JP3667365B2 - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP3667365B2
JP3667365B2 JP26118494A JP26118494A JP3667365B2 JP 3667365 B2 JP3667365 B2 JP 3667365B2 JP 26118494 A JP26118494 A JP 26118494A JP 26118494 A JP26118494 A JP 26118494A JP 3667365 B2 JP3667365 B2 JP 3667365B2
Authority
JP
Japan
Prior art keywords
hydrocarbons
flow path
exhaust gas
adsorption
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26118494A
Other languages
Japanese (ja)
Other versions
JPH08100641A (en
Inventor
衛 馬渕
政一 田中
宏行 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP26118494A priority Critical patent/JP3667365B2/en
Publication of JPH08100641A publication Critical patent/JPH08100641A/en
Application granted granted Critical
Publication of JP3667365B2 publication Critical patent/JP3667365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【産業上の利用分野】
本発明は,エンジンの排気ガス中の炭化水素を効率良く吸着,脱離させることができる排気浄化装置に関する。
【0002】
【従来技術】
自動車エンジンの排気ガスを浄化する方法として,白金,ロジウム等の貴金属を触媒として担持した三元系の触媒装置を用いる方法がある。この場合,排気ガス中の炭化水素(HC)は,一般に触媒活性温度350℃を必要とする。しかしながら,エンジン始動時においては,触媒装置が低温にあるため触媒活性温度に達していないため,炭化水素の浄化が殆ど行われない。
【0003】
そこで,これに対応するため,エンジンの排気路に触媒装置を配置すると共に,その下流側にエンジン始動時における未燃焼の炭化水素を吸着するための吸着装置を設けた排気浄化装置が提案されている(特開平4−311618)。
【0004】
上記吸着装置内には,吸着剤が配置されている。そして,エンジン始動時においては,触媒装置から排出される排気ガスを上記吸着装置に導入して上記炭化水素を吸着させる。一方,エンジンの排気ガス温度が上昇したときには,吸着装置への排気ガスの導入は中止する。そして,吸着装置に吸着されている炭化水素を放出させて,これを触媒装置の上流側へ戻し触媒装置において浄化する。
また,排気ガスの炭化水素を吸着するための吸着剤としては,炭化水素吸着性能が優れている点より,ゼオライト系吸着剤が提案されている。
【0005】
【解決しようとする課題】
しかしながら,上記従来の排気浄化装置には,次の問題がある。
即ち,上記排気ガス中の炭化水素は,メタン,エチレン等の低分子量のものから,トルエン等の高分子量のものまで広い範囲で分布している。
そのため,例えば,7〜9Å(オングストローム)などの大きな細孔径の結晶構造を有するゼオライト系吸着剤の場合には,炭化水素吸着力は,トルエン等の比較的大きな分子量の炭化水素に対しては大きいが,メタン等の比較的小さな分子量の炭化水素に対しては小さい。
【0006】
その理由は,上記大きな細孔径のゼオライト系吸着剤は,大きな分子量の炭化水素を主に吸着するため,小さな分子量の炭化水素を吸着し難いためと考えられる。
一方,4〜6Åの小さな細孔径の結晶構造を有するゼオライト系吸着剤の場合には,比較的大きな分子量の炭化水素は細孔内へ入りきれないため吸着されず,小さな分子量の炭化水素のみが吸着される。
【0007】
また,上記従来例においては,吸着装置は排気路とは別個に並列して配置してある。そのため,吸着装置に吸着された炭化水素を放出させる場合には,別途加熱等の手段を必要とする。また,放出した炭化水素を触媒装置の上流側へ戻すための還流ポンプを必要とする。そのため,コストも高い。
【0008】
本発明は,かかる従来の問題点に鑑み,排気ガス中の炭化水素を効率良く吸着,脱離させることができ,かつ低コストの排気浄化装置を提供しようとするものである。
【0009】
【課題の解決手段】
本発明は,エンジンの排気ガスを浄化する触媒装置を備えた第1流路と,
該第1流路の下流側に位置する第2流路と,
該第2流路内に配設され未燃焼の炭化水素を吸着する吸着装置と,
該吸着装置及び第2流路の下流側に位置する排出路と,
上記吸着装置又は第2流路へ排気ガスを導入するための流路切替弁と,
上記吸着装置において脱離された炭化水素を一部の排気ガスと共に上記触媒装置の上流側に戻す,一方向弁を備えた戻し流路とよりなり,
かつ,上記吸着装置は比較的大きな分子量の炭化水素を吸着するための大分子吸着層と,比較的小さな分子量の炭化水素を吸着するための小分子吸着層を有し,
上記炭化水素の脱離時には上流側において上記大分子吸着層の炭化水素を脱離させ,次いで下流側において上記小分子吸着層の炭化水素を脱離させるようにしたことを特徴とする排気浄化装置にある。
【0010】
本発明において最も注目すべきことは,上記吸着装置を上記第2流路内に配設したこと,上記戻し流路に上記一方向弁を備えたこと,及び上記吸着装置は上記大分子吸着層と小分子吸着層とを有することである。
本発明において,上記触媒装置は,白金−ロジウム触媒など,例えば排気ガスのNOX ,HC,COを同時浄化することができる三元系触媒を設けたものを用いる。
【0011】
上記吸着装置は,触媒装置よりも下流側に位置する第2流路内に配設する。そのため,吸着装置は,その全体又は一部分が,第2流路内を流れる排気ガスに曝され,排気ガス中の熱を受け取ることができる。
また,吸着装置と触媒装置の上流側との間には,上記戻し流路が設けてある。この戻し流路には,吸着装置によって脱離された炭化水素を一部の排気ガスと共に触媒装置の上流側にのみ戻し,反対方向にはガス流れを生じさせない,一方向弁が備えてある。
【0012】
この一方向弁は,吸着装置に吸着された炭化水素を脱離させる場合にのみ作動して,開弁する。この作動は,排気ガスの温度,エンジン始動後の所定時間経過後等において,例えばエンジン制御用のECUによって行われる。
上記一方向弁が開弁したときには,炭化水素と一部の排気ガスが触媒装置の上流側に導入され,これを反対側には逆流しない。
【0013】
また,上記流路切替弁は,エンジン始動時には排気ガスを吸着装置を経て排出路へ,吸着炭化水素の脱離時には排気ガスを第2流路を経て排出路へ導出するための開閉弁である。この流路切替弁は,吸着装置の下流側(図1)或いは上流側(図4)或いはこれらの中間部分に配置する。
【0014】
次に,上記吸着装置には,比較的大きな分子量の炭化水素を吸着するための大分子吸着層と,比較的小さな分子量の炭化水素を吸着するための小分子吸着層とを有する。ここに比較的大きな分子量の炭化水素とは,トルエン,キシレンなどの炭化水素を,一方比較的小さな分子量の炭化水素とはメタン,エタン,エチレン,プロピレンなどの炭化水素をいう。
【0015】
勿論,上記大分子吸着層と小分子吸着層とは上記大分子,小分子の炭化水素のみを吸着するものではなく,これらの中間の分子量の炭化水素も大分子吸着層又は小分子吸着層のいずれかに吸着される。また,必要に応じて,後述のごとく中間の分子量の炭化水素を吸着するための中間分子吸着層を設けることもできる。
