JP3652438B2 - Rubber-modified styrenic resin composition - Google Patents

Rubber-modified styrenic resin composition Download PDF

Info

Publication number
JP3652438B2
JP3652438B2 JP11509696A JP11509696A JP3652438B2 JP 3652438 B2 JP3652438 B2 JP 3652438B2 JP 11509696 A JP11509696 A JP 11509696A JP 11509696 A JP11509696 A JP 11509696A JP 3652438 B2 JP3652438 B2 JP 3652438B2
Authority
JP
Japan
Prior art keywords
rubber
weight
resin composition
component
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11509696A
Other languages
Japanese (ja)
Other versions
JPH09302194A (en
Inventor
保治 七條
景輝 陳
敬一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP11509696A priority Critical patent/JP3652438B2/en
Publication of JPH09302194A publication Critical patent/JPH09302194A/en
Application granted granted Critical
Publication of JP3652438B2 publication Critical patent/JP3652438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ゴム状重合体を分散粒子として含有するゴム変性スチレン系樹脂とゴム状重合体を含有しないスチレン系共重合樹脂を特定の割合で配合したゴム変性スチレン系樹脂組成物に関するもので、さらに詳しくは、外観と耐傷付き性に優れ、かつ耐衝撃性等の物性バランスにも優れたゴム変性スチレン系樹脂組成物に関するものである。
【0002】
【従来の技術】
電気、電子、OA、通信機器等の分野においては、耐衝撃性、成形加工性等の種々の特性から、ゴム変性スチレン系樹脂が幅広く使用されている。近年、成形材料のリサイクル性の観点から、成形品表面の塗装を省略する方向にあり、外観、耐傷付き性のような表面特性向上に対する要求が強い。
ゴム変性スチレン系樹脂は、耐衝撃性を得るためにゴム状重合体をスチレン系樹脂相中に粒子状に分散させているが、このゴム状重合体が成形品表面の凹凸を引き起こし、光沢に劣るため、外観を必要とする用途への使用が制限されていた。そこで外観改良のために、分散ゴム粒子径を小さくしたり、その粒子径分布を調節する等の方法が提案されている。しかしながら、この方法では、耐衝撃性と剛性、外観のバランスが不十分であり、さらに決定的な欠点として、耐傷付き性を付与することが根本的に不可能であるという問題があった。
【0003】
一方、耐傷付き性を改良する手段として、シリコーンオイル等の潤滑剤を添加し、表面の滑り性を改良させる方法が提案されているが、耐傷付き性の改良効果が不十分であり、また、耐衝撃性の効果を高めるためにその添加量を多くすると添加剤による外観不良、金型汚染を引き起こしやすい。
また、耐衝撃性と外観、および、耐傷付き性を同時に改良するその他の手段として、メタクリル樹脂のような耐傷付き性に優れた材料をABS樹脂に配合する方法も知られているが、ゴム変性ポリスチレン樹脂(HIPS)に比して、成形加工性が著しく低下するという欠点を有している。また、特開平6−25507号公報には、粒子状に分散するゴム状重合体を含有し、スチレン系単量体とメタクリレート(アクリレート)系単量体の共重合体を連続相とする外観特性に優れたゴム変性スチレン系樹脂組成物(ゴム補強メタクリレート−スチレン共重合樹脂組成物)が開示されている。
【0004】
しかしながら、この方法は、外観特性、特に耐傷付き性の十分な改良のためには、多量のメタクリレート(又はアクリレート)系単量体成分を共重合させる必要があり、その結果成形加工性が低下する。また、成形加工性を維持するために、マトリックス相のガラス転移温度調整のため、アクリル酸ブチル等をさらに共重合する等の必要があり、このため、耐熱性を低下させ、成形品の実用範囲を狭めるとともに、コストが高くなるという問題があった。さらに、これらの問題点に対し、特開平6−157863号公報には、上記のゴム補強メタクリレート−スチレン共重合樹脂とHIPSとを混合して利用する方法が開示されている。しかしながら、本方法では、メタクリレート−スチレン共重合樹脂中にもゴム状重合体が粒子状に分散しているため、耐傷付き性の改良効果に劣り、また、高い剛性を発現することも困難であった。
【0005】
【発明が解決しようとする課題】
上記のように、ゴム変性スチレン系樹脂においては、成形加工性、外観、耐傷付き性に優れ、さらに、耐衝撃性と剛性のバランスに優れた材料の開発が望まれていた。従って、本発明の目的は、特に優れた外観と高い耐衝撃性・剛性および耐傷付き性を併せ持つ、成形加工性の良好なゴム変性スチレン系樹脂組成物を提供することである。
【0006】
【課題を解決するための手段】
本発明者らは、かかる現状に鑑み、鋭意検討した結果、ゴム変性スチレン系樹脂組成物とゴム成分を含有しないスチレン系共重合樹脂とを特定の割合で配合させることによって、上記問題点が解決することを見出し、本発明を完成するに至った。即ち、本発明は、ゴム状重合体を分散含有し、該分散粒子の平均粒子径が0.3〜1.5μmであるゴム変性スチレン系樹脂(A)が80〜30重量%、スチレン系単量体に少なくとも一種以上のその他の共重合可能な単量体が共重合したスチレン系共重合樹脂(B)が20〜70重量%の割合で配合されていることを特徴とするゴム変性スチレン系樹脂組成物に関するものである。
【0007】
上記本発明のゴム変性スチレン系樹脂組成物においては、特に粒子状に分散するゴム状弾性体を分離した後のマトリックス樹脂成分のみからなる、0.5mm厚みのプレート状成形品の全光線透過率(Tt:%)が45≦Tt<90の範囲にあることが好ましい。また上記本発明において、特に樹脂組成物中には、25℃における表面張力が25dyne/cm以下のシリコーンオイル0.005〜0.5重量%および/または25℃における表面張力が30dyne/cm以下のフッ素化合物0.001〜0.5重量%を含有することが好ましい。
【0008】
以下、本発明を詳細に説明する。
本発明を構成するゴム変性スチレン系樹脂(A)は、ゴム状重合体の存在下で、スチレン系単量体を重合して得られたものであり、一方ゴム状弾性体を含有しないスチレン系共重合樹脂(B)は、スチレン系単量体と少なくとも一種以上のその他の共重合可能な単量体とを共重合して得られるものである。
ここでスチレン系単量体としては、例えば、スチレン、α- メチルスチレン、p-メチルスチレン等が上げられ、特にスチレンが安価であることから好適に用いられる。これらのスチレン系単量体は1種もしくは2種以上併用して使用することもできる。また本発明のゴム変性スチレン系樹脂(A)成分中に粒子状に分散するゴム状重合体としては、常温でゴム的性質を示すものであればよく、例えば、ポリブタジエン、スチレン−ブタジエン共重合体、スチレン−ブタジエンブロック共重合体、水添(部分水添)ポリブタジエン、水添(部分水添)スチレン−ブタジエン共重合体、水添(部分水添)スチレン−ブタジエンブロック共重合体、エチレン−プロピレン系共重合体、エチレン−プロピレン−非共役ジエン三元共重合体、イソプレン重合体、スチレン−イソプレン共重合体等である。
【0009】
また、本発明のスチレン系共重合樹脂(B)を構成する、スチレン系単量体と共重合可能なその他の単量体としては、メタクリル酸メチル、メタクリル酸エチル、アクリル酸メチル、アクリル酸エチル等の(メタ)アクリル酸エステル系単量体、アクリル酸、メタクリル酸等の(メタ)アクリル酸系単量体類が例示され、重合反応制御の容易さ、耐傷付き性の改良効果の高さの観点から(メタ)アクリル酸エステル系単量体が特に好適に用いられる。これらの共重合可能な単量体は、単独で用いてもよく、混合して用いてもよい。
【0010】
特に、成形体の用途に応じて、更なる機能を付与することが可能である。例えば、耐候性付与には、メタクリル酸メチル、メタクリル酸エチル等のメタクリレート系単量体を、また耐熱性の付与には、メタクリル酸等を用いて共重合含有させればよい。
【0011】
本発明の樹脂組成物におけるゴム変性スチレン系樹脂(A)、スチレン系共重合樹脂(B)の配合割合は、成形加工性、耐衝撃性と剛性のバランス、外観と耐傷付き性のすべての性能を優れたものとするために、(A)成分が80〜30重量%、(B)成分が20〜70重量%の範囲で配合される必要がある。好ましくは(A)成分が75〜40重量%、(B)成分が25〜60重量%の範囲で配合されることが望ましい。(A)成分が80重量%を越えると曲げ弾性率等の剛性が低下するのみならず、外観と耐傷付き性に劣り、30重量%未満では耐衝撃性が不足し、成形加工性も低下する。
【0012】
本発明の樹脂組成物において、ゴム変性スチレン系樹脂組成物(A)に由来するゴム状重合体の分散粒子の平均粒子径は0.3〜1.5μmの範囲にあることが必要である。更に好ましくは0.4〜1.4μmの範囲である。平均粒子径が0.3μm未満では耐衝撃性が低下し、1.5μmを越えると外観が不良となり好ましくない。ここで言う平均粒子径とは、樹脂を四酸化オスミウム染色し、超薄切片法により電子顕微鏡写真を撮影する。10000倍に拡大した写真において、分散ゴム粒子1000個以上の粒子径を測定して次式により平均粒子径を求める。
平均粒子径=ΣniDi4/ΣniDi3
(ここで、niは粒子径Diのゴム状重合体粒子の個数)
【0013】
本発明の樹脂組成物において、光沢・耐衝撃性・剛性の物性バランスを満足するためには、粒子状に分散するゴム状弾性体を分離した後のマトリックス樹脂成分のみからなる、0.5mm厚みのプレート状の射出成形品の全光線透過率(%:Tt)が45%以上、90%未満の範囲にあることが望ましい。
【0014】
本発明において、光沢・耐傷付き性と剛性、耐衝撃性のバランスをより優れたものとするには、上記の全光線透過率が50〜90%、さらに好ましくは60〜90%の範囲にあることが望ましい。全光線透過率が45%未満では衝撃強度が低下し、90%以上では、耐傷付き性の改良効果が低い。本発明における、0.5mm厚みのプレート状射出成形の全光線透過率は、一般にポリマーブレンド、ポリマーアロイの相溶性の判定に利用される濁度とは異なり、加熱溶融領域において、相溶もしくは非常に微分散状態にあるブレンド物に対して、成形機金型内において、瞬時に冷却、凍結することにより、加熱溶融状態に近い分散状態を測定可能とするものである。0.5mm厚みにおいては、成形全体がスキン相状態に相当し、表層部、内部ともに均一な状態を呈しており、該成形の全光線透過率は、本発明の熱可塑性樹脂組成物を種々の射出成形に適用した際の、表面特性、特に耐傷付き性と密接な関連を持つ重要なものである。
【0015】
本発明の熱可塑性樹脂組成物においては、特に分散粒子の平均粒子径が1.5μm以下特に0.4〜1.4μmと小さいゴム変性スチレン系樹脂(A)に対しては、シリコーンオイル0.005〜0.5重量%および/またはフッ素化合物0.001〜0.5重量%を配合することが望ましい。ここでシリコーンオイルとしては25℃における表面張力が25dyne/cm以下、好ましくは19.0〜22.0dyne/cm、さらに好ましくは19.8〜21.5dyne/cmの範囲にあることが望ましい。この場合、樹脂に対するシリコーンオイルの分散が最適となり、耐衝撃性向上の効果が著しい。本発明において、シリコーンオイルの粘度は特に限定するものではないが、25℃で10〜1000センチストークスの粘度を有するもので、下記の一般式(ただし、式中のR1、R2、R3、R4はアルキル基、フェニル基、アラルキル基等の有機基を表わす。) で示される構造単位のくり返しを含む重合体であれば使用可能である。

Figure 0003652438
【0016】
本発明で用いるシリコーンオイルを例示すれば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルエチルシリコーンオイル、あるいはこれらのシリコーンオイルの末端あるいは分子鎖中に水酸基、ふっ素、アルコキシ基、アミノ基、エポキシ基、カルボキシル基、ハロゲン基、アミド基、エステル基、ビニル基を導入したシリコーンオイル等があげられる。これらのシリコーンオイルは、単独で用いても二種以上を混合して用いても良い。また、本発明において、上記したフッ素化合物とシリコーンオイルは、それぞれ単独で使用しても良いし、混合して使用しても良い。
【0017】
またフッ素化合物としては、25℃における表面張力が30dyne/cm以下のフッ素化合物であればよい。かかる条件を有するフッ素化合物は、フルオロカーボン化合物油、パーフルオロポリエーテル、フルオロアルキルオリゴマー等が例示され、25℃における表面張力が30dyne/cm以下、好ましくは18.0〜25.0dyne/cmの範囲にあることが望ましい。この場合、樹脂に対するフッ素化合物の分散が最適となり、耐衝撃性向上の効果が著しい。
【0018】
本発明の(A)成分と(B)成分を特定の範囲内で配合したゴム変性スチレン系樹脂組成物においては、特に(A)成分に由来する分散粒子化したゴム状重合体の含有量が3〜20重量%の範囲にあり、かつ分散粒子の平均粒子径が0.4〜1.4μmの範囲にあり、更に上記の全光線透過率が60〜90%の範囲の場合に、著しく優れた耐衝撃性・剛性・外観・耐傷付き性の物性バランスを満足する。
【0019】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。
まず本発明の、ゴム状重合体を分散粒子として含有するゴム変性スチレン系樹脂(A)は、従来から公知の方法で製造することができる。すなわち、ゴム状重合体をスチレン系単量体、必要に応じ重合溶媒、重合開始剤からなる原料溶液に溶解し、通常用いられるラジカル系触媒の存在下、非存在下において、その原料溶液を攪拌機付き反応器に供給し重合を行う。重合温度はゴム変性スチレン系樹脂の流動性、生産性、反応器の除熱能力等を考慮して決定することができる。分散粒子径は攪拌回転数による制御等の公知の技術を用いて行うことができる。重合終了後、未反応単量体、重合溶媒等を除去するため、真空下で処理を行い、ゴム変性スチレン系樹脂(A)を得る。
【0020】
本発明のゴム状重合体を含有しないスチレン系共重合樹脂(B)は、従来から公知の方法で製造することができる。上記のスチレン系単量体と共重合可能なその他の単量体とを混合し、必要に応じ重合溶媒を添加し、通常用いられるラジカル系触媒の存在下、非存在下において、懸濁重合、塊状重合、溶液重合あるいは、塊状−懸濁重合などの方法により、回分式、連続式または回分−連続式製造方法により製造することができる。重合終了後、未反応単量体、重合溶媒等を除去するため、真空下で処理を行い、ゴム状重合体を含有しないスチレン系共重合樹脂(B)を得る。
【0021】
本発明の樹脂組成物を製造するための、ゴム変性スチレン系樹脂(A)とスチレン系共重合樹脂(B)の混合方法も特に制約はない。公知の方法、例えば、押出機で溶融、混錬する方法、ペレットでブレンドし、成形機等で溶融混連枝、直接成形品を得る方法等が用いることができる。特殊な製造方法として、一方の樹脂の製造工程中に溶融、もしくは、溶解したもう一方の樹脂を添加する方法も用いることができる。
【0022】
本発明の樹脂組成物の製造において、耐衝撃性向上剤としてシリコーンオイルおよび/またはフッ素化合物を添加する場合は、その製造工程の任意の段階で添加することができる。たとえば、(A)、(B)成分のどちらか、または両者の重合を行なう前の原料に対して添加しても良く、重合途中の重合液に添加しても良く、また、重合終了後の造粒工程で添加しても良い。さらに、(A)、(B)成分の混合を行う際に添加したり、シリコーンオイルと芳香族モノビニル系樹脂またはゴム変性芳香族モノビニル系樹脂を用いて高シリコーンオイル濃度のマスターペレットを製造し、混練機、成形機において添加することもできる。
【0023】
このようにして得られる本発明の樹脂組成物は、このままでもHIPS樹脂、ABS樹脂が多用されている用途に好適に用いることができるが、必要に応じHIPS樹脂で多用されている添加剤、例えば、酸化防止剤、熱安定剤、光安定剤、難燃剤、非イオン性界面活性剤、陰イオン性界面活性剤、滑剤として流動パラフィン、高級脂肪酸、高級脂肪酸の金属塩、エチレンビス脂肪酸アマイド、アジピン酸、セバシン酸のジブチルまたはジオクチルエステル等を添加して使用することも可能である。
【0024】
【実施例】
次に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
なお本発明の実施例における各物性試験法を以下に記す。
(1)ゴム粒子径
樹脂組成物を四酸化オスミウム染色し、超薄切片法により電子顕微鏡写真を撮影する。10000倍に拡大した写真において、分散ゴム粒子1000個以上の粒子径を測定して次式により平均粒子径を求める。
平均粒子径=ΣniDi4÷ΣniDi3
(ここでniは粒子径Diのゴム状重合体粒子の個数)
【0025】
(2)全光線透過率
樹脂組成物をメチルエチルケトンに溶解させた後、遠心分離により不溶分を沈降除去させ、上澄み液を可溶分として分離する。可溶分を乾燥させてメチルエチルケトンを除去した後、射出成形により0.5×30×40(mm)のプレート状成形を射出成形し、その成形についてJIS K7105に準拠して測定した。
【0026】
(3)ゴム成分量
ウィス法により求めた。
(4)IZ衝撃強度
JIS K6871( ノッチつき)に準拠して測定した。
(5)曲げ弾性率
ASTM D−790に準拠して求めた。
【0027】
(6)光沢
JIS K7105に準拠して求めた。
(7)像鮮明度
JIS K7105に準拠して求めた。
(8)鉛筆引っかき値
JIS K5400に準拠して求めた。
【0028】
実施例1
(a)ゴム変性スチレン系樹脂(A)成分の重合
スチレン90重量部、ローシスポリブタジエンゴム10重量部を溶解した混合液100重量部に対して、エチルベンゼン22重量部とジターシャリブチルパーオキシシクロヘキサン0.015重量部を添加して溶解した原料液を一定の供給速度で第1の完全混合槽型反応器に連続的に供給し110℃で重合した後、引き続き撹拌機付き塔型プラグフロー型反応器である第2の反応器に連続的に全量装入して重合した。第2の反応器出口の重合温度は、140℃となるように調節した。
【0029】
撹袢機の回転数は、第1の反応器を150回転/分、第2の反応器を100回転/分とした。第1の反応器の出口では、ゴム状重合体はまだ分散粒子化していない状態であり、第2の反応器で撹拌しながら重合した結果、第2の反応器の出口では重合液は分散粒子化が終了した状態であった。次いで、スタティックミキサー式プラグフロー型反応器からなる第3の反応器に上記重合液を連続的に全量装入し、出口重合温度が160℃の範囲で流れ方向に沿って温度が高くなるような温度勾配が生じるように調節して重合を継続してスチレンの重合転化率85%になるまで重合を進行させた。この重合液を減圧下で揮発性成分を除去した後に、流動パラフィン0.1重量部を添加してからペレット化した。この(A)成分の平均ゴム粒子径は、1.1μmであった。
【0030】
(b)スチレン−メタクリル酸メチル共重合樹脂(B)成分の重合
スチレン70重量部、メタクリル酸メチル30重量部を溶解した混合液100重量部に対して、エチルベンゼン10重量部を添加して溶解した原料液を一定の供給速度で完全混合槽型反応器に連続的に供給し140℃で重合した。反応器から排出される重合液の転化率は74%であった。この重合液をベント付き二軸押出機において減圧下で揮発性成分を除去しペレット化した。メタクリル酸メチル単位の含有量が33重量%のスチレン−メタクリル酸メチル共重合樹脂が得られた。
【0031】
(c)配合樹脂組成物の調整
上記の操作により得られた(A)成分75重量%、(B)成分25重量%の割合で配合し、二軸押出機を用いて混練、ペレット化を行い目的とする熱可塑性樹脂組成物を得た。各種分析値及び物性測定結果を表1に示す。
【0032】
実施例2〜3、
実施例1における(A)成分、(B)成分の混合比率を表1に示す通り変更したこと以外は実施例1と同様にして熱可塑性樹脂組成物を調整した。
各種分析値及び物性測定値を表1に示す。
【0033】
比較例1〜4
実施例1〜3に用いた(A)成分、(B)成分単独のみの場合及び実施例1における(A)成分、(B)成分の混合比率を表1に示す通り変更したこと以外は実施例1と同様にして熱可塑性樹脂組成物を調整した。
各種分析値及び物性測定値を表1に示す。
【0034】
実施例4
実施例1の(A)成分の重合において、第2の反応器の撹袢機の回転数を150回転/分としたこと以外は、実施例1と同様の操作をして(A)成分の重合を行い、ペレット化した。この(A)成分の平均ゴム粒子径は、0.6μmであった。この(A)成分50重量%と実施例1の(B)成分50重量%を配合し、さらに25℃における表面張力が24.0dyne/cmのシリコーンオイルを0.05重量部添加し、二軸押出機を用いて混練、ペレット化を行い目的とする熱可塑性樹脂組成物を得た。混合比率、シリコーンオイル含有量、および各種分析値を表1に、物性測定結果を表1に示す。
【0035】
実施例5
実施例4の熱可塑性樹脂組成物の調整において添加したシリコーンオイルを、25℃における表面張力が18.0dyne/cmのパーフルオロポリエーテル0.05重量部に変更したこと以外は、実施例4と同様の操作を行い、目的とする熱可塑性樹脂組成物を調整した。フッ素化合物含有量、各種分析値及び物性測定結果を表1に示す。
【0036】
実施例6
実施例4の熱可塑性樹脂組成物の調整において、25℃における表面張力が24.0dyne/cmのシリコーンオイルの添加量を0.0475重量部に変更し、さらに、25℃における表面張力が18.0dyne/cmのパーフルオロポリエーテル0.0025重量部を添加したこと以外は、実施例4と同様の操作を行い、目的とする熱可塑性樹脂組成物を調整した。
シリコーンオイル含有量、フッ素化合物含有量、各種分析値及び物性測定値を表1に示す。
【0037】
比較例5
実施例1の(A)成分の重合において、第2の反応器の撹袢機の回転数を500回転/分としたこと以外は、実施例1と同様の操作をして(A)成分の重合を行い、ペレット化した。この(A)成分の平均ゴム粒子径は、0.2μmであった。この(A)成分50重量%に対して、実施例1で用いた(B)成分50重量%を配合し、さらに、25℃における表面張力が24.0dyne/cmのシリコーンオイルの添加量を0.0475重量部、25℃における表面張力が18.0dyne/cmのパーフルオロポリエーテル0.0025重量部を添加し、目的とする熱可塑性樹脂組成物を調整した。
各種分析値及び物性測定値を表1に示す。
【0038】
比較例6
実施例4〜6に用いた(A)成分のみに25℃における表面張力が24.0dyne/cmのシリコーンオイルを0.05重量部添加し調整した樹脂組成物の各種分析値及び物性測定値を表1に示す。
【0039】
比較例7
実施例1において、第2の反応器の撹袢機の回転数を50回転/分としたこと以外は、実施例1と同様の操作をして(A)成分の重合を行い、ペレット化した。この(A)成分の平均ゴム粒子径は、2.7μmであった。この(A)成分50重量%と実施例1の(B)成分50重量%を配合し混合比率、および各種分析値を表1に、物性測定値を表2に示す。
【0040】
【表1】
Figure 0003652438
【0041】
実施例7
実施例1における(B)成分の重合において、スチレン20重量部、メタクリル酸メチル80重量部を溶解した混合液100重量部に対して、エチルベンゼン10重量部を添加して溶解した原料液を用い、重合温度を160℃に変更したこと以外は実施例1と同様の操作を実施して(B)成分を調整した。メタクリル酸メチル単位の含有量が81重量%のスチレン−メタクリル酸メチル共重合樹脂が得られた。実施例1に用いた(A)成分75重量% 、上記の操作で得られた(B)成分25重量%の割合で配合し、二軸押出機を用いて混練、ペレット化を行い目的とする樹脂組成物を得た。各種分析値及び物性測定値を表2に示す。
【0042】
実施例8
混合比率を(A)成分50重量%、(B)成分50重量%に変更したこと以外は実施例7と同様にして樹脂組成物を調整した。各種分析値及び物性測定値を表2に示す。
【0043】
比較例8
実施例7、8に用いた(B)成分のみの各種分析値及び物性測定値を表2に示す。
【0044】
実施例9
実施例1における(B)成分の重合において、スチレン90重量部、メタクリル酸10重量部を溶解した混合液100重量部に対して、エチルベンゼン10重量部を添加して溶解した原料液に変更したこと以外は、実施例1と同様の操作を施して(B)成分を調整した。メタクリル酸単位の含有量が16重量%のスチレン−メタクリル酸共重合樹脂が得られた。実施例1に用いた(A)成分75重量%、上記の操作で得られた(B)成分25重量%の割合で配合し、二軸押出機を用いて混練、ペレット化を行い目的とする熱可塑性樹脂組成物を得た。各種分析値及び物性測定結果を表2に示す。
【0045】
実施例10
混合比率を(A)成分50重量%(B)成分50重量%に変更したこと以外は実施例7と同様にして熱可塑性樹脂組成物を調整した。
各種分析値及び物性測定値を表2に示す。
【0046】
比較例9
実施例9、10に用いた(B)成分のみの各種分析値及び物性測定値を表2に示す。
【0050】
【表2】
Figure 0003652438
【0051】
【発明の効果】
本発明の芳熱可塑性樹脂組成物は、耐傷付き性・外観・耐衝撃性・剛性のバランスに優れ、塗装を施さずとも傷が付きにくい材料であり、電気、電子、OA、通信機器等の分野における、射出成形用途の材料として好適な樹脂組成物となり得る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber-modified styrene resin composition in which a rubber-modified styrene resin containing a rubber-like polymer as dispersed particles and a styrene copolymer resin not containing a rubber-like polymer are blended at a specific ratio, More specifically, the present invention relates to a rubber-modified styrenic resin composition that is excellent in appearance and scratch resistance and excellent in balance of physical properties such as impact resistance.
[0002]
[Prior art]
In the fields of electricity, electronics, OA, communication equipment, etc., rubber-modified styrene resins are widely used due to various properties such as impact resistance and molding processability. In recent years, from the viewpoint of recyclability of molding materials, there is a tendency to omit coating of the surface of molded products, and there is a strong demand for improving surface properties such as appearance and scratch resistance.
In rubber-modified styrenic resins, rubber-like polymers are dispersed in the styrenic resin phase in order to obtain impact resistance, but this rubber-like polymer causes unevenness on the surface of the molded product, resulting in glossiness. Since it is inferior, the use to the use which requires an external appearance was restrict | limited. In order to improve the appearance, methods such as reducing the dispersed rubber particle size and adjusting the particle size distribution have been proposed. However, this method has an insufficient balance between impact resistance, rigidity and appearance, and further has a problem that it is fundamentally impossible to impart scratch resistance.
[0003]
On the other hand, as a means of improving the scratch resistance, a method of adding a lubricant such as silicone oil and improving the slipperiness of the surface has been proposed, but the effect of improving the scratch resistance is insufficient, Increasing the amount added to increase the impact resistance effect tends to cause poor appearance and mold contamination due to the additive.
In addition, as another means for simultaneously improving impact resistance, appearance, and scratch resistance, a method of blending a material having excellent scratch resistance such as methacrylic resin with ABS resin is also known. As compared with polystyrene resin (HIPS), it has a drawback that the moldability is remarkably lowered. Japanese Patent Application Laid-Open No. 6-25507 discloses an appearance characteristic that contains a rubber-like polymer dispersed in a particulate form and has a copolymer of a styrene monomer and a methacrylate (acrylate) monomer as a continuous phase. A rubber-modified styrene-based resin composition (rubber-reinforced methacrylate-styrene copolymer resin composition) is disclosed.
[0004]
However, in this method, it is necessary to copolymerize a large amount of methacrylate (or acrylate) monomer components in order to sufficiently improve the appearance characteristics, particularly scratch resistance, and as a result, molding processability decreases. . In addition, in order to maintain the moldability, it is necessary to further copolymerize butyl acrylate, etc. in order to adjust the glass transition temperature of the matrix phase. There was a problem that the cost was increased. Furthermore, in order to solve these problems, Japanese Patent Laid-Open No. 6-157863 discloses a method in which the rubber-reinforced methacrylate-styrene copolymer resin and HIPS are mixed and used. However, in this method, since the rubber-like polymer is dispersed in the methacrylate-styrene copolymer resin, the effect of improving the scratch resistance is inferior, and it is difficult to develop high rigidity. It was.
[0005]
[Problems to be solved by the invention]
As described above, in the rubber-modified styrene resin, it has been desired to develop a material that is excellent in molding processability, appearance, and scratch resistance, and further excellent in balance between impact resistance and rigidity. Accordingly, an object of the present invention is to provide a rubber-modified styrenic resin composition having a particularly excellent appearance and high impact resistance / rigidity and scratch resistance and good molding processability.
[0006]
[Means for Solving the Problems]
As a result of intensive studies in view of the present situation, the present inventors have solved the above problem by blending a rubber-modified styrene resin composition and a styrene copolymer resin not containing a rubber component at a specific ratio. As a result, the present invention has been completed. That is, the present invention includes a rubber-modified styrenic resin (A) containing a rubber-like polymer in a dispersed manner and having an average particle size of 0.3 to 1.5 μm. A rubber-modified styrenic resin comprising 20 to 70% by weight of a styrene copolymer resin (B) obtained by copolymerizing at least one other copolymerizable monomer with a monomer. The present invention relates to a resin composition.
[0007]
In the rubber-modified styrenic resin composition of the present invention, the total light transmittance of a plate-shaped molded article having a thickness of 0.5 mm, which is composed only of a matrix resin component after separating a rubber-like elastic body that is dispersed in a particulate form. (Tt:%) is preferably in the range of 45 ≦ Tt <90. In the present invention, particularly in the resin composition, 0.005 to 0.5% by weight of a silicone oil having a surface tension at 25 ° C. of 25 dyne / cm or less and / or a surface tension at 25 ° C. of 30 dyne / cm or less. It is preferable to contain 0.001 to 0.5 weight% of fluorine compounds.
[0008]
Hereinafter, the present invention will be described in detail.
The rubber-modified styrenic resin (A) constituting the present invention is obtained by polymerizing a styrenic monomer in the presence of a rubbery polymer, whereas it does not contain a rubbery elastic body. The copolymer resin (B) is obtained by copolymerizing a styrene monomer and at least one other copolymerizable monomer.
Here, examples of the styrene monomer include styrene, α-methylstyrene, p-methylstyrene, and the like, and styrene is particularly preferable because it is inexpensive. These styrenic monomers can be used alone or in combination of two or more. The rubber-like polymer dispersed in the form of particles in the rubber-modified styrene resin (A) component of the present invention is not particularly limited as long as it exhibits rubbery properties at room temperature. For example, polybutadiene, styrene-butadiene copolymer Styrene-butadiene block copolymer, hydrogenated (partially hydrogenated) polybutadiene, hydrogenated (partially hydrogenated) styrene-butadiene copolymer, hydrogenated (partially hydrogenated) styrene-butadiene block copolymer, ethylene-propylene A copolymer, an ethylene-propylene-nonconjugated diene terpolymer, an isoprene polymer, a styrene-isoprene copolymer, and the like.
[0009]
Further, constituting the styrene-based copolymer resin of the present invention (B), styrene as the monomer and other copolymerizable monomers, main methacrylic acid methyl, ethyl methacrylate, methyl acrylate, acrylic acid Examples include (meth) acrylic acid ester monomers such as ethyl, and (meth) acrylic acid monomers such as acrylic acid and methacrylic acid. Ease of control of polymerization reaction and high effect of improving scratch resistance From this viewpoint, a (meth) acrylic acid ester monomer is particularly preferably used. These copolymerizable monomers may be used alone or in combination.
[0010]
In particular, it is possible to impart further functions depending on the use of the molded body. For example, a methacrylate monomer such as methyl methacrylate or ethyl methacrylate may be copolymerized for imparting weather resistance, and methacrylic acid may be used for imparting heat resistance.
[0011]
The blending ratio of the rubber-modified styrene resin (A) and the styrene copolymer resin (B) in the resin composition of the present invention is all the performances of molding processability, balance between impact resistance and rigidity, appearance and scratch resistance. In order to make it excellent, (A) component needs to be blended in the range of 80 to 30% by weight and (B) component in the range of 20 to 70% by weight. Preferably, the component (A) is blended in the range of 75 to 40% by weight and the component (B) in the range of 25 to 60% by weight. When the component (A) exceeds 80% by weight, not only the rigidity such as the flexural modulus is lowered, but also the appearance and scratch resistance are inferior, and if it is less than 30% by weight, the impact resistance is insufficient and the moldability is also lowered. .
[0012]
In the resin composition of the present invention, the average particle size of the dispersed particles of the rubber-like polymer derived from the rubber-modified styrene resin composition (A) needs to be in the range of 0.3 to 1.5 μm. More preferably, it is the range of 0.4-1.4 micrometers. If the average particle diameter is less than 0.3 μm, the impact resistance is lowered, and if it exceeds 1.5 μm, the appearance is unfavorable. The average particle size referred to here is obtained by staining an osmium tetroxide resin and taking an electron micrograph by an ultrathin section method. In a photograph magnified 10,000 times, the particle diameter of 1000 or more dispersed rubber particles is measured, and the average particle diameter is obtained by the following formula.
Average particle size = ΣniDi 4 / ΣniDi 3
(Where ni is the number of rubber-like polymer particles having a particle diameter Di)
[0013]
In the resin composition of the present invention, in order to satisfy the balance of physical properties of gloss, impact resistance, and rigidity, the thickness is 0.5 mm consisting of only the matrix resin component after separating the rubber-like elastic material dispersed in the form of particles. The total light transmittance (%: Tt) of the plate-like injection-molded product is preferably in the range of 45% or more and less than 90%.
[0014]
In the present invention, the total light transmittance is in the range of 50 to 90%, more preferably in the range of 60 to 90%, in order to achieve a better balance between gloss / scratch resistance, rigidity, and impact resistance. It is desirable. When the total light transmittance is less than 45%, the impact strength is lowered, and when it is 90% or more, the effect of improving the scratch resistance is low. In the present invention, the total light transmittance of a 0.5 mm-thick plate-like injection-molded product is different from the turbidity generally used for determining the compatibility of polymer blends and polymer alloys. A blend in a very finely dispersed state can be measured in a dispersed state close to a heated and melted state by instantly cooling and freezing in a molding machine mold. At a thickness of 0.5 mm , the entire molded product corresponds to a skin phase state, and both the surface layer part and the inside are in a uniform state . The total light transmittance of the molded product is the same as that of the thermoplastic resin composition of the present invention. It is important to have a close relationship with surface properties, especially scratch resistance, when applied to various injection molded products .
[0015]
In the thermoplastic resin composition of the present invention, especially for the rubber-modified styrenic resin (A) in which the average particle size of the dispersed particles is 1.5 μm or less, particularly 0.4 to 1.4 μm, the silicone oil It is desirable to blend 005 to 0.5% by weight and / or 0.001 to 0.5% by weight of a fluorine compound. Here, the silicone oil has a surface tension at 25 ° C. of 25 dyne / cm or less, preferably 19.0 to 22.0 dyne / cm, more preferably 19.8 to 21.5 dyne / cm. In this case, the dispersion of the silicone oil with respect to the resin is optimal, and the effect of improving the impact resistance is remarkable. In the present invention, the viscosity of the silicone oil is not particularly limited, but it has a viscosity of 10 to 1000 centistokes at 25 ° C., and the following general formula (however, R 1 , R 2 , R 3 in the formula) , R 4 represents an organic group such as an alkyl group, a phenyl group, an aralkyl group, etc.) Any polymer can be used as long as it is a polymer containing repeating structural units represented by
Figure 0003652438
[0016]
Examples of the silicone oil used in the present invention include dimethyl silicone oil, methylphenyl silicone oil, methylethyl silicone oil, or a hydroxyl group, fluorine, alkoxy group, amino group, epoxy group in the terminal or molecular chain of these silicone oils. Examples thereof include silicone oil into which a carboxyl group, a halogen group, an amide group, an ester group and a vinyl group are introduced. These silicone oils may be used alone or in combination of two or more. In the present invention, the above-described fluorine compound and silicone oil may be used alone or in combination.
[0017]
The fluorine compound may be a fluorine compound having a surface tension at 25 ° C. of 30 dyne / cm or less. Examples of the fluorine compound having such conditions include fluorocarbon compound oil, perfluoropolyether, fluoroalkyl oligomer and the like, and the surface tension at 25 ° C. is 30 dyne / cm or less, preferably in the range of 18.0 to 25.0 dyne / cm. It is desirable to be. In this case, the dispersion of the fluorine compound with respect to the resin is optimal, and the effect of improving the impact resistance is remarkable.
[0018]
In the rubber-modified styrenic resin composition in which the component (A) and the component (B) of the present invention are blended within a specific range, the content of the dispersed rubber polymer derived from the component (A) is particularly large. When it is in the range of 3 to 20% by weight, the average particle diameter of the dispersed particles is in the range of 0.4 to 1.4 μm, and the total light transmittance is in the range of 60 to 90%, it is remarkably excellent. Satisfies the physical property balance of impact resistance, rigidity, appearance, and scratch resistance.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
First, the rubber-modified styrene resin (A) of the present invention containing a rubbery polymer as dispersed particles can be produced by a conventionally known method. That is, a rubber-like polymer is dissolved in a raw material solution comprising a styrene monomer, a polymerization solvent if necessary, and a polymerization initiator, and the raw material solution is stirred in the presence or absence of a commonly used radical catalyst. Polymerization is carried out by feeding to the attached reactor. The polymerization temperature can be determined in consideration of the fluidity and productivity of the rubber-modified styrene resin, the heat removal capability of the reactor, and the like. The dispersed particle size can be determined by using a known technique such as control by the stirring rotation speed. After the completion of the polymerization, in order to remove unreacted monomers, polymerization solvent and the like, a treatment is performed under vacuum to obtain a rubber-modified styrene resin (A).
[0020]
The styrene copolymer resin (B) containing no rubber-like polymer of the present invention can be produced by a conventionally known method. Mixing the above styrenic monomer and other monomers copolymerizable, adding a polymerization solvent if necessary, in the presence or absence of a commonly used radical catalyst, suspension polymerization, It can be produced by batch, continuous, or batch-continuous production methods, such as bulk polymerization, solution polymerization, or bulk-suspension polymerization. After the polymerization is completed, in order to remove unreacted monomers, polymerization solvent and the like, a treatment is performed under vacuum to obtain a styrene copolymer resin (B) containing no rubber-like polymer.
[0021]
The method for mixing the rubber-modified styrene resin (A) and the styrene copolymer resin (B) for producing the resin composition of the present invention is not particularly limited. A known method, for example, a method of melting and kneading with an extruder, a method of blending with pellets and obtaining a melt-mixed branch or a directly molded product with a molding machine or the like can be used. As a special production method, a method of adding another resin melted or dissolved during the production process of one resin can also be used.
[0022]
In the production of the resin composition of the present invention, when silicone oil and / or fluorine compound is added as an impact resistance improver, it can be added at any stage of the production process. For example, either (A) or (B) may be added to the raw material before the polymerization of both, or may be added to the polymerization solution during the polymerization, You may add in a granulation process. Furthermore, when mixing (A) and (B) component is mixed, a master pellet of high silicone oil concentration is produced using silicone oil and aromatic monovinyl resin or rubber-modified aromatic monovinyl resin, It can also be added in a kneader or a molding machine.
[0023]
The resin composition of the present invention thus obtained can be suitably used for applications in which HIPS resins and ABS resins are frequently used as it is, but additives that are frequently used in HIPS resins as necessary, for example, , Antioxidants, heat stabilizers, light stabilizers, flame retardants, nonionic surfactants, anionic surfactants, liquid paraffin, higher fatty acids, metal salts of higher fatty acids, ethylene bis fatty acid amide, adipine It is also possible to add acid, dibutyl or dioctyl ester of sebacic acid, and the like.
[0024]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In addition, each physical property test method in the Example of this invention is described below.
(1) The rubber particle size resin composition is stained with osmium tetroxide, and an electron micrograph is taken by an ultrathin section method. In a photograph magnified 10,000 times, the particle diameter of 1000 or more dispersed rubber particles is measured, and the average particle diameter is obtained by the following formula.
Average particle size = ΣniDi 4 ÷ ΣniDi 3
(Where ni is the number of rubber-like polymer particles having a particle diameter Di)
[0025]
(2) Total light transmittance After dissolving the resin composition in methyl ethyl ketone, the insoluble matter is settled and removed by centrifugation, and the supernatant is separated as the soluble matter. After the soluble component was dried to remove methyl ethyl ketone, a 0.5 × 30 × 40 (mm) plate-shaped molded product was injection molded by injection molding, and the molded product was measured according to JIS K7105.
[0026]
(3) Amount of rubber component Determined by the Wis method.
(4) IZ impact strength Measured according to JIS K6871 (notched).
(5) Bending elastic modulus It calculated | required based on ASTM D-790.
[0027]
(6) Gloss Determined according to JIS K7105.
(7) Image sharpness Determined according to JIS K7105.
(8) Pencil scratch value Determined according to JIS K5400.
[0028]
Example 1
(A) Rubber Modified Styrene Resin (A) Component 90 parts by weight of polymerized styrene and 10 parts by weight of low-cis polybutadiene rubber were dissolved in 100 parts by weight of ethylbenzene and 22 parts by weight of ethylbenzene and ditertiary butyl peroxycyclohexane 0 The raw material solution dissolved by adding .015 parts by weight is continuously supplied to the first complete mixing tank reactor at a constant supply rate and polymerized at 110 ° C., and then the column type plug flow reaction with a stirrer is continued. The entire reactor was continuously charged into the second reactor, which was a reactor, to polymerize. The polymerization temperature at the outlet of the second reactor was adjusted to 140 ° C.
[0029]
The number of revolutions of the stirrer was 150 rpm for the first reactor and 100 rpm for the second reactor. At the outlet of the first reactor, the rubbery polymer is not yet dispersed particles. As a result of polymerization while stirring in the second reactor, the polymerization liquid is dispersed particles at the outlet of the second reactor. The state was completed. Next, the entire amount of the polymerization solution is continuously charged into a third reactor composed of a static mixer type plug flow reactor so that the temperature becomes higher along the flow direction when the outlet polymerization temperature is in the range of 160 ° C. The polymerization was continued by adjusting the temperature gradient so as to proceed until the polymerization conversion of styrene reached 85%. After removing volatile components under reduced pressure, the polymerization solution was pelletized after adding 0.1 part by weight of liquid paraffin. The average rubber particle size of this component (A) was 1.1 μm.
[0030]
(B) Styrene-methyl methacrylate copolymer resin (B) component 70 parts by weight of polymerized styrene and 100 parts by weight of a mixed solution in which 30 parts by weight of methyl methacrylate were dissolved, and 10 parts by weight of ethylbenzene was added and dissolved. The raw material liquid was continuously supplied to the complete mixing tank reactor at a constant supply rate and polymerized at 140 ° C. The conversion rate of the polymerization liquid discharged from the reactor was 74%. The polymerization liquid was pelletized by removing volatile components under reduced pressure in a vented twin screw extruder. A styrene-methyl methacrylate copolymer resin having a methyl methacrylate unit content of 33% by weight was obtained.
[0031]
(C) Preparation of blended resin composition Blended at a ratio of 75% by weight of component (A) and 25% by weight of component (B) obtained by the above operation, kneaded and pelletized using a twin screw extruder. The intended thermoplastic resin composition was obtained. Table 1 shows various analysis values and physical property measurement results.
[0032]
Examples 2-3
A thermoplastic resin composition was prepared in the same manner as in Example 1 except that the mixing ratio of the component (A) and the component (B) in Example 1 was changed as shown in Table 1.
Various analysis values and physical property measurement values are shown in Table 1.
[0033]
Comparative Examples 1-4
Except for the case where only the component (A) and the component (B) used in Examples 1 to 3 were used alone and the mixing ratio of the component (A) and the component (B) in Example 1 were changed as shown in Table 1. A thermoplastic resin composition was prepared in the same manner as in Example 1.
Various analysis values and physical property measurement values are shown in Table 1.
[0034]
Example 4
In the polymerization of the component (A) in Example 1, the same operation as in Example 1 was performed except that the rotation speed of the stirrer of the second reactor was 150 rpm. Polymerization was performed and pelletized. The average rubber particle size of this component (A) was 0.6 μm. 50% by weight of the component (A) and 50% by weight of the component (B) of Example 1 were added, and 0.05 parts by weight of a silicone oil having a surface tension of 24.0 dyne / cm at 25 ° C. was added. The target thermoplastic resin composition was obtained by kneading and pelletizing using an extruder. Table 1 shows the mixing ratio, silicone oil content, and various analytical values, and Table 1 shows the physical property measurement results.
[0035]
Example 5
Except that the silicone oil added in the preparation of the thermoplastic resin composition of Example 4 was changed to 0.05 parts by weight of perfluoropolyether having a surface tension at 25 ° C. of 18.0 dyne / cm, Example 4 and The same operation was performed to prepare a target thermoplastic resin composition. Table 1 shows the fluorine compound content, various analytical values, and physical property measurement results.
[0036]
Example 6
In the adjustment of the thermoplastic resin composition of Example 4, the addition amount of silicone oil having a surface tension of 24.0 dyne / cm at 25 ° C. was changed to 0.0475 parts by weight, and the surface tension at 25 ° C. was 18. The target thermoplastic resin composition was prepared by performing the same operation as in Example 4 except that 0.0025 part by weight of 0 dyne / cm perfluoropolyether was added.
Table 1 shows the silicone oil content, fluorine compound content, various analytical values, and measured physical properties.
[0037]
Comparative Example 5
In the polymerization of the component (A) in Example 1, the same operation as in Example 1 was performed except that the rotation speed of the stirrer of the second reactor was 500 rpm. Polymerization was performed and pelletized. The average rubber particle diameter of the component (A) was 0.2 μm. 50% by weight of component (A) is blended with 50% by weight of component (B) used in Example 1, and the addition amount of silicone oil having a surface tension at 25 ° C. of 24.0 dyne / cm is reduced to 0. 0.0475 part by weight and 0.0025 part by weight of perfluoropolyether having a surface tension at 25 ° C. of 18.0 dyne / cm were added to prepare a target thermoplastic resin composition.
Various analysis values and physical property measurement values are shown in Table 1.
[0038]
Comparative Example 6
Various analysis values and physical property measurement values of resin compositions prepared by adding 0.05 parts by weight of silicone oil having a surface tension at 25 ° C. of 24.0 dyne / cm to only the component (A) used in Examples 4 to 6 are as follows. Table 1 shows.
[0039]
Comparative Example 7
In Example 1, component (A) was polymerized and pelletized by the same operation as in Example 1 except that the number of revolutions of the stirrer of the second reactor was 50 revolutions / minute. . The average rubber particle size of this component (A) was 2.7 μm. The blending ratio and various analysis values are shown in Table 1, and the measured physical properties are shown in Table 2.
[0040]
[Table 1]
Figure 0003652438
[0041]
Example 7
In the polymerization of the component (B) in Example 1, a raw material solution obtained by adding 10 parts by weight of ethylbenzene to 100 parts by weight of a mixed solution in which 20 parts by weight of styrene and 80 parts by weight of methyl methacrylate are dissolved is used. The component (B) was adjusted by performing the same operation as in Example 1 except that the polymerization temperature was changed to 160 ° C. A styrene-methyl methacrylate copolymer resin having a methyl methacrylate unit content of 81% by weight was obtained. The component (A) used in Example 1 was 75% by weight and the component (B) obtained by the above operation was blended in a proportion of 25% by weight, and kneaded and pelletized using a twin screw extruder. A resin composition was obtained. Various analysis values and physical property measurement values are shown in Table 2.
[0042]
Example 8
A resin composition was prepared in the same manner as in Example 7 except that the mixing ratio was changed to 50% by weight of component (A) and 50% by weight of component (B). Various analysis values and physical property measurement values are shown in Table 2.
[0043]
Comparative Example 8
Table 2 shows various analysis values and physical property measurement values of only the component (B) used in Examples 7 and 8.
[0044]
Example 9
In polymerization of the component (B) in Example 1, 10 parts by weight of ethylbenzene was added to 100 parts by weight of a mixed solution in which 90 parts by weight of styrene and 10 parts by weight of methacrylic acid were dissolved, and the raw material liquid was changed. Except for the above, the same operation as in Example 1 was performed to adjust the component (B). A styrene-methacrylic acid copolymer resin having a methacrylic acid unit content of 16% by weight was obtained. The mixture was blended at a ratio of 75% by weight of component (A) used in Example 1 and 25% by weight of component (B) obtained by the above operation, and kneaded and pelletized using a twin screw extruder. A thermoplastic resin composition was obtained. Table 2 shows various analysis values and physical property measurement results.
[0045]
Example 10
A thermoplastic resin composition was prepared in the same manner as in Example 7 except that the mixing ratio was changed to 50% by weight of component (A) and 50% by weight of component (B).
Various analysis values and physical property measurement values are shown in Table 2.
[0046]
Comparative Example 9
Table 2 shows various analysis values and physical property measurement values of only the component (B) used in Examples 9 and 10.
[0050]
[Table 2]
Figure 0003652438
[0051]
【The invention's effect】
The thermoplastic resin composition of the present invention is a material that has excellent balance of scratch resistance, appearance, impact resistance, and rigidity, and is not easily damaged without being coated, such as electrical, electronic, OA, and communication equipment. It can be a resin composition suitable as a material for injection molding in the field.

Claims (3)

ゴム状重合体を分散含有し、該分散粒子の平均粒子径が0.3〜1.5μmであるゴム変性スチレン系樹脂(A)が80〜30重量%、スチレン系単量体に(メタ)アクリル酸エステル系単量体、(メタ)アクリル酸系単量体から選ばれる少なくとも一種以上の共重合可能な単量体が共重合したスチレン系共重合樹脂(B)が20〜70重量%の割合で配合されたことを特徴とするゴム変性スチレン系樹脂組成物。The rubbery polymer containing dispersed, the average rubber-modified styrenic resin particle size of 0.3 to 1.5 .mu.m (A) is 80 to 30% by weight of the dispersed particles, the styrene monomer (meth) 20 to 70% by weight of a styrene copolymer resin (B) obtained by copolymerization of at least one copolymerizable monomer selected from an acrylic ester monomer and a (meth) acrylic monomer A rubber-modified styrenic resin composition characterized by being blended in a proportion. 請求項1記載の樹脂組成物中の粒子状に分散するゴム状弾性体を分離した後のマトリックス樹脂成分のみからなる、0.5mm厚みのプレート状成形の全光線透過率(Tt:%)が、45≦Tt<90の範囲にあることを特徴とするゴム変性スチレン系樹脂組成物。The total light transmittance (Tt:%) of a 0.5 mm-thick plate-shaped molded article composed of only the matrix resin component after separating the rubber-like elastic body dispersed in the particulate form in the resin composition according to claim 1. Is in a range of 45 ≦ Tt <90, a rubber-modified styrenic resin composition. 樹脂組成物中には25℃における表面張力が25dyne/cm以下のシリコーンオイル0.005〜0.5重量%および/または、25℃における表面張力が30dyne/cm以下のフッ素化合物0.001〜0.5重量%が含有されていることを特徴とする請求項1又は請求項2記載のゴム変性スチレン系樹脂組成物。  In the resin composition, 0.005 to 0.5% by weight of silicone oil having a surface tension at 25 ° C. of 25 dyne / cm or less and / or fluorine compound 0.001 to 0 having a surface tension at 25 ° C. of 30 dyne / cm or less. The rubber-modified styrenic resin composition according to claim 1 or 2, wherein 0.5% by weight is contained.
JP11509696A 1996-05-09 1996-05-09 Rubber-modified styrenic resin composition Expired - Fee Related JP3652438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11509696A JP3652438B2 (en) 1996-05-09 1996-05-09 Rubber-modified styrenic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11509696A JP3652438B2 (en) 1996-05-09 1996-05-09 Rubber-modified styrenic resin composition

Publications (2)

Publication Number Publication Date
JPH09302194A JPH09302194A (en) 1997-11-25
JP3652438B2 true JP3652438B2 (en) 2005-05-25

Family

ID=14654116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11509696A Expired - Fee Related JP3652438B2 (en) 1996-05-09 1996-05-09 Rubber-modified styrenic resin composition

Country Status (1)

Country Link
JP (1) JP3652438B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6785054B2 (en) * 2016-04-05 2020-11-18 東洋スチレン株式会社 Styrene-based resin composition
KR102374187B1 (en) * 2019-12-24 2022-03-14 한화토탈 주식회사 Method of producing rubber composition, rubber composition made by the same, and tire made by employing the same

Also Published As

Publication number Publication date
JPH09302194A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
KR930010501B1 (en) Thermoplastic copolymers
JPS6346106B2 (en)
US4631307A (en) Heat-resistant high impact styrene resin, process for production thereof, and resin composition comprising said styrene resin
JP3652438B2 (en) Rubber-modified styrenic resin composition
US6121385A (en) Rubber-modified styrenic resin composition
EP0859026B1 (en) Rubber-modified aromatic vinyl resin composition and process for the production thereof
CN109810457B (en) Polymethyl methacrylate resin/butadiene graft polymer composition and preparation method thereof
JP2000204220A (en) Modifier for methacrylic resin
JP3974225B2 (en) Process for producing rubber-modified aromatic vinyl resin composition
JPH02135255A (en) Low-gloss thermoplastic resin composition
KR100453711B1 (en) Rubber-modified Styrenic Resin Composition
WO2000063289A1 (en) Methacrylic resin modifier composition less dependent on processing conditions
JP3657370B2 (en) Rubber-modified aromatic vinyl resin composition
JP3538491B2 (en) Thermoplastic resin composition
JPH1036618A (en) Rubber-modified styrenic resin composition and molded product thereof
JPH1160881A (en) Rubber-modified styrene resin composition
JP2546936B2 (en) Styrene resin composition
JPH09124889A (en) Thermoplastic resin composition
KR20220040211A (en) Method for preparing graft copolymer, graft copolymer and resin composition comprising the copolymer
JPH10298375A (en) Rubber-modified heat-resistant styrene-based resin composition
KR910008280B1 (en) Rubber - modified styren based copolymer
JP3724591B2 (en) High gloss resin composition
KR20000055264A (en) Abs resin composition with good painging
JPH0665321A (en) Heat stabilizer and thermoplastic resin composition
JPS59196356A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees