JP3665821B2 - High-density three-dimensional reflection seismic survey equipment - Google Patents

High-density three-dimensional reflection seismic survey equipment Download PDF

Info

Publication number
JP3665821B2
JP3665821B2 JP2002177731A JP2002177731A JP3665821B2 JP 3665821 B2 JP3665821 B2 JP 3665821B2 JP 2002177731 A JP2002177731 A JP 2002177731A JP 2002177731 A JP2002177731 A JP 2002177731A JP 3665821 B2 JP3665821 B2 JP 3665821B2
Authority
JP
Japan
Prior art keywords
receiving
oscillation
density
vibration
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002177731A
Other languages
Japanese (ja)
Other versions
JP2004020448A (en
Inventor
富士 稲崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research and Development Agency Public Works Research Institute
Original Assignee
Public Works Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Public Works Research Institute filed Critical Public Works Research Institute
Priority to JP2002177731A priority Critical patent/JP3665821B2/en
Publication of JP2004020448A publication Critical patent/JP2004020448A/en
Application granted granted Critical
Publication of JP3665821B2 publication Critical patent/JP3665821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高密度三次元反射法地震探査装置に関し、特に、道路、駐車場、アスファルト舗装された盛土法面等の地質構造を高密度に三次元探査するのに適した装置に関する。
【0002】
【従来の技術】
従来の地下探査技術の一つに、三次元反射法地震探査技術が知られている。この技術は、資源探査技術で普及してきた二次元反射法地震探査技術を面的に展開したもので、地下の地質構造を三次元的に探査することが可能な方法である。この三次元反射法地震探査では多数の発振点と受振点を面的に配置し、全方位からの信号を観測・処理することで三次元的な構造を再構成するものである。
【0003】
従来の地震探査法では、発振装置に比べて受振センサの方が安価であり、かつ発振装置の移動および発振作業に時間がかかるため、あらかじめ多数の受振点を地表面に展開させ、受振点に比べて相対的に小数の発振点からの信号を取得する方法が一般的であった。
しかしこの従来手法では、多数の受振センサを地表面に設置するのに要する時間が多く、かかる作業を短縮することができなかった。
また、都市域では地表の大部分がアスファルトで舗装されていたり、固結体で覆われているいることから、従来の反射法地震探査で採用されてきた受振センサをスパイクで固定する方式が適用できないという問題もあった。
【0004】
また、二次元反射法地震探査技術において、複数の受振センサを直線上に吊下げ、これを車輪付き装置で移動させる装置が知られている(特開平7−301677号公報参照)が、この装置は、受振センサを一列に並べているだけであるから二次元反射法地震探査にしか用いることができないものであり、また、測定時に受振センサを接地させる作業が必要であった。さらに、受振センサのみを装着しているだけであるから、発振装置は、別途、移動しつつ設置していかなければならないという問題があった。
【0005】
一方、海域で実施されている三次元マルチチャンネル音波探査の手法を陸地に適用した、「ランドストリーマー探査技術」を利用すれば、上述の受振センサの設置にかかる作業時間を大幅に短縮することができる。しかし同技術では、複数のランドストリーマーの間隔を一定に保つために特別の維持部品を必要としていた。また発振点位置が実質的に面的に展開した数本のランドストリーマーの前後に限られるため、高精度での三次元地下構造の再構成に不可欠な、全方位からの信号観測を保証することができなかった。
【0006】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑みてなされたもので、測定の都度、発振装置および受振センサを設置するという作業を不要とし、かつ、高密度に地下の地質構造を三次元的に探査できる高密度三次元反射法地震探査装置を提供することを目的とする。 特に、道路、駐車場、アスファルト舗装された盛土法面等の舗装面下の浅層の地質構造を高密度に三次元探査するのに適した装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の高密度三次元反射法地震探査装置は、発振点と受振点を面的に配置し、全方位からの信号を観測・処理することにより地質構造を三次元的に探査する三次元反射法地震探査装置において、非伸縮性の面状部材に発振装置および受振装置をそれぞれ複数装着したことを特徴とする。
また、本発明の高密度三次元反射法地震探査装置は、非伸縮性の面状部材を、非伸縮性のシート、メッシュ、ネットあるいは不織布から形成することを特徴とする。
また、本発明の高密度三次元反射法地震探査装置は、面状部材の上に、等間隔で横方向に複数列の受振ラインを配置し、各列の受振ラインには、等間隔で複数チャンネルの構成となるよう受振装置を装着したことを特徴とする。
また、本発明の高密度三次元反射法地震探査装置は、面状部材の上に、受振装置を取り巻くように発振装置を装着したことを特徴とする。
また、本発明の高密度三次元反射法地震探査装置は、受振ラインと発振ラインとの間隔を、受振点間隔と同じか、あるいは、その整数倍の間隔としたことを特徴とする。
また、本発明の高密度三次元反射法地震探査装置は、面状部材には、その一端面にロッドを装着し、該ロッドには、牽引手段を装着したことを特徴とする。
また、本発明の高密度三次元反射法地震探査装置は、面状部材の下面にベースプレートを、また上面に合わせ盤を配置し、これらの部材をネジ等で狭着一体化するとともに、合わせ盤の上面に受振センサを配置し、該受振センサをべースプレートに固着することにより受振装置を構成したことを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明による実施の形態を図面に基づき説明する。
図1は、本発明の実施の形態の三次元反射法地震探査装置の全体構成を示す平面図である。
1は、非伸縮性の面状部材であり、例えば、非伸縮性のシートあるいは、非伸縮性のメッシュ、ネット、不織布等から成っている。材質としては、例えば、酢酸ビニル、帆布、アクリル系樹脂等、非伸縮性で、移動時の負荷に耐えられる強度をもったものであれば良い。なお、金属板のように振動を伝達し易いものは適さない。
面状部材1の上には、等間隔aで横方向に4列の受振ライン5、5、5、5を配置し、各列の受振ライン5には、間隔aで12チャンネルの構成となるよう12の受振点2を設定する。各受振点には、後述のように受振装置20を設置する。
【0009】
上記4列の受振ライン5、5、5、5を取り巻くように発振ライン6を巡らせ、この発振ライン6には、受振点間隔aと同じ間隔で総数40点の発振点3を配置する。ここでは発振点3の総数を40点としているが、受振ライン5の数、必要とされる解像度により総数を増減しても構わない。要は1つの面状部材1上に、受振点2を取り巻くように発振点3を配置することが重要である。受振ライン5と発振ライン6との間隔は、基本的には受振点間隔aと同じとするが、対象深度に応じて、その整数倍の間隔でも良い。各発振点には、後述のように発振装置を設置する。
【0010】
一連の受振装置および発振装置を設置した面状部材1は、受振装置および発振装置の相対的位置関係、すなわち間隔aを保持したまま全体を移動させることを可能にせしめる。そのため、面状部材1には、その一端面にロッド4が装着されている。図1では、受振ライン5と平行な一方の端面の全長にわたってロッド4が装着されている。このロッド4には、牽引ロープ7を介して中間ロッド8および牽引ロッド9が設けられる。図1に示すように中間ロッド8および牽引ロッド9は徐々に短くなっており、牽引ロッド9の中央部分が面状部材1の中心に位置するよう配置され、牽引ロッド9で面状部材1を牽引した場合、牽引力が偏在しないような配置になっている。また、ロッド4に装着する牽引ロープ7の懸架位置あるいは本数を調整することで、ロッド4が弾性変形するものであっても、面状部材1を撓ませることなく牽引することができる。牽引手段は、面状部材1の両サイドに設けることもできる。また、牽引ロープに代えて公知のリンク部材を使用することもできる。
【0011】
上記の受振点2間隔aは、本装置を用いた三次元探査の対象深度に依存する値であるが、装置全体の操作性、平面を保持する機能の確実性を考慮すると、20cmから1mが目安となる。したがって、面状部材1の大きさは、最小で3.6m×1.8m、最大でも18m×9m程度である。
【0012】
受振点2間隔aを20cmから50cm程度に設定した場合、最大の受振点―発振点距離(最大オフセット距離)は2.8mから7m程度であり、小さな発振エネルギーでも充分な信号を得ることができる距離である。
この場合、発振手段としてはハンマー打撃手段で充分であり、したがって発振点3には打撃盤を設置するだけで良い。発振点3に設置される打撃盤は金属製で、ハンマー打撃に対する耐性を持ち、かつ導電性があるものであれば材質は問わない。これらの打撃盤はトリガー線12で互いに連結されており、制御ボックス11を介して図示しないデータ収録装置に接続されている。打撃ハンマーにもトリガー線を結線し、データ収録装置と接合しておけば、ハンマーで打撃した瞬間のタイミングを合わせることが可能になる。
【0013】
受振点2間隔aを50cm以上に設定した場合、地盤条件によってはハンマー打撃で充分な弾性波信号を得られない可能性もある。この場合には、発振点3にソレノイド型の発振装置を設置する。制御ボックス11を介して各発振点3の発振装置を駆動し、その制御信号をトリガー線12でデータ収録装置に転送する。
【0014】
図2および図3は、受振点2における受振装置20の構造を示したものであり、図2は平面図、図3は図2のA−A断面図である。
受振センサ13は舗装面19に対して移動が可能なように舗装面19とはベースプレート14を介して非固定で設置される。非固定での設置は、良好な信号を取得する上では不利であるため、本実施の形態においてはできる限り高品質のデータが得られるよう、ベースプレート14の底面は滑らかに、また設置面積を大きくとるよう設計されている。また、ベースプレート14の厚さも舗装面19と受振センサ13のカップリングを考慮し、牽引時に不安定にならないよう適切なものに設定する。さらに、ベースプレート14の重量も舗装面19と受振センサ13のカップリングに大きく影響すること、および牽引時に過負荷にならないことを考慮して本実施の形態では200gから500g程度とする。ベースプレート14の材質は、上記条件を満たすものであれば特に限定されないが、望ましくは、加工し易く、かつ錆びないことを考慮してアルミニュームあるいはステンレス鋼が最も適している。
【0015】
受振センサ13は、移動時に負荷がかかるため、面状部材1上で位置がずれないように堅固に固定させることが重要である。しかし一般に面状部材を構成するシート類は分裂・破断しやすいため、面で負荷を持つように設計する。すなわち、べースプレート14と合わせ盤15で面状部材1を挟み、留めネジ16を締めることでベースプレート14と受振センサ13とを一体化し、かつ面状部材1に圧着させて固定する。また、受振センサ13自体も留めネジ17でベースプレート14に固定し、一体化を図っている。受振センサ13への電力供給が必要な場合の電力供給および受振センサ13からの信号転送は、受振ライン5を構成する信号線21に取り出し線18を結線することで行われる。信号線21は、接合ボックス22を介して信号伝送線10に接続されている。
【0016】
図4は、上記した高密度三次元反射法地震探査装置を移動させながら地下の地質構造を調査する状態を示した説明図である。
発振装置を作動させると、それによる弾性波23は反射点24により反射されて受振装置20により受振され、信号伝送線10を経て図示しないデータ収録装置に転送される。
その際、一の発振点での測定が終了すると、図4に示すように発振装置と受信装置20を装着した面状部材1を一定距離移動し、測線をオーバーラップさせて測定を繰り返すという方法がとられる。受振点2間隔aを小さくすれば、反射点24の密度が上がり水平方向の空間分解能が向上するので詳細な構造解析が可能となる。また、弾性波23の進入角度が反射点24に対して鈍角になると良いデータが取得できない。そのため、浅層を調査する場合には、発振点と受振点との距離を小さくする必要がある。
【0017】
本実施の形態による高密度三次元反射法地震探査装置によれば、受振点2と発振点3との相対的な位置関係を保持したまま移動させることにより、地表面に擬似的な多数の受振点を配置させることが可能となる。すなわち、従来の三次元地震探査では、あらかじめ多数の受振点を地表に配置していたが、本実施の形態による高密度三次元反射法地震探査装置では、少数の受振点・発振点全体を移動させ得ることで同様の機能を奏するものである。
加えて、従来の三次元地震探査では、受振点−発振点距離の大きな位置関係のものが多数含まれているのに対し、本実施の形態による高密度三次元反射法地震探査装置では、受振点−発振点距離の最大間隔は14a程度であり、高密度な地震探査が可能となり、また、浅層部の探査に適した配置を保持できるという利点もある。
【0018】
本実施の形態による高密度三次元反射法地震探査装置において、受振点間隔aを20cmに設定した場合、総重量は50kg程度であり、人力でも充分移動させることができる。また、発振作業もハンマー打撃の場合、次点への移動を含めても数秒で実行可能であり、図1に示した最大で40点の発振も2分程度しか要しない。
したがって、1時間の作業で、幅2.4m、長さ約20mの区間の三次元地盤構造を、10cm間隔の分解能(24×200)で再構成することが可能と見積もられる。
また、対象深度は、P波発振の場合、地盤の速度にもよるが概ね舗装路盤下〜5m程度と見積もられ、深度方向の分解能は数cm程度と見積もられる。これらの値は、舗装面下の構造調査としては充分な値であり、特に地中レーダでは探査が困難とされてきた深度2m以深の領域の探査が可能となる。
【0019】
ここでは各列の受振ライン5を4列、各ラインを12チャンネルで構成した例を示しているが、必要とされる解像度により受振ライン5の数および各ラインの構成数すなわち受振点2の数を増減しても構わない。要は、1つの面状部材1上に、受振点2および受振点2で構成される受振ライン5をそれぞれ等間隔で配置することが重要である。
【0020】
【発明の効果】
以上の如く本発明は、以下の効果を奏する
(1)面状に受振点および発振点を配置したことにより、地下の地質構造を三次元的に探査できる。
(2)面状部材上に受振装置および発振装置を装着することにより、発振装置および受振装置を測定の都度設置するという作業が不要となり、装置の移動も容易に行うことができる。したがって、舗装面においても、探査作業をを短時間に能率良く行うことができる。
(3)受振点と発振点との相対的な位置関係を保持したまま移動させるため、地表面に擬似的な多数の受振点を配置させることが可能となる。
(4)受振点間隔を小さくすることが可能であるため、水平方向の空間分解能が向上し、詳細な構造解析が可能となる。
(5)発振点と受振点との距離が小さくできるため、高密度な地震探査が可能となり、また、浅層部の探査に適した装置を提供できる。
(6)装置全体が軽量であるため、人手により装置の移動ができ、車の進入ができないような個所の測定も可能となる。
(7)発振点と受振点との距離が短いため、発振装置を小型化できる。
(8)受振装置および発振装置を装着する面状部材を、非伸縮性のシートで形成できるため、装置を軽量かつ安価にできる。
【図面の簡単な説明】
【図1】 本発明の実施の形態の三次元反射法地震探査装置の全体構成を示す平面図である。
【図2】 本発明の実施の形態の受振装置の構造を示した平面図である。
【図3】 本発明の実施の形態の受振装置の構造を示したもので、図2のA−A断面図である
【図4】 本発明の実施の形態の高密度三次元反射法地震探査装置を移動させながら地下の地質構造を調査する状態を示した説明図である。
【符号の説明】
1 面状部材
2 受振点
3 発振点
4 ロッド
5 受振ライン(受振点2および信号線21で構成される線状配列)
6 発振ライン(発振点3およびトリガー線12で構成される線状配列 )
7 牽引ロープ
8 中間ロッド
9 牽引ロッド
10 信号伝送線
11 制御ボックス
12 トリガー線
13 受振センサ
14 ベースプレート
15 合わせ盤
16、17 留めネジ
18 取り出し線
19 舗装面
20 受振装置
21 信号線
23 弾性波
24 反射点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-density three-dimensional reflection seismic exploration apparatus, and more particularly to an apparatus suitable for high-density three-dimensional exploration of geological structures such as roads, parking lots, and asphalt-paved embankment slopes.
[0002]
[Prior art]
As one of the conventional underground exploration techniques, a three-dimensional reflection seismic exploration technique is known. This technique is a two-dimensional reflection seismic exploration technique that has been widely used in resource exploration techniques, and is a method that enables three-dimensional exploration of underground geological structures. In this three-dimensional reflection seismic survey, a large number of oscillation points and receiving points are arranged in a plane, and signals from all directions are observed and processed to reconstruct a three-dimensional structure.
[0003]
In the conventional seismic exploration method, the vibration sensor is cheaper than the oscillation device, and it takes time to move and oscillate the oscillation device. In comparison, a method of acquiring signals from a relatively small number of oscillation points has been common.
However, with this conventional method, it takes a long time to install a large number of vibration receiving sensors on the ground surface, and such work cannot be shortened.
In urban areas, most of the surface of the earth is paved with asphalt or covered with solidified bodies, so the method of fixing the vibration sensor used in conventional seismic reflection surveys with spikes is applied. There was also a problem that it was not possible.
[0004]
In the two-dimensional reflection seismic exploration technique, a device is known in which a plurality of vibration receiving sensors are suspended on a straight line and moved by a wheeled device (see Japanese Patent Application Laid-Open No. 7-301677). Can only be used for two-dimensional reflection seismic exploration because the vibration sensors are only arranged in a line, and it is necessary to ground the vibration sensor during measurement. Furthermore, since only the vibration sensor is attached, there is a problem that the oscillation device must be separately installed while moving.
[0005]
On the other hand, if “land streamer exploration technology” is applied to land where the 3D multi-channel sound wave exploration method implemented in the sea area is used, the work time required for installation of the above-mentioned vibration sensor can be significantly reduced. it can. However, this technology requires special maintenance parts to keep the distance between the plurality of land streamers constant. In addition, since the position of the oscillation point is limited to the front and back of several land streamers that are developed substantially in a plane, it is necessary to guarantee signal observation from all directions, which is indispensable for the reconstruction of a three-dimensional underground structure with high accuracy. I could not.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems, and eliminates the need to install an oscillation device and a vibration receiving sensor each time measurement is performed, and enables high-density three-dimensional exploration of underground geological structures at high density. The object is to provide a density three-dimensional seismic reflection survey device. In particular, an object of the present invention is to provide a device suitable for high-density three-dimensional exploration of a shallow geological structure under a paved surface such as a road, a parking lot, and an asphalt-paved embankment slope.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the high-density three-dimensional reflection seismic survey apparatus of the present invention arranges an oscillation point and a receiving point in a plane, and observes and processes signals from all directions, thereby obtaining a tertiary structure. A three-dimensional reflection seismic exploration device that is originally explored is characterized in that a plurality of oscillation devices and vibration receiving devices are mounted on a non-stretchable planar member.
The high-density three-dimensional reflection seismic survey apparatus of the present invention is characterized in that the non-stretchable planar member is formed from a non-stretchable sheet, mesh, net or non-woven fabric.
In the high-density three-dimensional reflection seismic survey apparatus according to the present invention, a plurality of rows of vibration receiving lines are arranged in a horizontal direction at equal intervals on a planar member, and a plurality of vibration receiving lines in each row are arranged at equal intervals. A vibration receiving device is mounted so as to have a channel configuration.
The high-density three-dimensional reflection seismic survey apparatus of the present invention is characterized in that an oscillation device is mounted on a planar member so as to surround the vibration receiving device.
The high-density three-dimensional reflection seismic survey apparatus of the present invention is characterized in that the interval between the receiving line and the oscillation line is the same as the receiving point interval or an integer multiple thereof.
The high-density three-dimensional reflection seismic survey apparatus of the present invention is characterized in that a rod is attached to one end surface of the planar member, and a traction means is attached to the rod.
The high-density three-dimensional reflection seismic survey apparatus according to the present invention has a base plate disposed on the lower surface of the planar member and a mating panel on the upper surface, and these members are tightly integrated with screws or the like. The vibration receiving device is configured by arranging a vibration receiving sensor on the upper surface of the plate and fixing the vibration receiving sensor to a base plate.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a plan view showing the overall configuration of a three-dimensional reflection seismic survey apparatus according to an embodiment of the present invention.
Reference numeral 1 denotes a non-stretchable planar member, which is made of, for example, a non-stretchable sheet, a non-stretchable mesh, a net, or a non-woven fabric. As the material, for example, vinyl acetate, canvas, acrylic resin, or the like may be used as long as it is non-stretchable and has a strength capable of withstanding a load during movement. Note that a metal plate that easily transmits vibration is not suitable.
On the planar member 1, four rows of receiving lines 5, 5, 5, 5 are arranged in the horizontal direction at equal intervals a, and the receiving lines 5 in each row have 12 channels at intervals a. As shown, twelve receiving points 2 are set. A vibration receiving device 20 is installed at each vibration receiving point as described later.
[0009]
The oscillation line 6 is circulated so as to surround the four rows of receiving lines 5, 5, 5, 5, and a total of 40 oscillation points 3 are arranged on the oscillation line 6 at the same interval as the receiving point interval a. Although the total number of oscillation points 3 is 40 here, the total number may be increased or decreased depending on the number of receiving lines 5 and the required resolution. In short, it is important to arrange the oscillation point 3 on one planar member 1 so as to surround the receiving point 2. The interval between the receiving line 5 and the oscillating line 6 is basically the same as the receiving point interval a, but may be an integer multiple according to the target depth. As will be described later, an oscillation device is installed at each oscillation point.
[0010]
The planar member 1 provided with a series of vibration receiving devices and oscillation devices makes it possible to move the whole while maintaining the relative positional relationship between the vibration receiving devices and the oscillation devices, that is, the distance a. Therefore, the rod 4 is attached to one end surface of the planar member 1. In FIG. 1, the rod 4 is mounted over the entire length of one end face parallel to the vibration receiving line 5. The rod 4 is provided with an intermediate rod 8 and a traction rod 9 via a traction rope 7. As shown in FIG. 1, the intermediate rod 8 and the traction rod 9 are gradually shortened, and are arranged so that the central portion of the traction rod 9 is positioned at the center of the planar member 1. When towed, the traction force is not unevenly distributed. Moreover, even if the rod 4 is elastically deformed by adjusting the suspension position or the number of the pulling ropes 7 attached to the rod 4, the planar member 1 can be pulled without being bent. The traction means can be provided on both sides of the planar member 1. Moreover, it can replace with a tow rope and can also use a well-known link member.
[0011]
The receiving point 2 interval a is a value that depends on the target depth of the three-dimensional exploration using this device, but considering the operability of the entire device and the certainty of the function of maintaining the plane, the distance from 20 cm to 1 m It becomes a standard. Therefore, the size of the planar member 1 is about 3.6 m × 1.8 m at the minimum and about 18 m × 9 m at the maximum.
[0012]
When the receiving point 2 interval a is set to about 20 cm to 50 cm, the maximum receiving point-oscillation point distance (maximum offset distance) is about 2.8 m to 7 m, and a sufficient signal can be obtained even with a small oscillation energy. Distance.
In this case, hammer striking means is sufficient as the oscillating means, and therefore it is only necessary to install a striking board at the oscillation point 3. The striking board installed at the oscillation point 3 is made of metal, and any material can be used as long as it has resistance to hammering and has conductivity. These striking boards are connected to each other by a trigger wire 12 and are connected to a data recording device (not shown) via a control box 11. By connecting a trigger wire to the hammer and joining it to the data recording device, it becomes possible to synchronize the timing of the moment of hitting with the hammer.
[0013]
When the receiving point 2 interval a is set to 50 cm or more, depending on the ground conditions, there is a possibility that a sufficient elastic wave signal cannot be obtained by hammering. In this case, a solenoid type oscillation device is installed at the oscillation point 3. The oscillation device at each oscillation point 3 is driven via the control box 11 and the control signal is transferred to the data recording device via the trigger line 12.
[0014]
2 and 3 show the structure of the vibration receiving device 20 at the vibration receiving point 2. FIG. 2 is a plan view and FIG. 3 is a cross-sectional view taken along line AA of FIG.
The vibration receiving sensor 13 is installed unfixed to the pavement surface 19 via the base plate 14 so as to be movable with respect to the pavement surface 19. Since non-fixed installation is disadvantageous for obtaining a good signal, in this embodiment, the bottom surface of the base plate 14 is smooth and the installation area is large so that high-quality data can be obtained as much as possible. Designed to take. The thickness of the base plate 14 is also set to an appropriate value so as not to become unstable during towing in consideration of the coupling between the paved surface 19 and the vibration receiving sensor 13. Further, in consideration of the fact that the weight of the base plate 14 greatly affects the coupling between the pavement surface 19 and the vibration receiving sensor 13 and does not become overloaded during towing, the weight is set to about 200 g to 500 g in the present embodiment. The material of the base plate 14 is not particularly limited as long as it satisfies the above conditions. Preferably, aluminum or stainless steel is most suitable considering that it is easy to process and does not rust.
[0015]
Since the vibration receiving sensor 13 is loaded during movement, it is important to firmly fix the vibration receiving sensor 13 so as not to shift its position on the planar member 1. However, in general, the sheets constituting the planar member are easy to split and break, so the surface is designed to have a load. That is, the planar member 1 is sandwiched between the base plate 14 and the laminating board 15, and the fastening screw 16 is tightened to unify the base plate 14 and the vibration receiving sensor 13, and to be crimped and fixed to the planar member 1. Further, the vibration receiving sensor 13 itself is fixed to the base plate 14 with a fastening screw 17 for integration. When power supply to the vibration receiving sensor 13 is necessary, power supply and signal transfer from the vibration receiving sensor 13 are performed by connecting the extraction line 18 to the signal line 21 configuring the vibration receiving line 5. The signal line 21 is connected to the signal transmission line 10 via the junction box 22.
[0016]
FIG. 4 is an explanatory diagram showing a state in which an underground geological structure is investigated while moving the above-described high-density three-dimensional reflection seismic survey device.
When the oscillation device is activated, the elastic wave 23 is reflected by the reflection point 24 and received by the vibration receiving device 20, and transferred to the data recording device (not shown) via the signal transmission line 10.
At this time, when the measurement at one oscillation point is completed, as shown in FIG. 4, the planar member 1 on which the oscillation device and the reception device 20 are mounted is moved by a certain distance, and the measurement is repeated with overlapping measurement lines. Is taken. If the receiving point 2 interval a is reduced, the density of the reflection points 24 is increased and the spatial resolution in the horizontal direction is improved, so that detailed structural analysis is possible. Also, good data cannot be acquired if the approach angle of the elastic wave 23 becomes an obtuse angle with respect to the reflection point 24. Therefore, when investigating the shallow layer, it is necessary to reduce the distance between the oscillation point and the receiving point.
[0017]
According to the high-density three-dimensional reflection seismic survey apparatus according to the present embodiment, a large number of pseudo vibrations are received on the ground surface by moving while maintaining the relative positional relationship between the vibration receiving point 2 and the oscillation point 3. It becomes possible to arrange the points. In other words, in the conventional 3D seismic survey, a large number of receiving points are arranged on the ground surface in advance, but in the high density 3D reflection seismic survey apparatus according to the present embodiment, a small number of receiving points and oscillation points are moved. It is possible to achieve the same function.
In addition, the conventional three-dimensional seismic survey includes a large number of positions with a large receiving point-oscillation point distance, whereas the high-density three-dimensional reflection seismic surveying device according to the present embodiment The maximum point-oscillation point distance is about 14a, which enables high-density seismic exploration and has the advantage of being able to maintain an arrangement suitable for shallow exploration.
[0018]
In the high-density three-dimensional reflection seismic survey apparatus according to the present embodiment, when the receiving point interval a is set to 20 cm, the total weight is about 50 kg and can be sufficiently moved even by human power. Further, in the case of hammering, the oscillation operation can be executed in a few seconds including the movement to the next point, and the maximum 40-point oscillation shown in FIG. 1 requires only about 2 minutes.
Therefore, it is estimated that a three-dimensional ground structure having a width of 2.4 m and a length of about 20 m can be reconstructed with a resolution of 10 cm intervals (24 × 200) in one hour of work.
In the case of P-wave oscillation, the target depth is estimated to be approximately 5 m below the paved roadbed, although it depends on the speed of the ground, and the resolution in the depth direction is estimated to be about several centimeters. These values are sufficient for structural investigation under the pavement surface, and particularly, it is possible to search an area with a depth of 2 m or more, which has been considered difficult to search by a ground penetrating radar.
[0019]
Here, an example is shown in which each row of receiving lines 5 is composed of 4 rows and each line is composed of 12 channels. However, the number of receiving lines 5 and the number of constituent lines, that is, the number of receiving points 2 are determined according to the required resolution. You may increase or decrease. In short, it is important to arrange the receiving points 2 and the receiving lines 5 composed of the receiving points 2 at equal intervals on one planar member 1.
[0020]
【The invention's effect】
As described above, the present invention has the following effects. (1) By arranging the receiving point and the oscillation point in a planar shape, the underground geological structure can be explored three-dimensionally.
(2) By mounting the vibration receiving device and the vibration receiving device on the planar member, the operation of installing the vibration receiving device and the vibration receiving device for each measurement becomes unnecessary, and the device can be easily moved. Therefore, the exploration work can be efficiently performed in a short time even on the pavement surface.
(3) Since the movement is performed while maintaining the relative positional relationship between the receiving point and the oscillating point, a large number of pseudo receiving points can be arranged on the ground surface.
(4) Since the receiving point interval can be reduced, the spatial resolution in the horizontal direction is improved and a detailed structural analysis is possible.
(5) Since the distance between the oscillation point and the receiving point can be reduced, high-density seismic exploration is possible, and a device suitable for exploration of shallow layers can be provided.
(6) Since the entire device is lightweight, it is possible to move the device manually and to measure a place where the vehicle cannot enter.
(7) Since the distance between the oscillation point and the receiving point is short, the oscillation device can be downsized.
(8) Since the planar member on which the vibration receiving device and the oscillation device are mounted can be formed of a non-stretchable sheet, the device can be reduced in weight and cost.
[Brief description of the drawings]
FIG. 1 is a plan view showing an overall configuration of a three-dimensional reflection seismic survey apparatus according to an embodiment of the present invention.
FIG. 2 is a plan view showing the structure of the vibration receiving device according to the embodiment of the present invention.
3 shows the structure of the vibration receiving device according to the embodiment of the present invention, and is a cross-sectional view taken along line AA in FIG. 2. FIG. 4 is a high-density three-dimensional reflection seismic survey according to the embodiment of the present invention. It is explanatory drawing which showed the state which investigates an underground geological structure, moving an apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Planar member 2 Receiving point 3 Oscillating point 4 Rod 5 Receiving line (Linear arrangement comprised of receiving point 2 and signal line 21)
6 Oscillation line (Linear arrangement consisting of oscillation point 3 and trigger line 12)
7 Tow rope 8 Intermediate rod 9 Tow rod 10 Signal transmission line 11 Control box 12 Trigger line 13 Vibration sensor 14 Base plate 15 Laminating panel 16, 17 Set screw 18 Lead line 19 Pavement surface 20 Vibration receiving device 21 Signal line 23 Elastic wave 24 Reflection point

Claims (5)

発振点と受振点を面的に配置し、全方位からの信号を観測・処理することにより地質構造を三次元的に探査する三次元反射法地震探査装置において、非伸縮性の1つの面状部材の上に、横方向に複数列の受振ラインを配置し、各列の受振ラインには複数チャンネルの構成となるよう受振装置を装着するとともに、受振ラインを取り巻くように発振ラインを配置し、該発振ラインには複数の発振装置を装着し、且つ、面状部材の受振ラインと平行な一方の端面には牽引手段を装着したロッドを装着することにより、1つの面状部材上の受振装置と発振装置との相対的な位置関係を保持したまま移動可能としたことを特徴とする高密度三次元反射法地震探査装置。  In a three-dimensional reflection seismic exploration device that three-dimensionally explores geological structures by locating oscillation points and receiving points in a plane, and observing and processing signals from all directions, a non-stretchable surface On the member, a plurality of rows of vibration receiving lines are arranged in the horizontal direction, and a vibration receiving device is mounted on each row of vibration receiving lines so as to have a configuration of a plurality of channels, and an oscillation line is arranged so as to surround the vibration receiving lines. A plurality of oscillation devices are attached to the oscillation line, and a vibration receiving device on one planar member is attached by attaching a rod with a traction means to one end face parallel to the vibration receiving line of the planar member. A high-density three-dimensional reflection seismic survey device characterized in that it can move while maintaining the relative positional relationship between the oscillating device and the oscillation device. 面状部材を、非伸縮性のシート、メッシュ、ネットあるいは不織布から形成することを特徴とする請求項1記載の高密度三次元反射法地震探査装置。  2. The high-density three-dimensional reflection seismic survey apparatus according to claim 1, wherein the planar member is formed of a non-stretchable sheet, mesh, net or non-woven fabric. 横方向に複数列の受振ラインを等間隔に配置し、各列の受振ラインの受振装置を等間隔に装着したことを特徴とする請求項1又は請求項2記載の高密度三次元反射法地震探査装置。  3. A high-density three-dimensional reflection earthquake according to claim 1 or 2, wherein a plurality of rows of receiving lines are arranged at equal intervals in the horizontal direction, and receiving devices for the receiving lines of each row are mounted at equal intervals. Exploration device. 受振ラインと発振ラインとの間隔を、受振点間隔と同じか、あるいは、その整数倍の間隔としたことを特徴とする請求項1ないし請求項3のいずれか1項に記載の高密度三次元反射法地震探査装置。  4. The high-density three-dimensional structure according to claim 1, wherein an interval between the receiving line and the oscillating line is the same as the receiving point interval or an integral multiple of the receiving point interval. 5. Reflection seismic survey equipment. 面状部材の下面にベースプレートを、また上面に合わせ盤を配置し、これらの部材をネジ等で狭着一体化するとともに、合わせ盤の上面に受振センサを配置し、該受振センサをべースプレートに固着することにより受振装置を構成したことを特徴とする請求項1ないし請求項4のいずれか1項に記載の高密度三次元反射法地震探査装置。  A base plate is placed on the lower surface of the planar member, and a mating board is placed on the upper face. These members are tightly integrated with screws, etc., and a vibration sensor is placed on the upper surface of the mating board. The high-density three-dimensional reflection seismic survey apparatus according to any one of claims 1 to 4, wherein the vibration receiving device is configured by being fixed.
JP2002177731A 2002-06-18 2002-06-18 High-density three-dimensional reflection seismic survey equipment Expired - Lifetime JP3665821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177731A JP3665821B2 (en) 2002-06-18 2002-06-18 High-density three-dimensional reflection seismic survey equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177731A JP3665821B2 (en) 2002-06-18 2002-06-18 High-density three-dimensional reflection seismic survey equipment

Publications (2)

Publication Number Publication Date
JP2004020448A JP2004020448A (en) 2004-01-22
JP3665821B2 true JP3665821B2 (en) 2005-06-29

Family

ID=31175680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177731A Expired - Lifetime JP3665821B2 (en) 2002-06-18 2002-06-18 High-density three-dimensional reflection seismic survey equipment

Country Status (1)

Country Link
JP (1) JP3665821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698490A (en) * 2015-03-22 2015-06-10 中国煤炭地质总局地球物理勘探研究院 Static correction-based shallow coal seam efficient three-dimensional seismic exploration and observation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102047611B1 (en) * 2018-12-28 2019-11-21 한국해양대학교 산학협력단 3d marine seismic lab experiment system for i/o signal control and gain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698490A (en) * 2015-03-22 2015-06-10 中国煤炭地质总局地球物理勘探研究院 Static correction-based shallow coal seam efficient three-dimensional seismic exploration and observation system

Also Published As

Publication number Publication date
JP2004020448A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US6532190B2 (en) Seismic sensor array
Brodic et al. Multicomponent broadband digital-based seismic landstreamer for near-surface applications
Pugin et al. Near surface S-wave seismic reflection profiling–new approaches and insights
US8102731B2 (en) Method for operating marine seismic vibrator array to enhance low frequency output
JP2803907B2 (en) A method to deduce the reflectance of water bottom in double sensor seismic survey
Cardimona et al. Seismic reflection and ground-penetrating radar imaging of a shallow aquifer
US20070235250A1 (en) Seismic source/receiver probe for shallow seismic surveying
EP2831633B1 (en) Interferometry-based data redatuming and/or depth imaging
Inazaki High-resolution seismic reflection surveying at paved areas using an S-wave type land streamer
DE112011102495T5 (en) Seismic detection method for mode separation
US20150117149A1 (en) Methods and systems for land seismic surveying
Zhang et al. Geotechnical site investigation for tunneling and underground works by advanced passive surface wave survey
Taipodia et al. Recommendations for generating dispersion images of optimal resolution from active MASW survey
JP3665821B2 (en) High-density three-dimensional reflection seismic survey equipment
Bachrach et al. Fast 3D ultra shallow seismic reflection imaging using portable geophone mount
CN105155504A (en) Side direction seismic wave transmission nondestructive testing system and method for railway subgrade
Taipodia et al. A review of active and passive MASW techniques
Inazaki High-resolution S-wave reflection survey in urban areas using a woven belt type land streamer
JP2005114485A (en) Traction-type multi-channel surface wave survey system
Bergamo et al. Geophysical surveys for the characterization of the seismic local response at instrumented sites: a case study from a station of the Swiss strong motion network
JP3416704B2 (en) Traction belt, connecting device, and exploration device for deploying seismometer in two-dimensional manner
Asabere Comparison of dispersion curves acquired using multichannel analysis of surface waves with various striker plate configurations
Beilecke et al. Efficient high resolution subsurface shear wave reflection imaging in sealed urban environments
Inazaki Development of woven belt type land streamer and its application to high-resolution seismic survey
Matuła et al. Geodetic survey as a means of improving fast MASW (Multichannel Analysis Of Surface Waves) profiling in difficult terrain/land conditions

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

R150 Certificate of patent or registration of utility model

Ref document number: 3665821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term