【0016】
上記大分子吸着層には,例えば6〜9Åの大きい細孔径を有するゼオライト系吸着剤を配置する。一方,小分子吸着層には,例えば3〜6Åの小さい細孔径を有するゼオライト系吸着剤を配置する。中間分子吸着層には,例えば5〜7Åの中間の細孔径を有するゼオライト系吸着剤を配置する。
【0017】
上記大分子吸着層と小分子吸着層とは,排気ガスの流れ方向に沿って配置されていることが好ましい(図1,図2)。これにより,順次,排気ガスの大,小,分子量の炭化水素を効率良く吸着することができる。
また,大分子吸着層は,吸着された炭化水素を脱離させる際に,小分子吸着層よりも上流側に位置するよう,配置することが好ましい(図1,図3)。
【0018】
この場合には,まず上流側において大きい分子量の炭化水素を脱離させ,次いで下流側の小さい分子量の炭化水素を脱離させるので,上流側で脱離した炭化水素が再び下流側の吸着剤に吸着されることがない。そのため,炭化水素を確実に脱離させることができる。
【0019】
次に,上記大分子吸着層と小分子吸着層とは,吸着装置内における排気ガス流れと直交する方向に積層配置され,かつ大分子吸着層が直接に排気ガスと接触する側に配置されている構成とすることもできる。この場合には,排気ガスと直接接続する側に大分子吸着層が配置されているので,脱離時にはまず大分子吸着層に吸着されている大分子量の炭化水素が脱離し,その後小分子吸着層に吸着されている小分子量の炭化水素が脱離される。そのため,炭化水素の脱離が円滑に行われる。
【0020】
また,上記吸着装置には,上記大分子吸着層と小分子吸着層との間に,比較的中間的な分子量の炭化水素を吸着するための1個又は複数個の中間分子吸着層を有することが好ましい。この場合には,各吸着層に分子量の大きさに応じて炭化水素をそれぞれ効率的に吸着でき,また効率的に脱離させることができる。
【0021】
【作用及び効果】
本発明の排気浄化装置においては,エンジンから排出された排気ガスはまず第1流路に設けた触媒装置に入り,次いで第2流路に入る。そして,エンジン始動時においては,上記流路切替弁を作動させて,排気ガスの全量を吸着装置に導入する。
【0022】
これにより,排気ガス中の炭化水素は,吸着装置において,比較的大きな分子量の炭化水素が大分子吸着層に,比較的小さな分子量の炭化水素が小分子吸着層に吸着される。炭化水素が吸着された排気ガスは,吸着装置より排出路に排出される。
【0023】
一方,触媒装置を流出して来た排気ガスが,触媒装置における炭化水素浄化の触媒活性温度以上,例えば350℃以上に上昇したときには,上記流路切替弁を作動させて吸着装置への排気ガス導入を停止し,第2流路より排出路へ排気ガスを排出する。
【0024】
次いで,上記一方向弁を開弁して,吸着装置と触媒装置の上流側との間の戻し流路を連通させる。これにより,上記一方向弁を介して,吸着装置から触媒装置上流側に一部の排気ガスが流れる。この排気ガスは既に高温に達しているため,吸着装置に吸着されている炭化水素を脱離させると共にこれを触媒装置上流側へ移送する。触媒装置の上流側へ移送された炭化水素は,エンジンからの排気ガスと共に触媒装置に入り,既に高温に達している触媒装置において炭酸ガスと水とに分解,浄化され,第2流路を経て排出路へ排出される。
【0025】
上記のごとく,本発明においては,比較的大きな分子量の炭化水素と,比較的小さな分子量の炭化水素は,それぞれ大分子吸着層又は小分子吸着層に吸着され,また上記のごとく脱離される。そのため,分子量の大小に関係なく全ての炭化水素を効率良く吸着,脱離することができる。
【0026】
また,吸着装置は第2流路内に配設されているので,エンジン始動時後において排気ガス温度が上昇していく過程においても,常時第2流路より排気ガスの熱を受け取ることができる。
そのため,吸着装置は,第2流路の外部に配置されている場合に比較して急速に温度上昇する。
【0027】
それ故,炭化水素の脱離時期においては,吸着装置より,短時間内に,効率良く炭化水素を脱離させることができる。
また,脱離させた炭化水素及び一部の排気ガスは,上記一方向弁によって,自動的に触媒装置の上流側に戻されるので,そのための還流ポンプ及びその動力も必要としない。そのため,排気浄化装置のコストも低い。
【0028】
上記のごとく,本発明によれば,排気ガス中の炭化水素を効率良く吸着,脱離させることができ,低コストの排気浄化装置を提供することができる。
【0029】
【実施例】
実施例1
本発明の実施例にかかる排気浄化装置につき,図1〜図3を用いて説明する。
本例の排気浄化装置は,図1に示すごとく,エンジン12からの排気ガスを浄化する触媒装置15を備えた第1流路21と,該第1流路21の下流側に位置する第2流路22と,該第2流路22の内部に配設されエンジンにおける未燃焼の炭化水素を吸着する吸着装置3とを有する。
【0030】
また,上記吸着装置3,第2流路22の下流側に位置する排出路24と,上記吸着装置3又は第2流路22へ排気ガスを導入するための流路切替弁26と,上記吸着装置3において脱離された炭化水素を一部の排気ガスと共に上記触媒装置15の上流側に戻す,一方向弁42を備えた戻し流路25とを有する。
更に,上記吸着装置3は,図1〜図3に示すごとく,比較的大きな分子量の炭化水素を吸着するための大分子吸着層31と,比較的小さな分子量の炭化水素を吸着するための小分子吸着層32とを有する。
【0031】
以下,これらにつき詳しく説明する。
上記流路切替弁26は,第2流路22内において,上記吸着装置3の後端部に開閉可能に配設されている。該流路切替弁26は,エンジン制御装置ECUによって作動されるアクチュエータ41に連結されている。また,アクチュエータ41は,負圧パイプ45,電磁弁451を介して,サージタンク711に連結されている。
【0032】
上記ECUには,エンジン冷却水の温度検出用の水温センサ,第2流路における排気ガス温度検出用の排気温センサなどが電気的に接続されている。
また,戻し流路25は,上記吸着装置3の下流側に開口している。一方向弁42は,戻し流路25の途中に介設されており,上記ECUに電気的に接続されている。なお,図1において,符号11はサージタンク,13は排気マニホールドである。
【0033】
次に,上記吸着装置3は,図2に示すごとく,排気ガスの上流側には吸着剤を有しない無担持層を,中央部分には上記大分子吸着層31を,排気ガスの下流側には小分子吸着層32を有している。即ち,該吸着装置3はセラミック製のハニカム構造体であって,多数の格子部35と,その間に形成された四角状の多数の細孔通路36とよりなる。そして,図3に示すごとく,上記細孔通路36の内壁には,上記のごとく大分子吸着層31と小分子吸着層32が排気ガス流れに沿って順次設けてある。
【0034】
次に作用効果につき説明する。
本例の排気浄化装置においては,図1に示すごとく,エンジン12から排出された排気ガスは,まず第1流路21に設けた触媒装置15に入り,次いで第2流路22に入る。そして,エンジン始動時においては,上記流路切替弁26を作動させて,第2流路22の下流側を閉止し,排気ガスの全量を吸着装置3に導入する。
【0035】
これにより,排気ガス中の炭化水素は,吸着装置3において,比較的大きな分子量の炭化水素が大分子吸着層31に,比較的小さな分子量の炭化水素が小分子吸着層32に吸着される。炭化水素が吸着された排気ガスは吸着装置3より排出路24に排出される。
【0036】
一方,触媒装置より流出した排気ガスの温度が上昇し,第2流路22における排気ガス温度が例えば350℃付近に上昇したときには,これを排気温センサが検出し,ECUによりアクチュエータ41を作動させる。これにより上記流路切替弁26を作動させて,吸着装置3の下流側を閉止し(図1の実線),排気ガスを第2流路22より排出路24へ排出する。
【0037】
また,上記流路切替弁26の作動と併行して,上記一方向弁42をECUにより開弁して,吸着装置3と触媒装置15の上流側との間の戻し流路25を連通させる。これにより,上記一方向弁42を介して,吸着装置3から触媒装置15の上流側に一部の排気ガスが流れ,また,これと反対側の逆流は生じない。そして,この排気ガスは既に高温に達しているため,吸着装置3に吸着されている炭化水素を脱離させると共にこれを触媒装置15の上流側へ移送する。
【0038】
触媒装置15の上流側へ移送された炭化水素は,エンジン12からの排気ガスと共に触媒装置15に入り,既に高温に達している触媒装置15において炭酸ガスと水とに分解,浄化される。また,触媒装置13においては,エンジン15からの排気ガス中のNOX ,CO,HCも浄化される。浄化された排気ガスは第2流路22を経て排出路24へ排出される。
【0039】
上記のごとく,本発明においては,比較的大きな分子量の炭化水素と,比較的小さな分子量の炭化水素は,それぞれ大分子吸着層31又は小分子吸着層32に吸着される。そのため,分子量の大小に関係なく全ての炭化水素を効率良く吸着することができ,また効率良く脱離することができる。
【0040】
また,吸着装置3は第2流路22内に配設されているので,排気ガス温度が上昇していく過程においても,常時第2流路22より排気ガスの熱を受け取ることができる。
そのため,吸着装置3は,第2流路22の外部に配置されている場合に比較して急速に温度上昇する。
【0041】
それ故,炭化水素の脱離時期においては,吸着装置3より,短時間内に,効率良く炭化水素を脱離させることができる。
また,脱離させた炭化水素及び一部の排気ガスは,上記一方向弁42によって,自動的に触媒装置15の上流側に戻され,またこれと逆方向への流れは生じない。そのため,還流ポンプ及びその動力も必要としない。そのため,排気浄化装置のコストも低い。
【0042】
また,上記吸着時においては,図3(B)に示すごとく,時間と共に,大分子吸着層においては比較的高分子量の炭化水素の吸着量が順次増加し(曲線314),また小分子吸着層においては比較的低分子量の炭化水素の吸着量が順次増加していく(曲線324)。
【0043】
実施例2
本例は,実施例1に示した排気浄化装置を用いて,炭化水素の吸着,脱離を行った具体例を示す。
本例において,上記吸着装置は,コーディエライト製ハニカム構造体を用いた。上記大分子吸着層31,小分子吸着層32はそれぞれ別個に,上記ハニカム構造体に形成した。そして,上記無担持層30,大分子吸着層31,小分子吸着層32を設けた各ハニカム構造体を,図2,図3に示すごとく,直列接続して吸着装置3とした。
【0044】
上記大分子吸着層31及び小分子吸着層32は,ゼオライト粉末とシリカゾルと水とからなるスラリーに,各ハニカム構造体を浸漬し,乾燥することにより形成した。
上記ゼオライト粉末は,大分子吸着層用として細孔径8ÅのMHSZ−765を,小分子吸着層用として細孔径6ÅのMHSZ−420(UPO会社製)を用いた。
【0045】
次に,上記吸着装置を,実施例1に示したごとく,排気浄化装置に組み付け,排気ガス浄化,炭化水素の吸着,脱離の測定を行った。
上記吸着装置における炭化水素の吸着率の測定は,エンジン始動直後40秒間に排出される排気ガス中の炭化水素濃度を,吸着装置3の前後で比較することによって行った。
【0046】
その結果,本例のように大分子吸着層31と小分子吸着層32を設けた場合には,上記40秒間の炭化水素吸着率は73%であった。
これに対して,比較例として,上記小分子吸着層32にも大分子吸着層31を連続して設け,小分子吸着層32を設けなかった場合には64%の吸着率を,逆に小分子吸着層32のみを2つ連続して設けた場合には65%の吸着率であった。
【0047】
上記のごとく,本例によれば,広範囲の分子量の炭化水素を高い効率で吸着することができる。
また,炭化水素の脱離の際には,吸着装置3を第2流路22の内部に設けているので,高効率,短時間で脱離を行うことができた。
【0048】
実施例3
本例は,図4に示すごとく,吸着装置3における大分子吸着層31,小分子吸着層32の順序を変え,また吸着装置3の上流側に流路切替弁26を設けた例を示す。
本例において重要なことは,大分子吸着層31は,吸着された炭化水素を脱離させる際に,小分子吸着層32よりも上流側に位置するよう配置してあることである。
即ち,本例においては,吸着装置3の排気ガス上流側に小分子吸着層32を,下流側に大分子吸着層31を設けてある。また,吸着装置3の上流側を開閉するように流路切替弁26を設けてある。
【0049】
流路切替弁26は,アクチュエータ44に連結されている。アクチュエータ44は,エンジン12の吸気側であるサージタンク11との間に負圧パイプ45を連結している。負圧パイプ45は,前記ECUにより作動する電磁弁451を有する。
【0050】
また,戻し流路25には,実施例1と同様の一方向弁46が介設されている。該一方向弁46は,戻し通路を開閉する開閉弁461を有する。該開閉弁461は,該開閉弁461への負圧の連通を制御するための電磁弁47を介して,負圧パイプ45に接続されている。
その他は実施例1と同様である。
【0051】
本例において,炭化水素を吸着させるに当たっては,流路切替弁26を作動させて,第2流路22の上流側を閉止し,排気ガスの全量を吸着装置3に導入する。これにより,実施例1と同様に排気ガスの炭化水素がそれぞれ,小分子吸着層32,大分子吸着層31に吸着される。
【0052】
次に,炭化水素の脱離の際には,ECUの指令により,負圧パイプ45の電磁弁451を開き,上記サージタンク11の負荷を利用して,アクチュエータ44,流路切替弁26を作動させ,吸着装置3の上流側を閉止する。そして,排気ガスを第2流路22より排出路24へ排出する。
【0053】
また,一方向弁46を,上記と同様にサージタンク11の負圧を利用して,電磁弁47,開閉弁461を介して開く。これにより,吸着装置3内に,吸着装置3の下流側より排気ガスが一部導入され,該排気ガスは戻し流路25を介して触媒装置15の上流側へ戻される。
【0054】
このとき,該排気ガスは,排気路24より,大分子吸着層31に入り,ここにとける大分子量の炭化水素を脱離させ,次いで小分子吸着層32から小分子量の炭化水素を脱離させ,触媒装置15の上流側へ移送する。
その他は実施例1と同様である。
本例においても,実施例1と同様の効果を得ることができる。
【0055】
実施例4
本例は,図5,図6に示すごとく,吸着装置における大分子吸着層,小分子吸着層の積層配置について述べる。
即ち,本例の吸着装置においては,大分子吸着層310,小分子吸着層320が,排気ガスの流れと直交する方向に積層配置されている。また,大分子吸着層310が排気ガスと直接接触するよう配置してある。つまり,吸着装置のハニカム構造体において,その格子部35の表面に小分子吸着層320が 更にその上に大分子吸着層310が担持してある。
【0056】
本例においては,図6(B)に示すごとく時間経過と共に,大分子吸着層310に比較的高分子量の炭化水素が順次吸着され(曲線315),また小分子吸着層320に比較的高分子量の炭化水素が順次吸着(曲線316)されていく。一方,脱離の際には,まず大分子吸着層310に吸着されていた大分子量の炭化水素が,次いで小分子吸着層320に吸着されていた小分子量の炭化水素が,脱離される。
その他は,実施例1と同様であり,実施例1と同様の効果を得ることができる。
【図面の簡単な説明】
【図1】実施例1における排気浄化装置の説明図。
【図2】実施例1における吸着装置の一部切欠斜視図。
【図3】実施例1における大分子吸着層,小分子吸着層及び炭化水素吸着状況の説明図。
【図4】実施例3における排気浄化装置の説明図。
【図5】実施例4における吸着装置の要部断面図。
【図6】実施例4における大分子吸着層,小分子吸着層及び炭化水素吸着状況の説明図。
【符号の説明】
11...エンジン,
15...触媒装置,
21...第1流路,
22...第2流路,
24...排出路,
25...戻し流路,
26...流路切替弁,
3...吸着装置,
31,310...大分子吸着層,
32,320...小分子吸着層,
42...一方向弁,
[0001]
[Industrial application fields]
The present invention relates to an exhaust emission control device capable of efficiently adsorbing and desorbing hydrocarbons in engine exhaust gas.
[0002]
[Prior art]
As a method for purifying exhaust gas from an automobile engine, there is a method using a ternary catalyst device that supports a noble metal such as platinum or rhodium as a catalyst. In this case, the hydrocarbon (HC) in the exhaust gas generally requires a catalyst activation temperature of 350 ° C. However, when the engine is started, hydrocarbons are hardly purified because the catalyst device is at a low temperature and therefore does not reach the catalyst activation temperature.
[0003]
Therefore, in order to cope with this, an exhaust purification device has been proposed in which a catalyst device is disposed in the exhaust passage of the engine, and an adsorption device for adsorbing unburned hydrocarbons at the time of engine start is provided downstream of the catalyst device. (Japanese Patent Laid-Open No. 4-31618).
[0004]
An adsorbent is disposed in the adsorption device. When the engine is started, exhaust gas discharged from the catalyst device is introduced into the adsorption device to adsorb the hydrocarbons. On the other hand, when the exhaust gas temperature of the engine rises, the introduction of exhaust gas into the adsorption device is stopped. Then, the hydrocarbons adsorbed by the adsorption device are released and returned to the upstream side of the catalyst device for purification in the catalyst device.
As an adsorbent for adsorbing hydrocarbons in exhaust gas, a zeolite adsorbent has been proposed because of its excellent hydrocarbon adsorption performance.
[0005]
[Problems to be solved]
However, the conventional exhaust purification device has the following problems.
That is, hydrocarbons in the exhaust gas are distributed in a wide range from low molecular weights such as methane and ethylene to high molecular weights such as toluene.
Therefore, for example, in the case of a zeolitic adsorbent having a crystal structure with a large pore diameter such as 7 to 9 mm (angstrom), the hydrocarbon adsorption power is large for a hydrocarbon having a relatively large molecular weight such as toluene. However, it is small for relatively small molecular weight hydrocarbons such as methane.
[0006]
The reason for this is considered that the zeolite adsorbent having a large pore diameter mainly adsorbs hydrocarbons having a large molecular weight, and thus hardly adsorbs hydrocarbons having a small molecular weight.
On the other hand, in the case of a zeolitic adsorbent having a crystal structure with a small pore diameter of 4 to 6 mm, hydrocarbons having a relatively large molecular weight cannot be adsorbed because they cannot enter the pores. Adsorbed.
[0007]
In the above conventional example, the adsorption device is arranged in parallel with the exhaust passage. Therefore, when releasing the hydrocarbon adsorbed by the adsorption device, a means such as heating is required separately. In addition, a reflux pump is required to return the released hydrocarbons to the upstream side of the catalyst device. Therefore, the cost is high.
[0008]
In view of the conventional problems, the present invention is intended to provide a low-cost exhaust purification apparatus that can efficiently adsorb and desorb hydrocarbons in exhaust gas.
[0009]
[Means for solving problems]
The present invention includes a first flow path having a catalyst device for purifying engine exhaust gas,
A second flow path located downstream of the first flow path;
An adsorption device disposed in the second flow path for adsorbing unburned hydrocarbons;
A discharge path located downstream of the adsorption device and the second flow path;
A flow path switching valve for introducing exhaust gas into the adsorption device or the second flow path;
A return flow path having a one-way valve for returning hydrocarbons desorbed in the adsorption device to the upstream side of the catalyst device together with a part of exhaust gas;
And, the above adsorber possess relatively a large molecular adsorption layer for adsorbing hydrocarbons of a large molecular weight, for adsorbing hydrocarbons of a relatively small molecular weight small molecules adsorbing layer,
An exhaust gas purification apparatus characterized in that hydrocarbons of the large molecule adsorption layer are desorbed on the upstream side and then hydrocarbons of the small molecule adsorption layer are desorbed on the downstream side when desorbing the hydrocarbons. It is in.
[0010]
What should be noted most in the present invention is that the adsorbing device is disposed in the second flow path, the return flow path is provided with the one-way valve, and the adsorbing apparatus is the large molecule adsorbing layer. And a small molecule adsorbing layer.
In the present invention, the catalyst system is platinum - rhodium catalysts, for example, NO X in the exhaust gas, HC, use those provided with the three-way catalyst capable of simultaneously purifying CO.
[0011]
The adsorbing device is disposed in a second flow channel located downstream of the catalyst device. Therefore, the adsorption device is entirely or partially exposed to the exhaust gas flowing in the second flow path, and can receive the heat in the exhaust gas.
The return channel is provided between the adsorption device and the upstream side of the catalyst device. This return flow path is provided with a one-way valve that returns hydrocarbons desorbed by the adsorption device only to the upstream side of the catalyst device together with some exhaust gas, and does not cause a gas flow in the opposite direction.
[0012]
This one-way valve operates only when hydrocarbons adsorbed by the adsorption device are desorbed and opens. This operation is performed by, for example, an engine control ECU after the exhaust gas temperature, a predetermined time has elapsed after the engine is started, or the like.
When the one-way valve is opened, hydrocarbons and a part of the exhaust gas are introduced upstream of the catalytic device and do not flow backward to the opposite side.
[0013]
The flow path switching valve is an on-off valve for leading exhaust gas to the exhaust path through the adsorption device when the engine is started and exhausting the exhaust gas to the exhaust path through the second flow path when the adsorbed hydrocarbon is desorbed. . This flow path switching valve is arranged on the downstream side (FIG. 1) or upstream side (FIG. 4) of the adsorption device or in the middle part thereof.
[0014]
Next, the adsorption apparatus has a large molecule adsorption layer for adsorbing hydrocarbons having a relatively large molecular weight and a small molecule adsorption layer for adsorbing hydrocarbons having a relatively small molecular weight. Here, relatively large molecular weight hydrocarbons are hydrocarbons such as toluene and xylene, while relatively small molecular weight hydrocarbons are hydrocarbons such as methane, ethane, ethylene, and propylene.
[0015]
Of course, the large molecule adsorption layer and the small molecule adsorption layer do not adsorb only the large molecule and small molecule hydrocarbons. Adsorbed to either. If necessary, an intermediate molecular adsorption layer for adsorbing hydrocarbons having an intermediate molecular weight can be provided as described later.
[0016]
For example, a zeolitic adsorbent having a large pore diameter of 6 to 9 mm is disposed in the large molecule adsorption layer. On the other hand, a zeolitic adsorbent having a small pore diameter of, for example, 3 to 6 mm is disposed in the small molecule adsorption layer. For example, a zeolite-based adsorbent having an intermediate pore diameter of 5 to 7 mm is disposed in the intermediate molecule adsorption layer.
[0017]
The large molecule adsorption layer and the small molecule adsorption layer are preferably arranged along the flow direction of the exhaust gas (FIGS. 1 and 2). Thereby, large, small, and molecular weight hydrocarbons of exhaust gas can be adsorbed sequentially and efficiently.
Moreover, it is preferable to arrange the large molecule adsorbing layer so as to be positioned upstream of the small molecule adsorbing layer when desorbing the adsorbed hydrocarbons (FIGS. 1 and 3).
[0018]
In this case, hydrocarbons with large molecular weight are first desorbed on the upstream side, and then hydrocarbons with small molecular weight are desorbed on the downstream side, so that the hydrocarbons desorbed on the upstream side again become the adsorbent on the downstream side. It is not adsorbed. Therefore, hydrocarbons can be desorbed with certainty.
[0019]
Next, the large molecule adsorption layer and the small molecule adsorption layer are laminated in a direction perpendicular to the exhaust gas flow in the adsorption apparatus, and the large molecule adsorption layer is arranged on the side in direct contact with the exhaust gas. It can also be set as the structure which is. In this case, since the large molecule adsorption layer is arranged on the side directly connected to the exhaust gas, at the time of desorption, the large molecular weight hydrocarbon adsorbed on the large molecule adsorption layer is first desorbed, and then the small molecule adsorption is performed. Small molecular weight hydrocarbons adsorbed on the layer are desorbed. Therefore, hydrocarbon desorption is performed smoothly.
[0020]
Further, the adsorption device has one or a plurality of intermediate molecular adsorption layers for adsorbing hydrocarbons having a relatively intermediate molecular weight between the large molecule adsorption layer and the small molecule adsorption layer. Is preferred. In this case, hydrocarbons can be efficiently adsorbed and desorbed efficiently according to the molecular weight in each adsorbing layer.
[0021]
[Action and effect]
In the exhaust emission control device of the present invention, the exhaust gas discharged from the engine first enters the catalyst device provided in the first flow path, and then enters the second flow path. When starting the engine, the flow path switching valve is operated to introduce the entire amount of exhaust gas into the adsorption device.
[0022]
As a result, hydrocarbons in the exhaust gas are adsorbed in the adsorption device such that relatively large molecular weight hydrocarbons are adsorbed on the large molecule adsorption layer and relatively small molecular weight hydrocarbons are adsorbed on the small molecule adsorption layer. Exhaust gas with adsorbed hydrocarbons is discharged from the adsorber to the discharge path.
[0023]
On the other hand, when the exhaust gas flowing out from the catalyst device rises to a temperature higher than the catalyst activation temperature for hydrocarbon purification in the catalyst device, for example, 350 ° C. or higher, the above-mentioned flow path switching valve is operated to exhaust gas to the adsorption device. The introduction is stopped and the exhaust gas is discharged from the second flow path to the discharge path.
[0024]
Next, the one-way valve is opened, and the return flow path between the adsorption device and the upstream side of the catalyst device is communicated. Thereby, a part of the exhaust gas flows from the adsorption device to the upstream side of the catalyst device via the one-way valve. Since this exhaust gas has already reached a high temperature, the hydrocarbon adsorbed by the adsorption device is desorbed and transferred to the upstream side of the catalyst device. The hydrocarbons transferred to the upstream side of the catalyst device enter the catalyst device together with the exhaust gas from the engine, and are decomposed and purified into carbon dioxide gas and water in the catalyst device that has already reached a high temperature, via the second flow path. It is discharged to the discharge path.
[0025]
As described above, in the present invention, hydrocarbons having a relatively large molecular weight and hydrocarbons having a relatively small molecular weight are adsorbed on the large molecule adsorption layer or the small molecule adsorption layer, respectively, and desorbed as described above. Therefore, all hydrocarbons can be efficiently adsorbed and desorbed regardless of the molecular weight.
[0026]
Further, since the adsorption device is disposed in the second flow path, it is possible to always receive the heat of the exhaust gas from the second flow path even when the exhaust gas temperature rises after the engine is started. .
Therefore, the temperature of the adsorption device rises rapidly compared to the case where the adsorption device is arranged outside the second flow path.
[0027]
Therefore, at the time of desorption of hydrocarbons, hydrocarbons can be efficiently desorbed within a short time from the adsorption device.
Further, the desorbed hydrocarbon and a part of the exhaust gas are automatically returned to the upstream side of the catalyst device by the one-way valve, so that a recirculation pump and its power are not required. Therefore, the cost of the exhaust purification device is also low.
[0028]
As described above, according to the present invention, hydrocarbons in exhaust gas can be efficiently adsorbed and desorbed, and a low-cost exhaust purification device can be provided.
[0029]
【Example】
Example 1
An exhaust emission control device according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the exhaust purification apparatus of the present example includes a first flow path 21 that includes a catalyst device 15 that purifies exhaust gas from the engine 12, and a second flow path that is located downstream of the first flow path 21. It has a flow path 22 and an adsorption device 3 that is disposed inside the second flow path 22 and adsorbs unburned hydrocarbons in the engine.
[0030]
Further, the adsorption device 3, a discharge passage 24 located downstream of the second flow path 22, a flow path switching valve 26 for introducing exhaust gas into the adsorption apparatus 3 or the second flow path 22, and the adsorption A return flow path 25 having a one-way valve 42 is provided for returning hydrocarbons desorbed in the apparatus 3 to the upstream side of the catalyst apparatus 15 together with some exhaust gas.
Further, as shown in FIGS. 1 to 3, the adsorption device 3 includes a large molecule adsorption layer 31 for adsorbing hydrocarbons having a relatively large molecular weight and a small molecule for adsorbing hydrocarbons having a relatively small molecular weight. And an adsorbing layer 32.
[0031]
These will be described in detail below.
The flow path switching valve 26 is disposed in the second flow path 22 so as to be openable and closable at the rear end of the adsorption device 3. The flow path switching valve 26 is connected to an actuator 41 operated by the engine control unit ECU. The actuator 41 is connected to a surge tank 711 via a negative pressure pipe 45 and an electromagnetic valve 451.
[0032]
The ECU is electrically connected to a water temperature sensor for detecting the temperature of engine cooling water, an exhaust temperature sensor for detecting the exhaust gas temperature in the second flow path, and the like.
Further, the return flow path 25 opens to the downstream side of the adsorption device 3. The one-way valve 42 is interposed in the middle of the return flow path 25 and is electrically connected to the ECU. In FIG. 1, reference numeral 11 is a surge tank, and 13 is an exhaust manifold.
[0033]
Next, as shown in FIG. 2, the adsorption device 3 includes an unsupported layer having no adsorbent on the upstream side of the exhaust gas, the large molecule adsorption layer 31 in the central portion, and the downstream side of the exhaust gas. Has a small molecule adsorption layer 32. That is, the adsorption device 3 is a ceramic honeycomb structure, and includes a large number of lattice portions 35 and a large number of square pore passages 36 formed therebetween. As shown in FIG. 3, the large-molecule adsorbing layer 31 and the small-molecule adsorbing layer 32 are sequentially provided along the exhaust gas flow on the inner wall of the pore passage 36 as described above.
[0034]
Next, the function and effect will be described.
In the exhaust purification apparatus of this example, as shown in FIG. 1, the exhaust gas discharged from the engine 12 first enters the catalyst device 15 provided in the first flow path 21 and then enters the second flow path 22. When the engine is started, the flow path switching valve 26 is operated, the downstream side of the second flow path 22 is closed, and the entire amount of exhaust gas is introduced into the adsorption device 3.
[0035]
As a result, the hydrocarbons in the exhaust gas are adsorbed by the adsorption device 3 such that a relatively large molecular weight hydrocarbon is adsorbed on the large molecule adsorption layer 31 and a relatively small molecular weight hydrocarbon is adsorbed on the small molecule adsorption layer 32. Exhaust gas having adsorbed hydrocarbons is discharged from the adsorber 3 to the discharge path 24.
[0036]
On the other hand, when the temperature of the exhaust gas flowing out from the catalyst device rises and the exhaust gas temperature in the second flow path 22 rises to, for example, around 350 ° C., this is detected by the exhaust temperature sensor, and the actuator 41 is operated by the ECU. . Thus, the flow path switching valve 26 is operated to close the downstream side of the adsorption device 3 (solid line in FIG. 1), and exhaust gas is discharged from the second flow path 22 to the discharge path 24.
[0037]
In parallel with the operation of the flow path switching valve 26, the one-way valve 42 is opened by the ECU so that the return flow path 25 between the adsorption device 3 and the upstream side of the catalyst device 15 is communicated. As a result, a part of the exhaust gas flows from the adsorption device 3 to the upstream side of the catalyst device 15 via the one-way valve 42, and the reverse flow on the opposite side does not occur. Since the exhaust gas has already reached a high temperature, the hydrocarbon adsorbed by the adsorption device 3 is desorbed and transferred to the upstream side of the catalyst device 15.
[0038]
The hydrocarbons transferred to the upstream side of the catalyst device 15 enter the catalyst device 15 together with the exhaust gas from the engine 12, and are decomposed and purified into carbon dioxide gas and water in the catalyst device 15 that has already reached a high temperature. Further, in the catalyst device 13, NO x , CO, and HC in the exhaust gas from the engine 15 are also purified. The purified exhaust gas is discharged to the discharge path 24 through the second flow path 22.
[0039]
As described above, in the present invention, hydrocarbons having a relatively large molecular weight and hydrocarbons having a relatively small molecular weight are adsorbed to the large molecule adsorption layer 31 or the small molecule adsorption layer 32, respectively. Therefore, all hydrocarbons can be adsorbed efficiently and desorbed efficiently regardless of the molecular weight.
[0040]
Further, since the adsorption device 3 is disposed in the second flow path 22, the heat of the exhaust gas can always be received from the second flow path 22 even in the process of increasing the exhaust gas temperature.
Therefore, the temperature of the adsorption device 3 rises more rapidly than when the adsorption device 3 is arranged outside the second flow path 22.
[0041]
Therefore, at the time of desorption of hydrocarbons, the hydrocarbons can be efficiently desorbed from the adsorption device 3 within a short time.
The desorbed hydrocarbons and some exhaust gases are automatically returned to the upstream side of the catalyst device 15 by the one-way valve 42, and no flow in the opposite direction occurs. Therefore, a reflux pump and its power are not required. Therefore, the cost of the exhaust purification device is also low.
[0042]
At the time of the adsorption, as shown in FIG. 3B, the adsorption amount of relatively high molecular weight hydrocarbons sequentially increases in the large molecule adsorption layer with time (curve 314), and the small molecule adsorption layer. , The amount of adsorption of relatively low molecular weight hydrocarbons gradually increases (curve 324).
[0043]
Example 2
This example shows a specific example in which adsorption and desorption of hydrocarbons are performed using the exhaust purification apparatus shown in the first embodiment.
In this example, the adsorber used was a cordierite honeycomb structure. The large molecule adsorption layer 31 and the small molecule adsorption layer 32 were separately formed on the honeycomb structure. The honeycomb structures provided with the unsupported layer 30, the large molecule adsorbing layer 31, and the small molecule adsorbing layer 32 were connected in series as shown in FIGS.
[0044]
The large molecule adsorption layer 31 and the small molecule adsorption layer 32 were formed by immersing each honeycomb structure in a slurry composed of zeolite powder, silica sol, and water and drying.
The zeolite powder used was MHSZ-765 with a pore diameter of 8 mm for the large molecule adsorption layer and MHSZ-420 (manufactured by UPO) with a pore diameter of 6 mm for the small molecule adsorption layer.
[0045]
Next, as shown in Example 1, the adsorption apparatus was assembled in an exhaust purification apparatus, and exhaust gas purification, hydrocarbon adsorption and desorption were measured.
The adsorption rate of hydrocarbons in the adsorber was measured by comparing the hydrocarbon concentration in the exhaust gas discharged for 40 seconds immediately after the engine was started before and after the adsorber 3.
[0046]
As a result, when the large molecule adsorption layer 31 and the small molecule adsorption layer 32 were provided as in this example, the hydrocarbon adsorption rate for the 40 seconds was 73%.
On the other hand, as a comparative example, when the small molecule adsorption layer 32 is continuously provided in the small molecule adsorption layer 32 and the small molecule adsorption layer 32 is not provided, the adsorption rate of 64% is reduced. When only two molecular adsorption layers 32 were provided in succession, the adsorption rate was 65%.
[0047]
As described above, according to this example, a wide range of molecular weight hydrocarbons can be adsorbed with high efficiency.
Further, since the adsorption device 3 is provided in the second flow path 22 when desorbing hydrocarbons, desorption can be performed with high efficiency and in a short time.
[0048]
Example 3
In this example, as shown in FIG. 4, the order of the large molecule adsorption layer 31 and the small molecule adsorption layer 32 in the adsorption device 3 is changed, and a flow path switching valve 26 is provided on the upstream side of the adsorption device 3.
What is important in this example is that the large molecule adsorbing layer 31 is arranged so as to be positioned upstream of the small molecule adsorbing layer 32 when the adsorbed hydrocarbon is desorbed.
That is, in this example, the small molecule adsorption layer 32 is provided upstream of the exhaust gas of the adsorption device 3, and the large molecule adsorption layer 31 is provided downstream. A flow path switching valve 26 is provided to open and close the upstream side of the adsorption device 3.
[0049]
The flow path switching valve 26 is connected to the actuator 44. The actuator 44 has a negative pressure pipe 45 connected to the surge tank 11 on the intake side of the engine 12. The negative pressure pipe 45 has an electromagnetic valve 451 operated by the ECU.
[0050]
The return channel 25 is provided with a one-way valve 46 similar to that of the first embodiment. The one-way valve 46 has an opening / closing valve 461 that opens and closes the return passage. The on-off valve 461 is connected to the negative pressure pipe 45 through an electromagnetic valve 47 for controlling communication of negative pressure to the on-off valve 461.
Others are the same as in the first embodiment.
[0051]
In this example, when adsorbing hydrocarbons, the flow path switching valve 26 is operated, the upstream side of the second flow path 22 is closed, and the entire amount of exhaust gas is introduced into the adsorption device 3. As a result, the exhaust gas hydrocarbons are adsorbed to the small molecule adsorption layer 32 and the large molecule adsorption layer 31, respectively, as in the first embodiment.
[0052]
Next, when desorbing hydrocarbons, the solenoid valve 451 of the negative pressure pipe 45 is opened according to a command from the ECU, and the actuator 44 and the flow path switching valve 26 are operated using the load of the surge tank 11. Then, the upstream side of the adsorption device 3 is closed. Then, the exhaust gas is discharged from the second flow path 22 to the discharge path 24.
[0053]
Further, the one-way valve 46 is opened via the electromagnetic valve 47 and the on-off valve 461 using the negative pressure of the surge tank 11 in the same manner as described above. As a result, a part of the exhaust gas is introduced into the adsorption device 3 from the downstream side of the adsorption device 3, and the exhaust gas is returned to the upstream side of the catalyst device 15 through the return channel 25.
[0054]
At this time, the exhaust gas enters the large molecule adsorption layer 31 from the exhaust passage 24, desorbs the large molecular weight hydrocarbons therein, and then desorbs the small molecular weight hydrocarbons from the small molecule adsorption layer 32. , And transferred to the upstream side of the catalyst device 15.
Others are the same as in the first embodiment.
Also in this example, the same effect as that of the first embodiment can be obtained.
[0055]
Example 4
In this example, as shown in FIGS. 5 and 6, the arrangement of the large molecule adsorption layer and the small molecule adsorption layer in the adsorption apparatus will be described.
That is, in the adsorption apparatus of this example, the large molecule adsorption layer 310 and the small molecule adsorption layer 320 are stacked in a direction orthogonal to the flow of the exhaust gas. Further, the large molecule adsorption layer 310 is arranged so as to be in direct contact with the exhaust gas. That is, in the honeycomb structure of the adsorption device, the small molecule adsorption layer 320 is further supported on the surface of the lattice portion 35 and the large molecule adsorption layer 310 is supported thereon.
[0056]
In this example, as shown in FIG. 6B, with a lapse of time, relatively high molecular weight hydrocarbons are sequentially adsorbed to the large molecule adsorption layer 310 (curve 315), and the small molecule adsorption layer 320 has a relatively high molecular weight. The hydrocarbons are sequentially adsorbed (curve 316). On the other hand, at the time of desorption, first the large molecular weight hydrocarbons adsorbed on the large molecule adsorption layer 310 are desorbed, and then the small molecular weight hydrocarbons adsorbed on the small molecule adsorption layer 320 are desorbed.
Others are the same as in the first embodiment, and the same effects as in the first embodiment can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an exhaust emission control device according to a first embodiment.
2 is a partially cutaway perspective view of the suction device according to Embodiment 1. FIG.
3 is an explanatory diagram of a large molecule adsorption layer, a small molecule adsorption layer, and a hydrocarbon adsorption state in Example 1. FIG.
FIG. 4 is an explanatory diagram of an exhaust purification device according to a third embodiment.
FIG. 5 is a cross-sectional view of a main part of an adsorption device according to a fourth embodiment.
6 is an explanatory diagram of a large molecule adsorption layer, a small molecule adsorption layer, and a hydrocarbon adsorption state in Example 4. FIG.
[Explanation of symbols]
11. . . engine,
15. . . Catalytic equipment,
21. . . First flow path,
22. . . Second flow path,
24. . . Discharge path,
25. . . Return flow path,
26. . . Flow path switching valve,
3. . . Adsorption device,
31, 310. . . Large molecule adsorption layer,
32, 320. . . Small molecule adsorption layer,
42. . . One-way valve,

Claims (2)

エンジンの排気ガスを浄化する触媒装置を備えた第1流路と,
該第1流路の下流側に位置する第2流路と,
該第2流路内に配設され未燃焼の炭化水素を吸着する吸着装置と,
該吸着装置及び第2流路の下流側に位置する排出路と,
上記吸着装置又は第2流路へ排気ガスを導入するための流路切替弁と,
上記吸着装置において脱離された炭化水素を一部の排気ガスと共に上記触媒装置の上流側に戻す,一方向弁を備えた戻し流路とよりなり,
かつ,上記吸着装置は比較的大きな分子量の炭化水素を吸着するための大分子吸着層と,比較的小さな分子量の炭化水素を吸着するための小分子吸着層を有し,
上記炭化水素の脱離時には上流側において上記大分子吸着層の炭化水素を脱離させ,次いで下流側において上記小分子吸着層の炭化水素を脱離させるようにしたことを特徴とする排気浄化装置。
A first flow path having a catalyst device for purifying engine exhaust gas;
A second flow path located downstream of the first flow path;
An adsorption device disposed in the second flow path for adsorbing unburned hydrocarbons;
A discharge path located downstream of the adsorption device and the second flow path;
A flow path switching valve for introducing exhaust gas into the adsorption device or the second flow path;
A return flow path having a one-way valve for returning hydrocarbons desorbed in the adsorption device to the upstream side of the catalyst device together with a part of exhaust gas;
And, the above adsorber possess relatively a large molecular adsorption layer for adsorbing hydrocarbons of a large molecular weight, for adsorbing hydrocarbons of a relatively small molecular weight small molecules adsorbing layer,
An exhaust gas purification apparatus characterized in that hydrocarbons of the large molecule adsorption layer are desorbed on the upstream side and then hydrocarbons of the small molecule adsorption layer are desorbed on the downstream side when desorbing the hydrocarbons. .
請求項1において,上記大分子吸着層と小分子吸着層とは吸着装置内における排気ガス流れと直交する方向に積層配置され,かつ大分子吸着層が直接に排気ガスと接触する側に配置されていることを特徴とする排気浄化装置。  2. The large molecule adsorbing layer and the small molecule adsorbing layer according to claim 1, wherein the large molecule adsorbing layer and the small molecule adsorbing layer are laminated in a direction orthogonal to the exhaust gas flow in the adsorption device, and the large molecule adsorbing layer is arranged on the side in direct contact with the exhaust gas. An exhaust emission control device characterized by that.
JP26118494A 1994-09-30 1994-09-30 Exhaust purification device Expired - Fee Related JP3667365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26118494A JP3667365B2 (en) 1994-09-30 1994-09-30 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26118494A JP3667365B2 (en) 1994-09-30 1994-09-30 Exhaust purification device

Publications (2)

Publication Number Publication Date
JPH08100641A JPH08100641A (en) 1996-04-16
JP3667365B2 true JP3667365B2 (en) 2005-07-06

Family

ID=17358305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26118494A Expired - Fee Related JP3667365B2 (en) 1994-09-30 1994-09-30 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP3667365B2 (en)

Also Published As

Publication number Publication date
JPH08100641A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
KR960004832B1 (en) Engine exhaust gas purification apparatus
US4985210A (en) Exhaust gas purifying apparatus for automobile
JPH0559942A (en) Cold hc adsorption removal device
JP3307502B2 (en) Exhaust gas purification device
JPH03141816A (en) Exhaust gas purifier
JPH07139343A (en) Exhaust emission control device for engine
JP2004521256A (en) Method for desulfurizing NOx adsorbent
JP3399388B2 (en) Exhaust gas purification device for internal combustion engine
JP2001295708A (en) Fuel vapor processor and exhaust emission control device
JP2855986B2 (en) Exhaust gas purification device
JPH10121949A (en) Engine exhaust emission control device
JPH07166852A (en) Bypass engine exhaust purifying system
JP3667365B2 (en) Exhaust purification device
US6637193B2 (en) Exhaust emission control device and exhaust emission control method for natural gas engine
JP3304678B2 (en) Exhaust gas purification device for internal combustion engine
JP2002227635A (en) Exhaust gas purifying device of internal combustion engine
JPH0771237A (en) Exhaust emission control device for internal combustion engine
JPH06101461A (en) Exhaust gas purifying device for internal combustion engine
WO2001012961A1 (en) Compact catalyst/adsorber for exhaust gas treatment
JP3456008B2 (en) Exhaust gas purification device for internal combustion engine
JP3414808B2 (en) Hydrocarbon adsorbent in exhaust gas
JP2827738B2 (en) Exhaust gas purification device
JP2717892B2 (en) Exhaust gas purification device
JP3306914B2 (en) Engine exhaust purification device
JP3343948B2 (en) Exhaust gas purification device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees