JP3666669B2 - Temperature sensitive actuator - Google Patents
Temperature sensitive actuator Download PDFInfo
- Publication number
- JP3666669B2 JP3666669B2 JP29793494A JP29793494A JP3666669B2 JP 3666669 B2 JP3666669 B2 JP 3666669B2 JP 29793494 A JP29793494 A JP 29793494A JP 29793494 A JP29793494 A JP 29793494A JP 3666669 B2 JP3666669 B2 JP 3666669B2
- Authority
- JP
- Japan
- Prior art keywords
- stator
- temperature
- magnetic
- rotor
- sensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Control Of Position Or Direction (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、環境あるいは特定機器の温度変化を検知して駆動力を発生する感温アクチュエータに関する。
【0002】
【従来の技術】
制御対象よっては、環境あるいは機器の温度変化に応じてその応動条件を変化させたい場合がある。例えば自動車に搭載するアイドリング・スピード・コントローラ(以下、ISCと称す)がある。この場合、自動車のアイドリング状態にあっては、その吸入空気量はエンジン温度によって影響を受ける。
【0003】
したがって必要とする位置に温度検知素子を取り付け、各温度検知素子からの検出信号を集めて制御条件を得るようにしている。即ち、エンジン温度が高ければバイパス空気量を小さくし、逆にエンジン温度が低ければバイパス空気量を大きくしている。
【0004】
要するに、ISC用の弁体は低温時に大きなストロークを要求され、高温時には暴走対策として閉弁位置の近くで、小さなストロークしか移動しない仕様が要求される。図15はISCの弁体制御用のロータリアクチュエータの要求特性であり、横軸に温度T[℃]を、又、縦軸にストローク[deg]をとって示したものである。
【0005】
【発明が解決しようとする課題】
上記した制御を行なおうとすれば、測定を必要とする位置毎に対応して複数の温度検知素子を必要とし、かつ温度条件を加味した制御回路としなければならず、構造的な複雑さに加えて信頼性及びコストアップの問題がある。
本発明は上記事情に鑑みてなされたものであり、簡単な構成で温度に応じて前記ストローク特性の得られる感温アクチュエータを提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明の請求項1に係る感温アクチュエータは、磁性材を用いて閉磁路を形成した固定子と、前記固定子の閉磁路内の開口にあって回転自在に設けられた永久磁石よりなる回転子と、前記固定子と回転子とを磁気的に連結するために、前記固定子と接続して互いに前記閉磁路内の中心位置に向って突出して設けられた複数の磁極片5,6,7,8と、前記磁極片の内の少なくとも一対の対峙する磁極片は各回転子側対向面に夫々感温磁性材9,10を設けた。
【0007】
本発明の請求項2に係る感温アクチュエータは、請求項1において、固定子の磁路を切欠いて間隙11を設けると共に、前記磁路内には起磁力源12を設けた。
【0008】
本発明の請求項3に係る感温アクチュエータは、磁性材を用いて形成した閉磁路を2a,2b,2cに3分割した固定子と、前記固定子の閉磁路内の開口にあって回転自在に設けられた永久磁石よりなる回転子と、前記分割された固定子と回転子とを磁気的に連結するために、前記固定子に接続して設けられた複数の磁極片5,6,7,8と、前記分割した夫々の固定子2a,2b間の磁路内に感温磁性材13を設けると共に、前記磁路内の夫々の固定子2bと2c間の磁路内にエアーギャップ14を設けた。
【0009】
本発明の請求項4に係る感温アクチュエータは、請求項3において、磁路内には起磁力源12を設けた。
【0010】
本発明の請求項5に係る感温アクチュエータは、磁性材を用いて形成した閉磁路を2a,2b,2cに3分割した固定子と、前記固定子の閉磁路内の開口にあって回転自在に設けられた永久磁石よりなる回転子と、前記分割された固定子と回転子とを磁気的に連結するために、前記固定子に接続して夫々前記閉磁路内の中心に向けて設けられた複数の磁極片5,6,7,8と、前記分割された固定子2a,2b間にあって互いに閉磁路内の中心に向い所定距離をおいて突出する2つの磁極片7と8との間の位置に感温磁性材15を設けると共に、分割された夫々の固定子2bと2cとの間にエアーギャップ14を設けた。
【0011】
本発明の請求項6に係る感温アクチュエータは、請求項5において、固定子2aと2bとの間の磁路内には起磁力源12を設けた。
【0012】
本発明の請求項7に係る感温アクチュエータは、磁性材を用いて形成した閉磁路をその中心線を境にして左右に2a,2bとして2分割した固定子と、前記固定子と一体になった複数の磁極片が突出して形成された開口内にあって回転自在に設けられた永久磁石よりなる回転子と、前記固定子と回転子とを磁気的に連結するために、前記2分割された各固定子に接続して夫々前記開口内の回転子位置に向けて設けられた複数の磁極片5−1,6−1,7−1,8−1と、前記2分割した中心線が各固定子2a,2bと接する一方の位置には、閉磁路を切欠いて設けた間隙と、前記中心線が各固定子2a,2bと接する他方の位置には固定磁路を切欠いて設けた間隙に感温磁性材15を介在させることにより閉磁路を形成し、前記各磁極片5−1,7−1は互いに対峙して設けた一方の1対とすると共に、前記各磁極片6−1,8−1は互いに対峙して設けた他方の1対とし、前記一方の1対と前記他方の一対との回転子への各対向面の面積を異ならせた。
