituent unit of the continuous phase, the aromatic vinyl monomer, and the alkyl (meth) acrylate monomer of the obtained rubber-modified styrene resin were 54% by weight and 46% by weight, respectively. On the other hand, the average particle size of the dispersed phase in the rubber-modified styrene resin was 0.8 μm. The amount of rubber-like elastic body is 15% by weight in calculation.
[0027]
<Production of rubber-modified styrene resin> (Rubber-modified styrene resin-2)
A rubber-modified styrenic resin was produced using a polymerization apparatus in which two reactors equipped with a stirrer were connected in series, and then a twin-screw extruder with a two-stage vent was arranged. 43 parts by weight of styrene, 46 parts by weight of methyl methacrylate, 9.6 parts by weight of styrene-butadiene block copolymer rubber having a styrene content of 30% by weight as a rubber-like elastic body, 2.8 parts by weight of ethylbenzene, 1,1-bis A raw material solution consisting of 0.01 parts by weight of (t-butylperoxy) cyclohexane was supplied to the reactor, and polymerization was performed at a polymerization temperature of 130 ° C. and 150 ° C. until the solid content of the reaction solution reached 80% by weight. The structural unit of the obtained rubber-modified styrene-based resin, aromatic vinyl monomer, methyl methacrylate, and alkyl (meth) acrylate monomer (excluding methyl methacrylate) were 49% by weight and 51% by weight, respectively. there were. On the other hand, the average particle size of the dispersed phase in the rubber-modified styrene resin was 0.6 μm. The amount of the rubber-like elastic body is 12% by weight in calculation.
[0028]
Examples 1-6, Comparative Examples 1-2
The rubber-modified styrenic resin and the higher fatty acid were weighed and mixed in the ratio shown in (Table 1), and melted, kneaded and granulated with a 30 mm twin screw extruder to obtain resin compositions of Examples and Comparative Examples. . The higher fatty acids used here are those manufactured by NOF Corporation; NAA-171 (palmitic acid), NAA-175 (stearic acid), and NAA-222 (behenic acid).
[Comparative Example 3]
Rubber modified styrenic resin-1 and Dainichi Chemical Co., Ltd .; die wax ZP (zinc stearate) was weighed and mixed, melted, kneaded and granulated with a 30 mm twin screw extruder, resin composition of comparative example I got a thing.
[0029]
[Comparative Example 4]
Comparative example of rubber-modified styrene resin-1 and Kao Corporation; Kao wax EB-FF (ethylene bis-stearyl amide) was weighed and mixed, melted, kneaded and granulated with a 30 mm twin screw extruder. A resin composition was obtained.
[Comparative Example 5]
A & M Styrene Co., Ltd .; HH203 (GP polystyrene) and NAA-175 were weighed and mixed, melted, kneaded and granulated with a 30 mm twin screw extruder to obtain a resin composition of a comparative example. .
[Comparative Example 6]
A & M Styrene Co., Ltd .; 403R (HI polystyrene) and NAA-175 were weighed and mixed, melted, kneaded and granulated with a 30 mm twin screw extruder to obtain a resin composition of a comparative example. .
[0030]
The determination of the physical properties of the resin compositions obtained in each Example and Comparative Example is shown in (Table 1).
[Table 1]
Figure 0003669430
[0031]
Examples 1 to 6 shown in Table 1 are resin compositions comprising a rubber-modified styrene resin and a higher fatty acid that meet the scope of the present invention, and have good transparency, high impact resistance, and excellent stain resistance. Is also included. There is no problem in thermal stability and softening temperature related to molding productivity.
On the other hand, Comparative Example 1 is a resin composition that falls outside the scope of the present invention and has a lower content of higher fatty acids, and has insufficient stain resistance. Comparative Example 2 is a resin composition having a higher fatty acid content outside the scope of the present invention, and has difficulty in thermal stability and softening temperature.
[0032]
Next, Comparative Example 3 and Comparative Example 4 are rubber-modified styrenic resins each containing zinc stearate and ethylene / bis / stearyl amide instead of the higher fatty acid of the resin composition of the present invention, the former being transparent The latter has poor stain resistance.
Further, Comparative Example 5 and Comparative Example 6 use GP polystyrene and HI polystyrene in place of the rubber-modified styrene resin of the resin composition of the present invention, respectively, the former for impact resistance and the latter for transparency. Lack.
[0033]
【The invention's effect】
The resin composition within the scope of the present invention has good transparency, high impact resistance, and excellent stain resistance. Good molding productivity. Therefore, the resin composition within the scope of the present invention is suitably used as a material for electrical appliances, outer shells of equipment, and exterior parts.

Claims (1)

ゴム状弾性体を分散粒子として含有するゴム変性スチレン系樹脂(ア)であって、
(1)連続相が、構成単位(A)芳香族ビニル単量体20乃至70重量%、構成単位(B)アルキル(メタ)アクリレート単量体30乃至80重量%(ただし(A)+(B)=100重量%)の共重合体からなり、
(2)分散相の平均粒子径が0.1乃至1.2μm、ゴム状弾性体の含有量が1乃至20重量%(但し、ゴム変性スチレン系樹脂=100重量%)であり、該ゴム変性スチレン系樹脂(ア)100重量部あたり0.5乃至3.0重量部の高級脂肪酸(イ)を含有することを特徴とする耐汚染性に優れた透明・耐衝撃性樹脂組成物。
A rubber-modified styrenic resin (a) containing a rubber-like elastic body as dispersed particles,
(1) The continuous phase is composed of 20 to 70% by weight of the structural unit (A) aromatic vinyl monomer, 30 to 80% by weight of the structural unit (B) alkyl (meth) acrylate monomer (however, (A) + (B ) = 100 wt%) copolymer,
(2) The average particle size of the dispersed phase is 0.1 to 1.2 μm, and the content of the rubber-like elastic body is 1 to 20% by weight (provided that the rubber-modified styrenic resin = 100% by weight). A transparent and impact resistant resin composition excellent in stain resistance, characterized by containing 0.5 to 3.0 parts by weight of a higher fatty acid (A) per 100 parts by weight of the styrene resin (a).
JP2001247332A 2001-08-16 2001-08-16 Transparent and impact-resistant resin composition with excellent contamination resistance Expired - Lifetime JP3669430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001247332A JP3669430B2 (en) 2001-08-16 2001-08-16 Transparent and impact-resistant resin composition with excellent contamination resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001247332A JP3669430B2 (en) 2001-08-16 2001-08-16 Transparent and impact-resistant resin composition with excellent contamination resistance

Publications (2)

Publication Number Publication Date
JP2003055524A JP2003055524A (en) 2003-02-26
JP3669430B2 true JP3669430B2 (en) 2005-07-06

Family

ID=19076697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001247332A Expired - Lifetime JP3669430B2 (en) 2001-08-16 2001-08-16 Transparent and impact-resistant resin composition with excellent contamination resistance

Country Status (1)

Country Link
JP (1) JP3669430B2 (en)

Also Published As

Publication number Publication date
JP2003055524A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
CN1164633C (en) Improved mass polymerized rubber-modified monovinylidene aromatic copolymer compositions
TW307772B (en)
KR930010501B1 (en) Thermoplastic copolymers
US6515072B2 (en) Transparent rubber-modified styrenic resin composition
JPS6356895B2 (en)
KR101432597B1 (en) Method for producing a thermoplastic having highly heat resistance and scratch resistance
JP3669430B2 (en) Transparent and impact-resistant resin composition with excellent contamination resistance
CN114667314B (en) Thermoplastic resin composition, method for preparing thermoplastic resin composition, and molded article comprising thermoplastic resin composition
DE60012959T2 (en) POLYCARBONATE BLENDS WITH IMPROVED FLOW ABILITY
JP3080217B2 (en) Thermoplastic copolymer and thermoplastic resin composition using the same
JP3662025B2 (en) Styrenic resin sheet and molded body
TW202019983A (en) Vinylidene substituted aromatic monomer and cyclic (meth)acrylate ester polymers
JP3694986B2 (en) Thermoplastic resin composition for blow molding and blow molded article comprising the same
JP2665302B2 (en) Maleimide copolymer, method for producing the same, and thermoplastic resin composition containing the same
JPH0687932A (en) Production of maleimide copolymer
JP6116182B2 (en) Thermoplastic resin composition and molded article
JP3652438B2 (en) Rubber-modified styrenic resin composition
JP3107607B2 (en) Thermoplastic resin composition
JP3206076B2 (en) Thermoplastic resin composition
JP3662054B2 (en) Styrenic resin composition and method for producing the same
JP3974225B2 (en) Process for producing rubber-modified aromatic vinyl resin composition
TW202402838A (en) Chlorine-containing polymer modifier, resin composition, and molded body
JPH11269333A (en) Thermoplastic resin composition sheet forming, and formed product thereof
JP2001080212A (en) Resin composition for laser marking and molding made thereof
JP2023150180A (en) Production method of modifier for chlorine-containing polymer, modifier for chlorine-containing polymer, resin composition, and molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050405

R150 Certificate of patent or registration of utility model

Ref document number: 3669430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

EXPY Cancellation because of completion of term