JP3668009B2 - Method for promoting rust stabilization of steel - Google Patents

Method for promoting rust stabilization of steel Download PDF

Info

Publication number
JP3668009B2
JP3668009B2 JP26634498A JP26634498A JP3668009B2 JP 3668009 B2 JP3668009 B2 JP 3668009B2 JP 26634498 A JP26634498 A JP 26634498A JP 26634498 A JP26634498 A JP 26634498A JP 3668009 B2 JP3668009 B2 JP 3668009B2
Authority
JP
Japan
Prior art keywords
rust
steel
titanium
feooh
promoting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26634498A
Other languages
Japanese (ja)
Other versions
JP2000096254A (en
Inventor
文雄 湯瀬
武典 中山
俊明 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26634498A priority Critical patent/JP3668009B2/en
Publication of JP2000096254A publication Critical patent/JP2000096254A/en
Application granted granted Critical
Publication of JP3668009B2 publication Critical patent/JP3668009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の新しい表面処理方法に属し、大気腐食環境に対する保護作用を有する錆層を短期間で形成する錆安定化促進方法の技術分野に属するものである。
【0002】
【従来の技術】
一般に知られているように、鋼にP 、Cu、Cr、Ni等の元素を添加することにより、大気中における耐食性を向上させることができる。これらの低合金鋼は耐候性鋼と呼ばれるが、屋外において数年で腐食に対して安定錆と呼ばれる保護性のある錆を形成し、以後塗装等の耐食処理作業を不要とする所謂メンテナンスフリー鋼である。しかしながら、安定錆が形成されるまでの数年〜十数年間は、赤錆や黄錆等の浮き錆や流れ錆を生じて外見的に好ましくなく、また周囲環境の汚染原因にもなっている。この問題については、例えば特開平1-142088号公報に、リン酸塩皮膜を形成させる表面処理方法が提案されている。また、硫酸クロム溶液を塗布液として鋼材表面に塗布することにより防食性を高める方法が特許第2699733 号、特開平5-156466号公報、特開平5-247663号公報に開示してある。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来技術は、リン酸皮膜を形成させる以前に適当な前処理を施す必要があるなど処理の内容が複雑であり、また、鋼材の溶接が必要な場合は溶接部に処理を施すことは容易ではなく、建築構造物には適用が困難であるなどの問題があった。また、硫酸クロム溶液塗布方法は非常に優れた技術であるが、海浜地区等の腐食が促進されやすい環境によっては必ずしも防食効果が得られない場合がある。
【0004】
本発明は、上記の問題点を解決するためになされたもので、鋼の表面あるいは錆層に施工性および経済性の優れた表面処理を施すことにより、処理後の赤錆や黄錆等の浮き錆や流れ錆が生じ難い安定錆を早期により効果的に形成させる鋼の錆安定化促進方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
その要旨は、 1.0質量%以上のチタンイオンもしくはチタン酸イオンを含有させたpH7以上の溶液を、鋼材表面あるいは鋼材表面の錆層に塗布することによって、鋼材表面に前記塗布後に新たに形成された錆層および前記塗布前に既に形成されている錆層の防食性を高める鋼の錆安定化促進方法である。さらに、上記溶液が 1.0〜50.0質量%の硫酸チタン溶液であることを特徴とする。
【0006】
また、 1.0〜50.0質量%の硫酸チタン溶液とCu、Ni、Fe、Cr、P イオンの1種または2種以上を 0.1〜25.0質量%含んだ溶液を、鋼材表面あるいは鋼材の錆層に塗布することによって、錆層および既に形成されている錆層の防食性を高める鋼の錆安定化促進方法である。
【0007】
さらに、錆層のpHが7以上にあることを特徴とする鋼の錆安定化促進方法である。
【0008】
【発明の実施の形態】
錆の構造が緻密であれば、物理的に大気腐食環境を遮断し易く、また浮き錆や流れ錆の根本的な原因であるFeイオンの溶出を低減する。しかしながら、錆に割れや細孔があると、これが水や酸素の供給経路となり錆の防食性が低減する。硫酸チタン溶液の塗布の効果は、形成される錆を緻密にし割れや細孔の少ない構造にすること、および錆中の割れや細孔に硫酸チタン溶液が流入しそれらの欠陥を埋め錆を緻密にすることにある。そのためには、 1.0質量%以上の濃度の硫酸チタンが必要であるが、50.0質量%を超えて含有しても効果は飽和し経済的にも不利となる。したがって、硫酸チタンの濃度は 1.0〜50.0質量%の範囲に限定する。
【0009】
また、チタンイオン、チタン酸イオンを含有した溶液については特に限定しない。硫酸チタン溶液やリン酸チタン溶液などのようにチタンイオンを含有する溶液でも、また、チタンあるいはチタンを含有する合金を電気化学的にアノード溶解させたりすることによりチタンイオンを供給することも可能である。ただし、経済的、生産的、安定錆の生成効率から硫酸チタン溶液を塗布する方法が最も望ましい。
【0010】
また、上記の効果は請求項3に記載のCu、Ni、Fe、Cr、P イオンも有し、また、複合効果も見られるため、硫酸チタン溶液にはCu、Ni、Fe、Cr、P イオンの1種または2種以上を含む方がよい。中でも硫酸チタン溶液にCuとNiのイオンを複合添加したものが優れている。しかし、25.0質量%を超えて含有しても効果は飽和し経済的にも不利となるので、添加イオン濃度は 0.1〜25.0質量%の範囲に限定する。
【0011】
表面塗布溶液、錆層のpHが 7以上、望ましくは 9.0以上にすることの目的は、α-FeOOH錆がアルカリ環境下で早期に生成するからである。具体的には、NaOH溶液や KOH溶液を塗布することで簡便に処理できる。pHが 9.0以上、さらには12以上でその生成速度は上昇するが、処理の安全性を考えて中性から弱アルカリ環境でも構わない。
【0012】
ここで、特筆すべき事項はチタンの効果である。それは、チタンはα-FeOOH錆生成促進効果を持つことである。通常、大気腐食で生成する錆にはα-FeOOH錆、β-FeOOH錆、γ-FeOOH錆、マグネタイト(Fe3O4) 、非晶質錆の5種類がある。その中でもα-FeOOH錆は熱力学的に最も安定であり、耐候性鋼の最終安定錆ともいわれている。安定錆は形成に通常数年以上かかるといわれており、それを早期に形成できれば優れた耐食性を持つことになる。発明者らは、チタンがα-FeOOH錆の生成促進効果が著しいことを見出し、本願発明に至ったものである。
【0013】
また、チタンはα-FeOOH錆の生成促進効果を持つため、乾湿繰り返しの腐食環境下で生成しつつある錆、または既に生成している錆をα-FeOOH錆に変換する機能も有する。特に、α-FeOOH錆はアルカリ側で生成し易いため、硫酸チタン溶液塗布後にNaOH等のアルカリ溶液を塗布することにより pH7以上のアルカリ環境にしてα-FeOOH錆の生成を助長することも可能であることは上述の通りである。特開平5-247663号公報にも、錆層に水酸イオン(OH- )を供給し、 pH7以上のアルカリ環境にして鋼材表面の錆層をα-FeOOH錆に変換することが開示してあるが、それよりも本発明のチタンのα-FeOOH錆の生成効果が格段に優れていることはいうまでもない。チタンの優れた効果はα-FeOOH錆の生成促進のみではなく、従来より安定性、緻密性に優れると言われる非晶質錆の生成促進作用も有すると言うことである。すなわち、後述の実施例でも明らかであるが、少量の添加の場合、生成錆を緻密化し、非晶質錆を生成させる。多量の場合は、α-FeOOH錆の生成を促進させる。チタンはその添加量によらず耐食性に有利な非晶質錆、α-FeOOH錆を生成促進させる。
【0014】
チタンはα-FeOOH錆の生成効果以外に、塩化物環境下で生成し易い錆で脆く、安定性に欠け耐食性の観点から好ましくないとされている悪い錆であるβ-FeOOH錆の生成を抑制する働きを併せ持っている。つまり、チタンは海浜地区などの塩化物環境下ではβ-FeOOH錆の生成を抑えてα-FeOOH錆の生成を助け、安定な錆を形成すると考えられる。
【0015】
以上述べてきた処理液は、エアスプレー、エアレススプレー、あるいは刷毛塗り等のいずれの方法によっても塗布することができるため、場所を選ばず施工が可能である。また、望ましくは複数回塗布するのがよいが、1回の塗布作業でも効果があるので経済性にも優れている。さらに、現地塗布が可能なため、現地での鋼材の切断、溶接等の加工後にも対応できる。また、処理液の保持のために有機樹脂に処理液を混合させて塗布することや、処理液塗布後に塗装を施してもかまわない。ここで使用される有機樹脂はエポキシ樹脂、ビニル樹脂、ポリエステル樹脂、アクリル樹脂、アルキド樹脂、ブチラール樹脂、フタル酸樹脂など、あるいはこれを組み合わせ、または積層してもよく、特に限定されない。
【0016】
なお、チタンイオン、チタン酸イオンを同時に含む溶液を使用しても当然錆安定化効果はある。また、鋼材にチタンを含有した鋼を使用した場合、鋼材からもTiが供給され相乗効果でさらにその効果は優れる。
【0017】
【実施例】
以下、本発明を実施例に基づいて説明する。
【0018】
【実験1】
硫酸チタン等を用いて人工的にα-FeOOH錆を生成し、チタンの錆安定化効果を検証した。まずFe(NO3)3溶液にTi(SO4)2溶液を Ti/Fe=0〜10mol %になるように添加し、NaOH溶液を加え、pHを12に調整し、α-FeOOH錆を生成した。この試料をX線回折法(XRD) で分析し、結晶粒径を調べた。同時にNi、Mn、Znについても錆安定化効果を調べた。その結果を図1に示す。なお、Ti添加試料は 100℃で 5日間成熟させた。
【0019】
図1に示すように、Ti添加試料のみ結晶粒径が成長しており、チタンのみが熱力学的に安定なα-FeOOH錆の生成促進作用を持つことが明らかである。このことから、本発明が鋼の錆安定化促進に有効であることが明らかである。
【0020】
【実験2】
表1に示す化学成分の供試鋼から、 150×70×4mm の試験片を採取し、試験片表面をエメリー紙研磨およびバフ研磨により鏡面に仕上げ、表2に示す処理液を試験片全面に塗布した。処理液を塗布した試験片は自社、加古川製鉄所内の暴露試験場で 180日間暴露した。暴露に際しては、試験片は水平に対して30°傾斜させ、南向きに暴露した。なお、暴露試験場は海岸に面しているが、試験片には週1回 NaCl0.1%溶液を散布した。暴露後、各試験片について流れ錆の評価、板厚減少量および錆安定度を調査した。その結果を表3に示す。
【0021】
流れ錆の評価は、試験片の外観を観察し、◎、○、△、×で評価した。評価基準は以下の通りである。◎:全くなし、表面は黒〜茶褐色で安定している。○:殆どなし、表面は茶褐色で安定している。△:若干あり、一部に黄褐色の錆が見られる。×:あり、全体が赤〜黄褐色であり、試料下部および暴露台も錆汁で汚染されている。
【0022】
板厚減少量については、暴露試験終了後、表面の錆層を除去し、重量変化から板厚減少量を求め、この板厚減少量(腐食減量)により評価した。なお、表3に示す板厚減少量は、普通鋼の未処理のものの板厚減少量(40μm )を基準にして、それぞれの板厚減少量を百分率で表している。
【0023】
さらに電子線プルーブX線マイクロアナリシス(EPMA)により錆中の主要元素分布を調査するとともに、X線回折法により錆の分析を行なった。具体的には、岩田らの ZnOを内部標準物質として用いた定量分析法「岩田、中山、泊里ら、腐食防食 '95 C−306( 341〜344 頁) 」に準じた。すなわち、内部標準として一定質量比のZnO を鋼材から採取した錆試料に混合し粉末化したものをX線回折法により同定し、α−FeOOH 、β−FeOOH 、γ−FeOOH およびFe3O4 の4種類の結晶性錆の各々の固有の回折ピークの積分強度比と、予め求めた各々の錆成分の検量線から、各々の結晶性の錆成分の定量化を行った。そして、非晶質成分の割合(%) は錆の合計量からこれら各々の結晶性の錆成分量を差し引いて算出した。分析の結果、錆安定度をA、B、C、Dで評価した。錆安定度は、非晶質錆+α-FeOOHが、A: 0〜30質量%、B:31〜40質量%、C:41〜50質量%、D:50質量%以上である。
【0024】
表3に示すように、本発明例はいずれの試験片においても、流れ錆が非常に少なく、錆汁などは観察されなかった。特に、本発明法が耐候性鋼およびTi添加鋼以外の普通鋼にも効果があることが明らかである。これに対して比較例は処理液の錆安定化促進効果が小さいため、多くの流れ錆が観察され、試験片表面の色も赤褐色〜黄褐色で、本発明例の黒〜茶褐色とは異なり汚かった。
【0025】
本発明例の板厚減少量は比較例のほぼ 2/3以下に抑えられており、本発明の錆安定化促進方法(処理液の塗布)によって、試験片表面に安定錆が形成され、試験片表面を保護していることが認められる。錆安定化元素を複合添加することにより、さらに優れた効果が得られることが分かる。また、鋼材としてTi添加鋼を用いるとその効果はさらに優れている。
【0026】
EPMAにより本発明例の錆層中には錆安定化に有効な処理液中の元素が濃縮していることが認められ、錆の割れも少なく安定錆が形成されていると考えられる。ちなみに、X線回折法によりる錆の分析の結果、表3に示すように、本発明例の錆安定度は非晶質錆+α-FeOOHが41〜50質量%であるC、50質量%以上であるDであるが、比較例ではA、Bであり安定錆が形成されていないことがわかる。すなわち、比較例では錆層中の錆安定化に有効な元素の濃縮は僅かであり、錆の緻密さにおいて劣っていると言える。
【0027】
【表1】

Figure 0003668009
【0028】
【表2】
Figure 0003668009
【0029】
【表3】
Figure 0003668009
【0030】
【発明の効果】
以上の説明から明らかなように、本発明の鋼の錆安定化促進方法によって処理された鋼材は、処理後早期に赤錆や黄錆等の浮き錆や流れ錆を殆ど生じることなく安定錆を形成する。なお、耐候性鋼に対する効果と比較すれば、やや劣るものの、普通鋼に対しても本発明の方法は有効である。また、その処理は容易であり、処理以降大気環境下で形成される錆層および既に形成されている錆層の防食性を高め、これによって鋼の錆安定化を促進でき、建築物や構造物などの社会資本への鋼材の裸使用に寄与することが期待できる。
【図面の簡単な説明】
【図1】α-FeOOH錆の結晶粒径に及ぼす金属元素の影響を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to a new surface treatment method for steel and belongs to the technical field of a rust stabilization promotion method for forming a rust layer having a protective action against an atmospheric corrosive environment in a short period of time.
[0002]
[Prior art]
As is generally known, corrosion resistance in the atmosphere can be improved by adding elements such as P 2, Cu, Cr, and Ni to steel. These low-alloy steels are called weather-resistant steels, but they form a protective rust called stable rust against corrosion in a few years outdoors, so-called maintenance-free steel that eliminates the need for corrosion-resistant treatment work such as painting. It is. However, for several years to more than ten years until stable rust is formed, floating rust and flow rust such as red rust and yellow rust are generated, which is not preferable in appearance, and also causes pollution of the surrounding environment. Regarding this problem, for example, JP-A-1-42088 proposes a surface treatment method for forming a phosphate film. Further, methods for enhancing the corrosion resistance by applying a chromium sulfate solution as a coating solution to a steel material surface are disclosed in Japanese Patent No. 2699733, Japanese Patent Laid-Open No. 5-156466, and Japanese Patent Laid-Open No. 5-247663.
[0003]
[Problems to be solved by the invention]
However, the above-mentioned conventional technique requires complicated pretreatment before forming the phosphoric acid film, and the contents of the treatment are complicated, and if welding of steel is necessary, the weld is treated. However, it was not easy and it was difficult to apply to building structures. Moreover, although the chromium sulfate solution coating method is a very excellent technique, the anticorrosion effect may not always be obtained depending on the environment where corrosion is likely to be promoted, such as in a beach area.
[0004]
The present invention has been made to solve the above-mentioned problems. By applying a surface treatment with excellent workability and economy to the surface of the steel or the rust layer, floating of red rust, yellow rust, etc. after the treatment is achieved. An object of the present invention is to provide a method for promoting the stabilization of rust of steel, in which stable rust that is less likely to cause rust and flow rust is formed more effectively at an early stage.
[0005]
[Means for Solving the Problems]
The gist is that a solution having a pH of 7 or more containing 1.0 mass% or more of titanium ions or titanate ions is applied to the steel material surface or a rust layer on the steel material surface, and is newly formed on the steel material after the application. This is a method for promoting rust stabilization of steel, which enhances the corrosion resistance of the rust layer and the rust layer already formed before the application. Further, the solution is characterized by being a 1.0 to 50.0 mass% titanium sulfate solution.
[0006]
Also, apply a 1.0-50.0% by mass titanium sulfate solution and a solution containing 0.1-25.0% by mass of one or more of Cu, Ni, Fe, Cr, P ions to the steel surface or the rust layer of the steel. This is a method for promoting rust stabilization of steel, which enhances the corrosion resistance of the rust layer and the already formed rust layer.
[0007]
Furthermore, it is a method for promoting rust stabilization of steel, characterized in that the pH of the rust layer is 7 or more.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
If the rust structure is dense, it is easy to physically block the atmospheric corrosive environment and reduce the elution of Fe ions, which is the root cause of floating rust and flow rust. However, if there are cracks or pores in the rust, this becomes a supply path for water and oxygen, and the corrosion resistance of the rust is reduced. The effect of the application of the titanium sulfate solution is to make the rust formed dense and have a structure with few cracks and pores, and the titanium sulfate solution flows into the cracks and pores in the rust and fills those defects to make the rust dense. Is to make it. For that purpose, titanium sulfate having a concentration of 1.0% by mass or more is necessary. However, if the content exceeds 50.0% by mass, the effect is saturated and economically disadvantageous. Therefore, the concentration of titanium sulfate is limited to the range of 1.0 to 50.0% by mass.
[0009]
Moreover, it does not specifically limit about the solution containing a titanium ion and a titanate ion. Titanium ions can be supplied even in solutions containing titanium ions, such as titanium sulfate solutions and titanium phosphate solutions, or by electrochemically anodic dissolution of titanium or titanium-containing alloys. is there. However, the method of applying a titanium sulfate solution is most desirable from the viewpoint of economical, productive and stable rust formation efficiency.
[0010]
In addition, since the above effect has Cu, Ni, Fe, Cr, and P ions according to claim 3 and a composite effect is also observed, the titanium sulfate solution contains Cu, Ni, Fe, Cr, and P ions. It is better to include 1 type or 2 types or more. Of these, a titanium sulfate solution in which Cu and Ni ions are added in combination is excellent. However, if the content exceeds 25.0% by mass, the effect is saturated and economically disadvantageous, so the concentration of added ions is limited to the range of 0.1 to 25.0% by mass.
[0011]
The purpose of adjusting the pH of the surface coating solution and the rust layer to 7 or higher, preferably 9.0 or higher is that α-FeOOH rust is formed early in an alkaline environment. Specifically, it can be easily processed by applying NaOH solution or KOH solution. When the pH is 9.0 or more, further 12 or more, the production rate increases.
[0012]
Here, the matter to be noted is the effect of titanium. That is, titanium has the effect of promoting α-FeOOH rust formation. Usually, there are five types of rust generated by atmospheric corrosion: α-FeOOH rust, β-FeOOH rust, γ-FeOOH rust, magnetite (Fe 3 O 4 ), and amorphous rust. Among them, α-FeOOH rust is the most thermodynamically stable and is also called the final stable rust of weathering steel. It is said that stable rust usually takes several years or more to form, and if it can be formed early, it will have excellent corrosion resistance. The inventors have found that titanium has a remarkable effect of promoting the formation of α-FeOOH rust, and have reached the present invention.
[0013]
In addition, since titanium has an effect of promoting the formation of α-FeOOH rust, it has a function of converting rust that is being generated in a corrosive environment of repeated drying and wetting or that has already been generated into α-FeOOH rust. In particular, α-FeOOH rust is easily generated on the alkali side, so it is possible to promote the formation of α-FeOOH rust in an alkaline environment of pH 7 or higher by applying an alkaline solution such as NaOH after applying the titanium sulfate solution. It is as described above. Japanese Laid-Open Patent Publication No. 5 (1990) -47663 also discloses that hydroxide ions (OH ) are supplied to the rust layer to convert the rust layer on the steel surface into α-FeOOH rust in an alkaline environment of pH 7 or higher. However, it goes without saying that the production effect of the α-FeOOH rust of the titanium of the present invention is much better than that. The excellent effect of titanium is that it not only promotes the formation of α-FeOOH rust, but also has the effect of promoting the formation of amorphous rust, which is said to be more stable and dense than before. That is, as will be apparent from the examples described later, when a small amount is added, the generated rust is densified and amorphous rust is generated. In the case of a large amount, the formation of α-FeOOH rust is promoted. Titanium promotes the formation of amorphous rust and α-FeOOH rust, which are advantageous for corrosion resistance, regardless of the amount of titanium added.
[0014]
In addition to the effect of forming α-FeOOH rust, titanium is brittle with rust that is easy to generate in a chloride environment, and it suppresses the formation of β-FeOOH rust, which is a bad rust that is considered unfavorable from the viewpoint of corrosion resistance and lack of stability. It also has a function to do. In other words, titanium is considered to suppress the formation of β-FeOOH rust and help the formation of α-FeOOH rust in a chloride environment such as in a beach area, thereby forming stable rust.
[0015]
Since the treatment liquid described above can be applied by any method such as air spray, airless spray or brush coating, it can be applied at any place. In addition, it is desirable to apply a plurality of times, but since it is effective even with a single application operation, it is excellent in economic efficiency. Furthermore, since it can be applied on-site, it can also be applied after processing such as cutting and welding of steel on-site. Further, in order to hold the treatment liquid, the treatment liquid may be mixed and applied to the organic resin, or may be applied after the treatment liquid is applied. The organic resin used here is not particularly limited, and may be an epoxy resin, a vinyl resin, a polyester resin, an acrylic resin, an alkyd resin, a butyral resin, a phthalic acid resin, or the like, or a combination or lamination thereof.
[0016]
In addition, even if it uses the solution which contains a titanium ion and a titanate ion simultaneously, there is naturally a rust stabilization effect. Further, when steel containing titanium is used as the steel material, Ti is also supplied from the steel material, and the effect is further excellent due to a synergistic effect.
[0017]
【Example】
Hereinafter, the present invention will be described based on examples.
[0018]
[Experiment 1]
Α-FeOOH rust was artificially generated using titanium sulfate, etc., and the rust stabilization effect of titanium was verified. First, Ti (SO 4 ) 2 solution is added to Fe (NO 3 ) 3 solution so that Ti / Fe = 0 to 10 mol%, NaOH solution is added, pH is adjusted to 12, and α-FeOOH rust is generated. did. This sample was analyzed by X-ray diffraction (XRD) to examine the crystal grain size. At the same time, Ni, Mn and Zn were also investigated for rust stabilization effect. The result is shown in FIG. Ti-added samples were matured at 100 ° C for 5 days.
[0019]
As shown in FIG. 1, only the Ti-added sample has a growing crystal grain size, and it is clear that only titanium has a thermodynamically stable α-FeOOH rust formation promoting action. From this, it is clear that the present invention is effective for promoting rust stabilization of steel.
[0020]
[Experiment 2]
Samples of 150 x 70 x 4 mm were collected from the test steels with the chemical composition shown in Table 1, and the surface of the specimen was finished to a mirror surface by emery paper polishing and buffing. The treatment solution shown in Table 2 was applied to the entire surface of the specimen. Applied. The test piece coated with the treatment solution was exposed for 180 days at our company's Kakogawa Works. During the exposure, the test piece was inclined 30 ° with respect to the horizontal and exposed southward. The exposure test site faces the coast, but the test piece was sprayed with a 0.1% NaCl solution once a week. After the exposure, each test piece was examined for flow rust evaluation, thickness reduction, and rust stability. The results are shown in Table 3.
[0021]
The flow rust was evaluated by observing the appearance of the test piece and evaluating with ◎, ○, Δ, and ×. The evaluation criteria are as follows. A: None at all, the surface is black to brown and stable. ○: Almost none, the surface is brown and stable. Δ: Some, yellowish brown rust is seen in part. X: Yes, the whole is red to tan, and the lower part of the sample and the exposure table are also contaminated with rust juice.
[0022]
Regarding the thickness reduction amount, after the exposure test was completed, the rust layer on the surface was removed, the thickness reduction amount was determined from the change in weight, and the thickness reduction amount (corrosion loss) was evaluated. The thickness reduction amounts shown in Table 3 are expressed as percentages with respect to the thickness reduction amount (40 μm) of untreated plain steel.
[0023]
Furthermore, the main element distribution in rust was investigated by electron beam probe X-ray microanalysis (EPMA), and rust was analyzed by X-ray diffraction method. Specifically, it was based on the quantitative analysis method “Iwata, Nakayama, Tomari, et al., Corrosion Protection '95 C-306 (pages 341 to 344)” using ZnO as an internal standard substance. That is, a powdered mixture of rust samples taken from steel with a constant mass ratio of ZnO as an internal standard was identified by X-ray diffraction, and α-FeOOH, β-FeOOH, γ-FeOOH and Fe 3 O 4 Each crystalline rust component was quantified from the integral intensity ratio of the intrinsic diffraction peak of each of the four types of crystalline rust and the calibration curve of each rust component determined in advance. The ratio (%) of the amorphous component was calculated by subtracting the amount of each of these crystalline rust components from the total amount of rust. As a result of the analysis, the rust stability was evaluated by A, B, C, and D. As for rust stability, amorphous rust + α-FeOOH is A: 0 to 30% by mass, B: 31 to 40% by mass, C: 41 to 50% by mass, and D: 50% by mass or more.
[0024]
As shown in Table 3, the inventive examples had very little flow rust and no rust juice was observed in any of the test pieces. In particular, it is clear that the method of the present invention is effective for ordinary steels other than weathering steel and Ti-added steel. On the other hand, in the comparative example, since the effect of promoting the rust stabilization of the treatment liquid is small, a lot of flow rust is observed, and the color of the surface of the test piece is also reddish brown to yellowish brown, which is different from the black to brownish brown color of the present invention example. It was.
[0025]
The thickness reduction amount of the example of the present invention is suppressed to about 2/3 or less of the comparative example, and the rust stabilization promoting method (application of treatment liquid) of the present invention forms stable rust on the surface of the test piece. It is observed that one surface is protected. It can be seen that a further excellent effect can be obtained by adding the rust stabilizing element in combination. Further, when Ti-added steel is used as the steel material, the effect is further excellent.
[0026]
By EPMA, it is recognized that the elements in the treatment liquid effective for rust stabilization are concentrated in the rust layer of the present invention example, and it is considered that stable rust is formed with little rust cracking. By the way, as a result of analysis of rust by X-ray diffraction method, as shown in Table 3, the rust stability of the present invention example is amorphous rust + α-FeOOH 41-50 mass% C, 50 mass% or more Although it is D which is, it turns out that it is A and B in a comparative example, and the stable rust is not formed. That is, in the comparative example, the concentration of elements effective for rust stabilization in the rust layer is slight, and it can be said that the rust density is inferior.
[0027]
[Table 1]
Figure 0003668009
[0028]
[Table 2]
Figure 0003668009
[0029]
[Table 3]
Figure 0003668009
[0030]
【The invention's effect】
As is clear from the above explanation, the steel material processed by the method for promoting rust stabilization of steel of the present invention forms stable rust almost without floating rust and flow rust such as red rust and yellow rust early after the treatment. To do. It should be noted that the method of the present invention is also effective for ordinary steel, although it is somewhat inferior to the effect on weathering steel. In addition, the treatment is easy, and the corrosion resistance of the rust layer formed in the atmospheric environment after the treatment and the rust layer already formed can be improved, thereby promoting the rust stabilization of the steel, building and structure It can be expected to contribute to the bare use of steel for social capital.
[Brief description of the drawings]
FIG. 1 is a diagram showing the influence of metal elements on the crystal grain size of α-FeOOH rust.

Claims (4)

1.0質量%以上のチタンイオンもしくはチタン酸イオンを含有させたpH7以上の溶液を、鋼材表面あるいは鋼材表面の錆層に塗布することによって、鋼材表面に前記塗布後に新たに形成された錆層および前記塗布前に既に形成されている錆層の防食性を高めることを特徴とする鋼の錆安定化促進方法。By applying a solution having a pH of 7 or more containing 1.0 mass% or more of titanium ions or titanate ions to a steel material surface or a rust layer on the steel material surface, A method for promoting rust stabilization of steel, characterized by enhancing the corrosion resistance of a rust layer already formed before coating. 上記溶液が 1.0〜50.0質量%の硫酸チタン溶液であることを特徴とする請求項1に記載の鋼の錆安定化促進方法。  The method according to claim 1, wherein the solution is a 1.0 to 50.0 mass% titanium sulfate solution. 1.0〜50.0質量%の硫酸チタン溶液とCu、Ni、Fe、Cr、P イオンの1種または2種以上を 0.1〜25.0質量%含んだ溶液を、鋼材表面あるいは鋼材の錆層に塗布することによって、錆層および既に形成されている錆層の防食性を高めることを特徴とする鋼の錆安定化促進方法。   By applying 1.0 to 50.0 mass% titanium sulfate solution and a solution containing 0.1 to 25.0 mass% of one or more of Cu, Ni, Fe, Cr, and P ions to the surface of steel or the rust layer of steel A method for promoting rust stabilization of steel, characterized by enhancing corrosion resistance of a rust layer and an already formed rust layer. 錆層のpHが7以上にあることを特徴とする請求項1または請求項2または請求項3に記載の鋼の錆安定化促進方法。 The method for promoting rust stabilization of steel according to claim 1, wherein the rust layer has a pH of 7 or more.
JP26634498A 1998-09-21 1998-09-21 Method for promoting rust stabilization of steel Expired - Lifetime JP3668009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26634498A JP3668009B2 (en) 1998-09-21 1998-09-21 Method for promoting rust stabilization of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26634498A JP3668009B2 (en) 1998-09-21 1998-09-21 Method for promoting rust stabilization of steel

Publications (2)

Publication Number Publication Date
JP2000096254A JP2000096254A (en) 2000-04-04
JP3668009B2 true JP3668009B2 (en) 2005-07-06

Family

ID=17429640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26634498A Expired - Lifetime JP3668009B2 (en) 1998-09-21 1998-09-21 Method for promoting rust stabilization of steel

Country Status (1)

Country Link
JP (1) JP3668009B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301648B2 (en) * 2012-12-26 2018-03-28 宇部興産機械株式会社 Surface treatment method for weathering steel
CN113652680B (en) * 2021-08-16 2022-12-13 兰州理工大学 Weather-resistant steel surface stabilizing treatment agent suitable for industrial atmospheric environment and treatment method

Also Published As

Publication number Publication date
JP2000096254A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
DE3031270C2 (en)
JP2010248567A (en) Surface-treated steel material excellent in corrosion resistance
JPWO2014020665A1 (en) Paint and coated steel
JP4003387B2 (en) Anticorrosion surface treatment method and anticorrosion surface treatment steel material and method of using the same
JP3668009B2 (en) Method for promoting rust stabilization of steel
JP4455712B2 (en) Coated steel with atmospheric corrosion resistance
JP2884941B2 (en) Steel material excellent in weather resistance and method of forming rust layer
KR20200064081A (en) Paint and coated steel
EP1340839A1 (en) Whiskerless galvanized product having multi-layer rust prevention film, composition for forming multi-layer rust prevention film and manufacturing method of whiskerless galvanized product having multi-layer rust prevention film
JP3578056B2 (en) Surface treated steel with excellent weather resistance and uniform appearance
JPH07207455A (en) Surface treatment for steel excellent in weather resistance
JP2699733B2 (en) Method for promoting rust stabilization of steel
JP3876620B2 (en) Anticorrosion surface treatment method and anticorrosion surface treatment steel
JPH06264256A (en) Steel excellent in weather resistance
JP4302842B2 (en) Iron rust stabilizer, method for forming stabilized iron rust layer, and steel material having stabilized iron rust layer
JP3932779B2 (en) Surface-treated steel and coating film forming method
JP2000051786A (en) Surface-treated steel material excellent in weather resistance
JP2827781B2 (en) Surface treatment method for steel
JP3367437B2 (en) Method to generate uniform weathering stable rust early
JP3267238B2 (en) Method to generate uniform weathering stable rust early
JPH05247663A (en) Steel material subjected to rust stabilization treatment and its treating method
JP3648085B2 (en) Steel material with excellent corrosion resistance and structure using this steel material
JP2001226778A (en) Rust stabilizing treating method for steel, steel subjected to same rust stabilizing treatment and steel structure constructed by same steel
JP3817942B2 (en) Surface-treated steel with excellent weather resistance
JP3219003B2 (en) Surface treatment agent for steel and surface treated steel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

EXPY Cancellation because of completion of term