【0013】
本発明の請求項8に係る感温アクチュエータは、磁性材を用いて形成した閉磁路に感温磁性材15を介在させた固定子と、前記固定子に設けた電磁コイル12と、前記固定子内の左右に偏倚して設けた開口20,20−1内にあって回転自在に設けられた永久磁石からなる回転子と、前記固定子と回転子とを磁気的に連結するために固定子と一対となって前記開口内の回転子位置に向けて設けられた複数の磁極片5−2,7−2,6−2,8−2と、前記回転子と電磁コイルより発生する磁束とから回転子に回転力を発生する感温アクチュエータにおいて、前記各磁極片5−2,7−2は互いに対峙して設けた一方の1対とすると共に、前記各磁極片6−2,8−2は互いに対峙して設けた他方の1対とし、前記一方の1対と前記他方の1対との回転子への対向面の面積を異ならせた。
【0014】
本発明の請求項9に係る感温アクチュエータは、磁性材を用いて形成した閉磁路からなる固定子と、前記固定子の磁路内の開口にあって回転自在に設けられた永久磁石よりなる回転子と、前記固定子と回転子とを磁気的に連結するために、前記固定子に接続して夫々前記閉磁路内の回転子位置に向けて設けられた複数の磁極片5,6,7,8と、前記磁極片の内の1対の対峙する前記磁極片にキュリー温度の異なる複数個の感温磁性材9a,9b,9c及び10a,10b,10cを設けた。
【0015】
本発明の請求項10に係る感温アクチュエータは、磁性材を用いて形成した閉磁路を2a,2b,2cとに3分割した固定子と、前記固定子と一体になった複数の磁極片が突出して形成された開口内にあって回転自在に設けられた永久磁石よりなる回転子と、前記各固定子と回転子とを磁気的に連結するために、前記固定子に接続して夫々開口内の回転子位置に向けて設けられた複数の磁極片5−1,6−1,7−1,8−1と、前記分割された各固定子2a,2b間にあって閉磁路を切欠いて設けた間隙と、前記2つの固定子2a,2bと残りの固定子2cとは互いに感温磁性材15a,15bを介在させることにより閉磁路を形成すると共に、前記接続された閉磁路には起磁力源12を設け、前記各磁極片5−1,7−1は互いに対峙して設けた一方の1対とすると共に、前記各磁極片6−1,8−1は互いに対峙して設けた他方の1対とし、前記一方の1対と前記他方の1対との回転子への対向面の面積を異ならせた。
【0016】
本発明の請求項11に係る感温アクチュエータは、磁性材を用いて形成した閉磁路を2a,2b,2cとに3分割した固定子と、前記固定子2aはその両端に第1,第2の磁極片を夫々有して第1の1対とし、固定子2bは前記固定子2aとの間に第1の感温磁性材15aを介在させて一体とすると共に前記固定子2bの端部を第3の磁極片とし、前記固定子2cは前記固定子2aとの間に第2の感温磁性材 15 bを介在させて一体とすると共に前記固定子2cの端部を第4の磁極片とし、前記第3,第4の各磁極片を夫々有して第2の1対とし、前記第1の1対及び第2の1対とで囲まれた開口内には回転自在に設けられた永久磁石よりなる回転子を有し、前記固定子2cと2aとの間及び前記固定子2aと2bとの間には夫々第1,第2の各間隙を設けた。
【0017】
本発明の請求項12に係る感温アクチュエータは、請求項11において、固定子2aの磁路内には起磁力源12を設けた。
【0018】
本発明の請求項13に係る感温アクチュエータは、請求項11において、固定子2aの磁路内に磁気バランスのための補償部21を設けた。
【0019】
本発明の請求項14に係る感温アクチュエータは、請求項13において、補償部はエアーギャップ14−1とした。
【0021】
【作用】
本発明の[請求項1],[請求項2]に係る感温アクチュエータは、低温時には感温磁性材は透磁率が大であって磁束を通し易い。したがって磁極片5,8を通る磁束と磁極片6,7を通る磁束とは等しい。しかし高温時には感温磁性材9,10の透磁率が減少するため、回転子は左回転し閉弁方向に移動する。
【0022】
本発明の[請求項3],[請求項4]に係る感温アクチュエータは、低温時には透磁率が大であるため、磁極片5,7を通る磁束が磁極片6,8を通る磁束より大きい。しかし、高温時には感温磁性材の透磁率が小となり、感温磁性材部は空気中と同じになる。しかもエアーギャップl2 が感温磁性材の幅l1 より小であるため、磁束は磁極片6,8を通るものが大となり、結果として回転子は左回転し閉弁方向に移動する。
【0023】
本発明の[請求項5],[請求項6]に係る感温アクチュエータは、低温時に感温磁性材15は透磁率が大であるため、回転子からの磁束は磁極片5,7を通り易い。したがって回転子4は磁極片5,7を通る中心線側に傾斜している。しかし高温時には感温磁性材15の透磁率が小となって磁極片5,7側を通る磁束は小となり、結果として磁極片6,8を通る中心線側に回転する。
【0024】
本発明の[請求項7],[請求項8]に係る感温アクチュエータは、低温時に感温磁性材の透磁率が大であるため、磁束は磁極片5−1,(5−2),7−1,(7−2)を通り易く、したがってロータは中心線d側に回転している。しかし高温時には感温磁性材15の透磁率が小となり、磁極片5−1,(5−2),7−1,(7−2)を通る磁束が小となる。したがって結果としてロータは中心線c側へ回転する。
【0025】
本発明の[請求項9],[請求項10]に係る感温アクチュエータは、低温時には感温磁性材9,10の透磁率が大のため、磁極片5,7と磁極片6,8を通る磁束はバランスしている。高温時には感温磁性材9,10の透磁率が小となるため、磁束は磁極片6,8側へ移り、その結果、ロータは閉弁方向へ回転する。このとき、感温磁性材9a,9b,9c,10a,10b,10cの温度特性の異なるものを組合せることにより、要求特性を高精度に合わすことができる。
【0026】
本発明の[請求項11],[請求項12]に係る感温アクチュエータは、低温時には感温磁性材は透磁率が大であって磁束を通し易い。したがって磁極片5,8を通る磁束と磁極片6,7を通る磁束とは等しい。しかし高温時には感温磁性材15a,15bの透磁率が減少するため、磁束の通路は磁極片5,7にかたより回転子は右回転し閉弁方向に移動する。
【0027】
本発明の[請求項13],[請求項14]に係る感温アクチュエータは、磁路内に磁気バランスのための補償部(エアーギャップ)を設けているため、これを調整することにより接合ギャップに生じる磁気抵抗分が補償できる。
【0028】
本発明の[請求項15]に係る感温アクチュエータは、予め感温磁性材と固定子との間に所定のエアーギャップを設けているため、磁路内の補償部(エアーギャップ)との間での加工精度の困難性がなくなる。
【0029】
【実施例】
以下図面を参照して実施例を説明する。
図1は本発明の[請求項1]に係る感温アクチュエータの一実施例の構成図である。図1において、1は感温アクチュエータ本体であり、ヨーク2と、シャフト3と一体になったロータ磁石4と、ヨークとロータ磁石を磁気的に連結する磁極片5,6,7,8より構成されている。
【0030】
ここで磁極片5と7及び6と8は対応した位置に設けられ、なかんずく、一方の磁極片5と7にはロータ磁石4の対向位置に負特性の感温磁性材9,10を設ける。なお、感温磁性材とは温度に応じて透磁率が急激に変化するもので、温度の上昇につれて透磁率の増加するもの(正特性)と減少するもの(負特性)とがあるが、ここでは負特性のものを使用している。
【0031】
次に作用について説明する。
本実施例では感温磁性材は負特性のものを使用している。したがって低温時には透磁率が大であるため、各磁極片5,7と6,8とは同等の磁束を通すため、ロータ磁石から出る磁束(実線)は、磁極片6からヨーク,磁極片7を通って戻るループと、磁極片5からヨーク,磁極片8を通って戻るループが対称となり、ロータ磁石4は中心に位置する。
【0032】
又、高温時には感温磁性材の透磁率が減少するため、磁極片5,7を通る磁束が減少し、磁極片6、8を通る磁束が増大する。よってロータ磁石4は磁極片6、8へ引き寄せられる方向にトルクを生じ、ロータ磁石4は実線矢印方向に回転する。なお、温度が感温磁性材のキュリー温度に達すると常磁性に変わるため、それ以上に温度を上昇しても回転しない。この時の回転量は、感温磁性材の磁極片内の占有面積にて決まるため容易に設定できる。
【0033】
図2は本発明の[請求項2]に係る感温アクチュエータの一実施例の構成図である。図2において図1と同一部分及び相当部分には同一符号を付して説明を省略する。本実施例では磁極片7,8の間でヨーク2を切除して間隙(エアーギャップ)11をつくると共に、ヨークには起磁力源12を設けたものである。その他の構成は図1と同様である。
【0034】
次に作用について説明する。
この場合、基本的には起磁力源12のコイルによって発生する磁束は、磁極片6から磁極片8を通るループ(ロータ磁石を閉弁方向に作用する)と、磁極片5から磁極片7を通るループ(ロータ磁石を開弁方向に作用する)を生成する。
【0035】
したがって、高温時に感温磁性材の飽和磁束密度が低下すれば、磁極片5から磁極片7を通る磁束が減り、コイルによる開弁方向の作用が小さくなってISCの要求仕様を満足する。なお、感温磁性材の取付面積(占有面積)を変えることにより、温度変化に対応するロータの回転量を決定できるので、要求特性を得るための設計が容易である。
【0036】
図3は本発明の[請求項3]に係る感温アクチュエータの一実施例の構成図である。図3において図1,図2と同一部分及び相当部分に対して同一符号を付して説明を省略する。本実施例はヨーク2aと2bとの間に感温磁性材13を設けると共に、ヨーク2bと2cとの間にエアーギャップ14を設けた。この場合、前記感温磁性材の幅l1 とエアーギャップl2 との関係をl1 >l2 とすることにより、特性変化ができる。
【0037】
次に作用について説明する。
低温時は感温磁性材13はヨーク2と同等の磁束を通すため、ロータ磁石4からの磁束は磁極片5からヨーク2a,感温磁性材13,ヨーク2b,磁極片7を通って戻るループが強く、磁極片6から磁極片8へ向う磁束はエアーギャップ14を通るため弱い。その結果ロータ磁石4は中心線(磁極片5と磁極片6の間の線)より開弁側に回転する。
【0038】
高温時は感温磁性材の飽和磁束密度が低下し、温度が感温磁性材のキュリー温度に達すると常磁性に変わり、感温磁性材部は空気が存在するのと同じとなる。この場合、l1 >l2 に設定すれば、エアーギャップ14の方が感温磁性材の部分より磁気抵抗が小さくなる。したがって磁極片5,7を通る磁束が減少し、磁極片6,8を通る磁束が増加する。その結果、ロータ磁石4は磁極片6,8側へ引き寄せられる方向にトルクが発生し、ロータ磁石4は中心線より閉弁方向に回転する。
【0039】
図4は本発明の[請求項4]に係る感温アクチュエータの一実施例の構成図である。図4において図3と同一部分及び相当部分に対しては同一符号を付して説明を省略する。本実施例では起磁力源12を設けたものであり、その他の構成は図3と同様である。
【0040】
先ず、起磁力源12のコイルで発生する磁束は、磁極片6から磁極片8を通るループ(ロータ磁石を閉弁方向に作用する)と、磁極片5から磁極片7を通るループ(ロータ磁石を開弁方向に作用する)を生成する。そして高温時に感温磁性材の飽和磁束密度が低下すれば、磁極片5から磁極片7を通る磁束が減る。この場合、コイルによる開弁方向への作用が小さくなり、ISCの要求仕様を満足する。
【0041】
図5は本発明の[請求項5]に係る感温アクチュエータの一実施例の構成図である。図5において図3と同一部分及び相当部分には同一符号を付して説明を省略する。本実施例と図3との相違点は、感温磁性材15の設置位置を磁極片7と8との間としたことである(因みに図3では感温磁性材の設置位置は磁極片5と8との間である。)。
【0042】
作用について説明すると、低温時は感温磁性材15はヨーク2と同等に磁束を通すため、ロータ磁石4からの磁束は磁極片5からヨーク2a,感温磁性材15,ヨーク2b,磁極片7を通って戻るループが強い。なんとなれば磁極片6からヨーク2cへ向うループはエアーギャップ14を通ることになるからである。その結果ロータ磁石は中心線より開弁側に回転する。
【0043】
一方、高温時は感温磁性材15の飽和磁束密度が低下するため、温度が感温磁性材のキュリー温度に達すると感温磁性材は常磁性に変わる。即ち、感温磁性材部は空気が存在するのと同じになり、この部分は大きな磁気抵抗となる。この場合、エアーギャップ14の幅l2 と感温磁性材15の幅l1 との間にはl1 >l2 の関係がある。そこで磁極片5,7を通る磁束が減少し、バランス位置が中心線側に移動する。但し、エアーギャップ14があるため磁極片6,8を通る磁束ループより、磁極片5,7を通る磁束ループの方が強く、中心点より閉弁側までは移動しない。
【0044】
図6は本発明の[請求項6]に係る感温アクチュエータの一実施例の構成図である。図6において図5と同一部分及び相当部分には同一符号を付して説明を省略する。本実施例では起磁力源12を設けたものであり、その他の構成は図5と同様である。
【0045】
先ず、起磁力源12のコイルで発生する磁束は、磁極片6から8を通るループ(ロータ磁石を閉弁方向に作用する)と、磁極片5から7を通るループ(ロータ磁石を開弁方向に作用する)を生成する。しかし、高温時に感温磁性材15の飽和磁束密度が低下すれば、コイルが作り出す磁束が減少する。したがってコイルのオン・オフによるロータ磁石のストロークは減少し、ISCの要求特性を満足する。
【0046】
図7は本発明の[請求項7]に係る感温アクチュエータの一実施例の構成図である。図7において感温アクチュエータ本体1は感温磁性材15を挾持する形でヨーク2a,2bを一体とし、更に感温磁性材の部分を磁路とするため、T形を有する空間16を穿ってある。
【0047】
5−1,7−1は対向面の広い磁極片で一対をなし、同じく6−1,8−1は対向面を狭くした磁極片で一対をなしている。4はロータ磁石で円形をなし、シャフト3を支点に回転する。なお、図からわかるように、ロータ磁石4の位置は磁極片5,7と磁極片6,8のロータ磁石4への対向面の割合で定まる。
【0048】
図7において実線は低温時の磁路であり、点線は高温時の磁路である。次に作用説明であるが、低温時は感温磁性材15はヨーク2と同等に磁束を通すため、ロータ磁石4からの磁束は磁極片5からヨーク2a,感温磁性材15,ヨーク2b,磁極片7−1を通って戻るループが強く、ロータ磁石4の中心線が磁極片5−1,7−1間の中心線dの位置でバランスする。
【0049】
次に高温時は感温磁性材の飽和磁束密度が低下する。そして温度が感温磁性材のキュリー温度に達すると、感温磁性材は常磁性に変わってこの部分は空気が存在するのと同じとなり、磁束を通しにくくなる。この場合、磁極片5,8を通る磁束と、磁極片6,7を通る磁束が対称なループを形成してバランスする(図7の点線)。よってロータ磁石4の中心線はcの位置となる(やゝ左回転する)。
【0050】
図8は本発明の[請求項8]に係る感温アクチュエータの一実施例の構成図である。図8において12は起磁力源であり、ヨーク2aと2bとの間に感温磁性材を設けてある。17は空間であり、その下方には連結部材18,19にて接続された構成を有し、そこに設けた開口20内にはシャフト3に取付けた回転子4が回転可能に設けられている。
【0051】
なお、回転子4の周囲は斜め両側面(左右)に広い開口20,20−1があり、それに対応する斜め両側面には狭い間隙21が設けられる。したがって狭い間隙21に対応した部分5−2,7−2は面積の広い磁極片となり、6−2,8−2は面積の狭い磁極片となる。
【0052】
したがってコイルで発生する磁束は、磁極片6−2から8−2を通るループ(ロータ磁石を閉弁方向に作用する)と、磁極片5−2から7−2を通るループ(ロータ磁石を開弁方向に作用する)を生成する。高温時に感温磁性材15の飽和磁束密度が低下すれば、磁極片6−2から8−2を通るループと磁極片5−2から7−2を通る磁束のループとの両方の磁束が減り、コイルの励磁時のロータのストロークが小さくなって、ISCの要求仕様を満足する。ヨーク2a,2bを連結している部材18,19は加工,組立のため必要がある。なお、磁気回路としては、断面積を小さく設定しているので影響はない。
【0053】
図9は本発明の[請求項9]に係る感温アクチュエータの一実施例の構成図である。図9において図1と同一部分及び相当部分には同一符号を付して説明を省略する。図9の特徴部は感温磁性材9をキュリー温度の異なるもの、即ち、本実施例ではキュリー温度の低いものから順に9a,9b,9c及び10a,10b,10cとして組合せたものである。なお、感温磁性材は磁極片の一部に設けたものである。
【0054】
したがって作用としては、先ず低温時は感温磁性材9a,9b,9c,10a,10b,10cは磁極片6,8と同等に磁束を通すため、ロータ磁石4から出る磁束は、磁極片6からヨーク,磁極片8を通って戻るループと、磁極片5からヨーク,磁極片8を通って戻るループが対称となり、ロータ磁石4は中心に位置する。
【0055】
感温磁性材は温度が上昇すると飽和磁束密度が低下し、感温磁性材のキュリー温度に達すると常磁性に変わって、空気と同じレベルの磁束を通す状態となる。キュリー温度の異なる感温磁性材9a,9b,9c,10a,10b,10cを組み合わせることにより、温度上昇に伴なう磁極片5,7を通る磁束が減少の特性を任意に設定することができる。磁極片5,7を通る磁束の減少により、ロータ磁石4は磁極片6,8へ引き寄せられる方向にトルクが生じ、ロータ磁石4は回転する。この回転特性は精密に設定できる。
【0056】
図10は本発明の[請求項10]に係る感温アクチュエータの一実施例の構成図である。図10において図7と同一部分及び相当部分に対しては同一符号を付して説明を省略する。本実施例ではヨーク2a,2c間に感温磁性材15aを配置し、ヨーク2b,2c間に感温磁性材15bを配置する。磁極片5,7と6,8のロータ磁石4への対向面の割合でロータ位置が定まる。
【0057】
したがって作用としては、低温時は感温磁性材はヨーク2と同等に磁束を通すので、ロータ磁石4から出る磁束は、磁極片5−1からヨーク2a,感温磁性材15a,ヨーク2c,感温磁性材15b,ヨーク2b,磁極片7−1を通って戻るループが強く、ロータ磁石4の中心線が磁極片5−1,7−1間の中心線dの位置でバランスする。
【0058】
温度が上昇すると感温磁性材の飽和磁束密度が低下する。ここで温度が感温磁性材のキュリー温度に達すると感温磁性材は常磁性に変わって、感温磁性材部は空気が存在するのと同じとなり、磁気を通しにくくなる。そこで磁極片5−1,8−1を通る磁束と、磁極片6−1,7−1を通る磁束が対称なループを形成してバランスする。よって、ロータ磁石4の中心線は中心線cの位置となる。このとき、各感温磁性材のキュリー点温度,厚さ,断面積を選ぶと、精密にロータの回転特性が得られる。起磁力源12によりロータのコントロールができる。
【0059】
図11は本発明の[請求項11],[請求項12]に係る感温アクチュエータの一実施例の構成図である。図11において固定子2aは一対の磁極片5,7を有し、かつ中央位置には間隙11a,11bを設けてある。他の一対の磁極片6,8は分離して設けた固定子2b,2cに設けられている。即ち、固定子は2a,2b,2cのように3分割されている。
【0060】
そして感温磁性材15aは固定子2aと2bで挾持された形で固定子と一体になり、同じく感温磁性材15bは固定子2aと2cで挾持された形で固定子と一体になっている。12は起磁力源であり、空間16を介して上方に設けた磁路に接続されている([請求項12])。
【0061】
本発明の[請求項11],[請求項12]に係る感温アクチュエータは、低温時には感温磁性材は透磁率が大であるため磁束を通し易い。したがって磁極片5,8を通る磁束と磁極片6,7を通る磁束とは等しい。しかし高温時には感温磁性材15a,15bの透磁率が減少するため、回転子は右回転して閉弁方向に移動する。なお、起磁力源が付加されているために、より一層動作が確実となる。
【0062】
図12は本発明の[請求項13]に係る感温アクチュエータの一実施例の構成図である。図12において図11と同一部分及び相当部分には同一符号を付して説明を省略する。本実施例ではロータ磁石4を常時中心に位置させるようにしたものである。即ち、感温磁性材と固定子間の接合において生じる接合ギャップに原因して接合部に磁気抵抗が存在するため、低温時にロータ磁石4が中心より開側に少し回転した状態になることがある。
【0063】
この開側に回転した分を補正するための手段として、接合ギャップの磁気抵抗に応じた磁気抵抗部(補償部と称する)21を設けたものである。本実施例の場合、磁路内に丸い穴を穿ってその径の大小程度により、所望の補償量を得るようにしたものである。
【0064】
図13は本発明の[請求項14]に係る感温アクチュエータの一実施例の構成図である。図13において図12と同一部分及び相当部分については同一符号を付して説明を省略する。本実施例では補償部として磁路中にエアーギャップ14−1を設けたものである。本実施例ではギャップ長の調整により、所望の補償量を得ようとするものである。
【0065】
図14は本発明の[請求項15]に係る感温アクチュエータの一実施例の構成図である。図14において図13と同一部分及び相当部分には同一符号を付して説明を省略する。接合ギャップは微小であるため、これを補償するためのエアーギャップ14−1も小さくならざるを得ない。
【0066】
そしてこのような加工は難しく、又、バラツキも生じる。したがって予め感温磁性材15a,15bと対応する固定子2a−1,2cとの間に所定のギャップ18−1,18−2を設けることにより、補償用のギャップの加工を容易にし、接合ギャップの影響を少なくするようにしたものである。
【0067】
【発明の効果】
以上説明したように、本発明によれば負特性の感温磁性材を使い、低温時にロータのストロークが大きく移動し、高温時に閉弁付近で小さなストロークしか移動しない感温アクチュエータを提供できる。
【図面の簡単な説明】
【図1】本発明の請求項1に係る感温アクチュエータの一実施例の構成図。
【図2】本発明の請求項2に係る感温アクチュエータの一実施例の構成図。
【図3】本発明の請求項3に係る感温アクチュエータの一実施例の構成図。
【図4】本発明の請求項4に係る感温アクチュエータの一実施例の構成図。
【図5】本発明の請求項5に係る感温アクチュエータの一実施例の構成図。
【図6】本発明の請求項6に係る感温アクチュエータの一実施例の構成図。
【図7】本発明の請求項7に係る感温アクチュエータの一実施例の構成図。
【図8】本発明の請求項8に係る感温アクチュエータの一実施例の構成図。
【図9】本発明の請求項9に係る感温アクチュエータの一実施例の構成図。
【図10】本発明の請求項10に係る感温アクチュエータの一実施例の構成図。
【図11】本発明の請求項11,請求項12に係る感温アクチュエータの一実施例の構成図。
【図12】本発明の請求項13に係る感温アクチュエータの一実施例の構成図。
【図13】本発明の請求項14に係る感温アクチュエータの一実施例の構成図。
【図14】ISCの弁体性制御用のロータリアクチュエータの特性図。[0001]
[Industrial application fields]
The present invention relates to a temperature-sensitive actuator that generates a driving force by detecting a temperature change of an environment or a specific device.
[0002]
[Prior art]
Depending on the control target, there is a case where it is desired to change the response condition in accordance with the environment or the temperature change of the device. For example, there is an idling speed controller (hereinafter referred to as ISC) mounted on an automobile. In this case, when the vehicle is idling, the intake air amount is affected by the engine temperature.
[0003]
Therefore, temperature sensing elements are attached at the required positions, and the control conditions are obtained by collecting the detection signals from each temperature sensing element. That is, when the engine temperature is high, the amount of bypass air is reduced, and conversely, when the engine temperature is low, the amount of bypass air is increased.
[0004]
In short, the valve body for ISC is required to have a large stroke at low temperatures, and at high temperatures, a specification that moves only a small stroke near the valve closing position is required as a countermeasure against runaway. FIG. 15 shows the required characteristics of a rotary actuator for ISC valve body control. The horizontal axis represents temperature T [° C.] and the vertical axis represents stroke [deg].
[0005]
[Problems to be solved by the invention]
If the above-mentioned control is to be performed, a control circuit that requires a plurality of temperature sensing elements corresponding to each position that requires measurement and that takes temperature conditions into account must be provided, resulting in structural complexity. In addition, there are problems of reliability and cost increase.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a temperature-sensitive actuator that can obtain the stroke characteristics according to temperature with a simple configuration.
[0006]
[Means for Solving the Problems]
A temperature-sensitive actuator according to
[0007]
A temperature sensitive actuator according to a second aspect of the present invention is the temperature sensitive actuator according to the first aspect, wherein the magnetic path of the stator is notched to provide a
[0008]
According to a third aspect of the present invention, there is provided a temperature-sensitive actuator comprising a stator obtained by dividing a closed magnetic path formed of a magnetic material into two
[0009]
According to a fourth aspect of the present invention, in the temperature sensitive actuator according to the third aspect, the
[0010]
According to a fifth aspect of the present invention, there is provided a temperature-sensitive actuator having a stator in which a closed magnetic path formed using a magnetic material is divided into 2a, 2b, and 2c, and an opening in the closed magnetic path of the stator. In order to magnetically connect the rotor made of a permanent magnet provided on the stator and the divided stator and the rotor, the rotor is connected to the stator and provided toward the center in the closed magnetic circuit. A plurality of
[0011]
A temperature sensitive actuator according to a sixth aspect of the present invention is the temperature sensitive actuator according to the fifth aspect,statorA
[0012]
According to a seventh aspect of the present invention, there is provided a temperature-sensitive actuator in which a closed magnetic path formed using a magnetic material is divided into two
[0013]
A temperature-sensitive actuator according to an eighth aspect of the present invention includes a stator in which a temperature-sensitive
[0014]
A temperature-sensitive actuator according to a ninth aspect of the present invention includes a stator having a closed magnetic path formed using a magnetic material, and a permanent magnet that is rotatably provided in an opening in the magnetic path of the stator. In order to magnetically connect the rotor and the stator and the rotor, a plurality of
[0015]
A temperature-sensitive actuator according to
[0016]
A temperature-sensitive actuator according to
[0017]
According to
[0018]
The temperature sensitive actuator according to
[0019]
According to claim 14 of the present invention, in the temperature sensitive actuator according to
[0021]
[Action]
In the temperature-sensitive actuators according to [Claim 1] and [Claim 2] of the present invention, the temperature-sensitive magnetic material has a high magnetic permeability at a low temperature and easily allows magnetic flux to pass therethrough. Therefore, the magnetic flux passing through the
[0022]
Since the temperature-sensitive actuator according to [Claim 3] and [Claim 4] of the present invention has a high magnetic permeability at low temperatures, the magnetic flux passing through the
[0023]
In the temperature-sensitive actuators according to [Claim 5] and [Claim 6] of the present invention, since the temperature-sensitive
[0024]
Since the temperature sensitive actuator according to [Claim 7] and [Claim 8] of the present invention has a large magnetic permeability of the temperature sensitive magnetic material at low temperature, the magnetic flux is magnetic pole pieces 5-1, (5-2), 7-1, (7-2), and therefore the rotor is rotating toward the center line d. However, when the temperature is high, the magnetic permeability of the temperature-sensitive
[0025]
The temperature-sensitive actuators according to [Claim 9] and [Claim 10] of the present invention have the
[0026]
In the temperature-sensitive actuators according to [Claim 11] and [Claim 12] of the present invention, the temperature-sensitive magnetic material has a high magnetic permeability and can easily pass magnetic flux at low temperatures. Therefore, the magnetic flux passing through the
[0027]
In the temperature sensitive actuator according to [Claim 13] and [Claim 14] of the present invention, a compensation portion (air gap) for magnetic balance is provided in the magnetic path. Can be compensated for.
[0028]
Since the temperature-sensitive actuator according to [Claim 15] of the present invention is provided with a predetermined air gap between the temperature-sensitive magnetic material and the stator in advance, it is between the compensation section (air gap) in the magnetic path. This eliminates the difficulty of machining accuracy.
[0029]
【Example】
Embodiments will be described below with reference to the drawings.
FIG. 1 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to [Claim 1] of the present invention. In FIG.1Is a temperature-sensitive actuator body, and is composed of a
[0030]
Here, the
[0031]
Next, the operation will be described.
In this embodiment, the temperature-sensitive magnetic material has a negative characteristic. Therefore, since the magnetic permeability is large at low temperatures, the
[0032]
Further, since the magnetic permeability of the temperature-sensitive magnetic material decreases at a high temperature, the magnetic flux passing through the
[0033]
FIG. 2 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to [Claim 2] of the present invention. In FIG. 2, the same parts as those in FIG. In this embodiment, the
[0034]
Next, the operation will be described.
In this case, the magnetic flux generated by the coil of the
[0035]
Therefore, if the saturation magnetic flux density of the temperature-sensitive magnetic material decreases at a high temperature, the magnetic flux passing from the
[0036]
FIG. 3 is a block diagram of an embodiment of the temperature-sensitive actuator according to [Claim 3] of the present invention. In FIG. 3, the same parts as those in FIGS. In this embodiment, a temperature-sensitive
[0037]
Next, the operation will be described.
Since the temperature-sensitive
[0038]
When the temperature is high, the saturation magnetic flux density of the temperature-sensitive magnetic material decreases, and when the temperature reaches the Curie temperature of the temperature-sensitive magnetic material, it changes to paramagnetism, and the temperature-sensitive magnetic material portion is the same as the presence of air. In this case, l1> L2Is set, the
[0039]
FIG. 4 is a configuration diagram of one embodiment of a temperature-sensitive actuator according to [Claim 4] of the present invention. In FIG. 4, the same parts as those in FIG. In this embodiment, a
[0040]
First, the magnetic flux generated by the coil of the
[0041]
FIG. 5 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to [Claim 5] of the present invention. In FIG. 5, the same parts as those in FIG. The difference between this embodiment and FIG. 3 is that the installation position of the temperature-sensitive
[0042]
In terms of operation, since the temperature-sensitive
[0043]
On the other hand, since the saturation magnetic flux density of the temperature-sensitive
[0044]
FIG. 6 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to [Claim 6] of the present invention. 6, the same parts as those in FIG. 5 and the corresponding parts are denoted by the same reference numerals, and the description thereof is omitted. In this embodiment, a
[0045]
First, the magnetic flux generated by the coil of the
[0046]
FIG. 7 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to [Claim 7] of the present invention. In FIG. 7, the temperature-sensitive actuator body1In the shape of holding the temperature-sensitive
[0047]
5-1 and 7-1 are a pair of magnetic pole pieces having a wide opposing surface, and 6-1 and 8-1 are a pair of magnetic pole pieces having a narrow opposing surface.
[0048]
In FIG. 7, the solid line is a magnetic path at a low temperature, and the dotted line is a magnetic path at a high temperature. Next, the operation will be explained. Since the temperature-sensitive
[0049]
Next, at high temperatures, the saturation magnetic flux density of the temperature-sensitive magnetic material decreases. When the temperature reaches the Curie temperature of the temperature-sensitive magnetic material, the temperature-sensitive magnetic material changes to paramagnetism, and this portion becomes the same as the presence of air, making it difficult to pass magnetic flux. In this case, the magnetic flux passing through the
[0050]
FIG. 8 is a configuration diagram of one embodiment of a temperature-sensitive actuator according to the eighth aspect of the present invention. In FIG. 8, 12 is a magnetomotive force source, and a temperature-sensitive magnetic material is provided between the
[0051]
In addition, the circumference | surroundings of the
[0052]
Therefore, the magnetic flux generated by the coil is a loop passing through the magnetic pole pieces 6-2 to 8-2 (acting the rotor magnet in the valve closing direction) and a loop passing through the magnetic pole pieces 5-2 to 7-2 (opening the rotor magnet). Acting on the valve direction). If the saturation magnetic flux density of the temperature-sensitive
[0053]
FIG. 9 is a block diagram of an embodiment of a temperature-sensitive actuator according to [Claim 9] of the present invention. In FIG. 9, the same parts as those in FIG. The characteristic portion of FIG. 9 is a combination of the temperature-sensitive
[0054]
Accordingly, as a function, since the temperature-sensitive
[0055]
When the temperature of the temperature-sensitive magnetic material rises, the saturation magnetic flux density decreases. When the temperature-sensitive magnetic material reaches the Curie temperature of the temperature-sensitive magnetic material, it changes to paramagnetism and passes the same level of magnetic flux as air. By combining the temperature-sensitive
[0056]
FIG. 10 is a block diagram of an embodiment of a temperature-sensitive actuator according to [Claim 10] of the present invention. In FIG. 10, the same parts as those in FIG. In this embodiment, the temperature sensitive
[0057]
Accordingly, since the temperature-sensitive magnetic material passes the magnetic flux as much as the
[0058]
When the temperature rises, the saturation magnetic flux density of the temperature-sensitive magnetic material decreases. Here, when the temperature reaches the Curie temperature of the temperature-sensitive magnetic material, the temperature-sensitive magnetic material changes to paramagnetism, and the temperature-sensitive magnetic material portion becomes the same as the presence of air, making it difficult to pass magnetism. Therefore, the magnetic flux passing through the magnetic pole pieces 5-1 and 8-1 and the magnetic flux passing through the magnetic pole pieces 6-1 and 7-1 form a symmetrical loop to be balanced. Therefore, the center line of the
[0059]
FIG. 11 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to [claim 11] and [claim 12] of the present invention. In FIG. 11, the
[0060]
The temperature-sensitive
[0061]
The temperature-sensitive actuators according to [Claim 11] and [Claim 12] of the present invention are easy to pass magnetic flux at low temperatures because the temperature-sensitive magnetic material has a high magnetic permeability. Therefore, the magnetic flux passing through the
[0062]
FIG. 12 is a block diagram of an embodiment of the temperature-sensitive actuator according to [Claim 13] of the present invention. In FIG. 12, the same parts as those in FIG. In this embodiment, the
[0063]
As a means for correcting the amount rotated to the open side, a magnetoresistive portion (referred to as a compensation portion) 21 corresponding to the magnetic resistance of the junction gap is provided. In the case of this embodiment, a round hole is formed in the magnetic path, and a desired compensation amount is obtained depending on the size of the diameter.
[0064]
FIG. 13 is a configuration diagram of one embodiment of a temperature-sensitive actuator according to [Claim 14] of the present invention. In FIG. 13, the same parts as those in FIG. In this embodiment, an air gap 14-1 is provided in the magnetic path as a compensation portion. In this embodiment, a desired compensation amount is obtained by adjusting the gap length.
[0065]
FIG. 14 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to [Claim 15] of the present invention. In FIG. 14, the same parts as those in FIG. Since the junction gap is very small, the air gap 14-1 for compensating for this must be small.
[0066]
Such processing is difficult and also causes variations. Therefore, by providing the predetermined gaps 18-1 and 18-2 between the temperature-sensitive
[0067]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a temperature-sensitive actuator that uses a temperature-sensitive magnetic material having a negative characteristic, and that moves the rotor stroke greatly at low temperatures and moves only a small stroke near the valve closure at high temperatures.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to
FIG. 2 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to
FIG. 3 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to
FIG. 4 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to
FIG. 5 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to
FIG. 6 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to
FIG. 7 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to
FIG. 8 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to
FIG. 9 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to
FIG. 10 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to claim 10 of the present invention.
FIG. 11 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to
FIG. 12 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to claim 13 of the present invention.
FIG. 13 is a configuration diagram of an embodiment of a temperature-sensitive actuator according to claim 14 of the present invention.
FIG. 14 is a characteristic diagram of a rotary actuator for ISC valve body property control.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29793494A JP3666669B2 (en) | 1994-11-07 | 1994-11-07 | Temperature sensitive actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29793494A JP3666669B2 (en) | 1994-11-07 | 1994-11-07 | Temperature sensitive actuator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08136360A JPH08136360A (en) | 1996-05-31 |
JP3666669B2 true JP3666669B2 (en) | 2005-06-29 |
Family
ID=17852990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29793494A Expired - Fee Related JP3666669B2 (en) | 1994-11-07 | 1994-11-07 | Temperature sensitive actuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3666669B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4574800B2 (en) * | 2000-05-18 | 2010-11-04 | 日本電産コパル株式会社 | Electromagnetic actuator and camera shutter device |
KR100529946B1 (en) | 2004-01-29 | 2005-11-22 | 엘지전자 주식회사 | Swing Motor |
JP6962226B2 (en) * | 2018-02-13 | 2021-11-05 | トヨタ自動車株式会社 | motor |
JP7047433B2 (en) * | 2018-02-13 | 2022-04-05 | トヨタ自動車株式会社 | motor |
JP6997822B2 (en) * | 2019-04-11 | 2022-01-18 | 健二 香取 | Energy conversion element |
-
1994
- 1994-11-07 JP JP29793494A patent/JP3666669B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08136360A (en) | 1996-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5742106A (en) | Thermo-sensitive actuator and idle speed controller employing the same | |
JP3757118B2 (en) | Non-contact rotational position sensor and throttle valve assembly having non-contact rotational position sensor | |
JP2005147926A (en) | Rotation position sensor, and electronic control type throttle device for internal combustion engine | |
JP4046746B2 (en) | Rotation angle detector | |
JP4204294B2 (en) | Rotation angle detector | |
JP5904252B2 (en) | Position detection device | |
US5907202A (en) | Thermo-sensitive actuator and idle speed controller employing the same | |
US20070108968A1 (en) | Rotation angle detection device | |
JP3666669B2 (en) | Temperature sensitive actuator | |
JP3539299B2 (en) | Rotation angle detector | |
JP2014126553A (en) | Position detector | |
JP5720961B2 (en) | Position detection device | |
JP2004332603A (en) | Rotation angle detection device, electronic control throttle valve device, manufacturing method for sensor detecting rotation angle of throttle valve stem, and internal combustion engine | |
JP2004245703A (en) | Rotational angle detection device | |
JP2014126552A (en) | Position detector | |
JP2001208510A (en) | Angle-of-rotation detector | |
JP3979608B2 (en) | Temperature sensitive actuator | |
KR100514459B1 (en) | Actuator | |
EP0854561A2 (en) | Thermo-sensitive actuator and idle speed controller employing the same | |
JP3589324B2 (en) | Actuator | |
KR100309897B1 (en) | Thermo Actuator and Children Speed Controller Using It | |
JP3315815B2 (en) | Temperature-sensitive actuator and idle speed controller using it | |
JP2014126550A (en) | Position detector | |
JP2555571B2 (en) | Rotary Solenoid Actuator | |
JPS59226646A (en) | Rotary drive device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050331 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050331 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |