JP2005114485A - Traction-type multi-channel surface wave survey system - Google Patents

Traction-type multi-channel surface wave survey system Download PDF

Info

Publication number
JP2005114485A
JP2005114485A JP2003347409A JP2003347409A JP2005114485A JP 2005114485 A JP2005114485 A JP 2005114485A JP 2003347409 A JP2003347409 A JP 2003347409A JP 2003347409 A JP2003347409 A JP 2003347409A JP 2005114485 A JP2005114485 A JP 2005114485A
Authority
JP
Japan
Prior art keywords
base member
surface wave
geophone
rope
ropes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003347409A
Other languages
Japanese (ja)
Other versions
JP4093944B2 (en
Inventor
Fuji Inazaki
富士 稲崎
Koichi Hayashi
宏一 林
Satoshi Okada
岡田  聡
Haruhiko Suzuki
晴彦 鈴木
Takanori Ishikawa
貴規 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oyo Corp
National Research and Development Agency Public Works Research Institute
Original Assignee
Public Works Research Institute
Oyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Public Works Research Institute, Oyo Corp filed Critical Public Works Research Institute
Priority to JP2003347409A priority Critical patent/JP4093944B2/en
Publication of JP2005114485A publication Critical patent/JP2005114485A/en
Application granted granted Critical
Publication of JP4093944B2 publication Critical patent/JP4093944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily survey surface wave with high precision by making less likely to be affected by stones on ground, cross wind, etc. and setting in optimum conditions, according to the investigation purpose and ground conditions. <P>SOLUTION: Two ropes 10 are extended in parallel, large number of oscillation receiver units 16 loading oscillation receivers 14 on a base member 12 are prepared and aligned with a specific intervals, and each oscillation receiver unit is spanned between the two ropes, to make whole set capable of traction in a series state. The oscillation units are provided with a mechanical binding mechanism 18 and can be attached to the rope at arbitrary positions with it, and thus the intervals of the receivers 14 can be freely controlled. The base member is almost rectangular plate in shape, and the front and back edges of the bottom are sloping surface or is a bent surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、多数の受振器ユニットを、牽引用の2本のロープ又はワイヤに間隔をおいて固定し、全体を一連の状態で牽引可能とした牽引式多チャンネル表面波探査装置に関するものである。更に詳しく述べると本発明は、ベース部材上に受振器を搭載した多数の受振器ユニットを、平行に引き延ばした2本のロープ又はワイヤの間に任意の位置で架設可能とすることによって、横風などの影響を受け難くすると共に、調査目的や地盤の条件などに応じた最適条件に組み上げることで、精度よく表面波を多数の測定点で受振できるようにした牽引式多チャンネル表面波探査装置に関するものである。   The present invention relates to a towed multi-channel surface wave exploration device in which a large number of geophone units are fixed to two tow ropes or wires at an interval so that the whole can be pulled in a series of states. . More specifically, in the present invention, a large number of geophone units each having a geophone mounted on a base member can be installed at any position between two ropes or wires extended in parallel. This is a tow-type multichannel surface wave exploration device that makes it possible to receive surface waves with high accuracy at a large number of measurement points by making them optimally suited to the purpose of the survey and ground conditions. It is.

弾性波を利用する物理探査の一手法として表面波探査法がある。表面波は、弾性波のうち地表付近を伝播する波であり、P波やS波と呼ばれる実体波とは異なる性質を持つ。しかし、表面波の伝播速度は、S波速度の90〜95%程度でS波に近い伝播速度を持つために、表面波を観測することで地盤のS波速度分布を求める試みが行われている。S波速度は物質の硬さなど工学的な目安となる剛性率に依存するので、地盤上に構造物等を設計する際などに有益な設計指標を与えてくれるからである。   One of the geophysical exploration methods using elastic waves is the surface wave exploration method. A surface wave is a wave that propagates near the ground surface among elastic waves, and has a property different from a body wave called a P wave or S wave. However, since the propagation velocity of surface waves is about 90 to 95% of the S wave velocity and has a propagation velocity close to that of the S waves, attempts have been made to obtain the S wave velocity distribution of the ground by observing the surface waves. Yes. This is because the S-wave velocity depends on the rigidity factor which is an engineering standard such as the hardness of the material, and provides a useful design index when designing a structure or the like on the ground.

土木・建築分野の地質調査、特に河川堤防等の安全性照査や埋立・盛土地盤の締め固め評価等においては、広域にわたる調査が必要になる。そのため、地盤のS波速度構造を簡便に推定する方法として表面波探査を適用する際には、その測定・解析を短時間で行うことができ低コストで調査結果が得られることが重要である。   A wide-area survey is required for geological surveys in the civil engineering / architecture field, especially for safety checks such as river embankments and landfill / filled land compaction evaluations. Therefore, when applying surface wave exploration as a simple method for estimating the S-wave velocity structure of the ground, it is important that the measurement and analysis can be performed in a short time and the survey results can be obtained at low cost. .

ところで、浅層反射法地震探査では、牽引ベルト上に地震計(受振器)を固定し、全体を牽引することで簡便に測定できるようにしたシステムが開発されている(特許文献1参照)。ここでは、地面側の台座と上方の設置盤で牽引ベルトを挟み、該牽引ベルトを貫通して複数のボルトで設置盤を台座に締め付けることで固定し、その設置盤に地震計を固着する構成が開示されている。これによって、地震計を非固定的に地面に設置することができ、牽引して位置を変えて測定することで測定効率を高めることができる。   By the way, in the shallow seismic reflection seismic survey, a system has been developed in which a seismometer (vibrator) is fixed on a pulling belt, and the entire system can be pulled and easily measured (see Patent Document 1). Here, the traction belt is sandwiched between the pedestal on the ground side and the upper installation panel, the installation panel is fixed by tightening the installation panel to the pedestal with a plurality of bolts through the traction belt, and the seismometer is fixed to the installation panel Is disclosed. As a result, the seismometer can be installed on the ground in a non-fixed manner, and the measurement efficiency can be improved by pulling and changing the position.

しかし、特許文献1に記載されているような従来構造の牽引式弾性波探査装置は、浅層反射法地震探査法には有効であっても、表面波探査法には必ずしも適しているわけではない。反射法探査では40〜100Hz程度の周波数領域の振動を受振するのに対して、表面波探査では、より低周波領域(2〜40Hz程度)の振動を受振しなければならず、そのため、地面上に存在している礫によるカップリングの低下や横風による微動などの影響を受け易く、それによりノイズが大きくなり測定精度が低下する恐れがあるからである。   However, even though the conventional pulling type elastic wave exploration device described in Patent Document 1 is effective for the shallow reflection seismic exploration method, it is not necessarily suitable for the surface wave exploration method. Absent. Reflection method exploration receives vibrations in the frequency range of about 40 to 100 Hz, whereas surface wave exploration must receive vibrations in a lower frequency region (about 2 to 40 Hz). This is because it is easily affected by a decrease in coupling due to gravel existing in the water and a slight movement due to a cross wind, which may increase noise and reduce measurement accuracy.

また、ベルトによる牽引方式では、地震計は設置盤に対して着脱可能であっても、台座はベルトに固着されたままであり、地震計間隔は変えられない。しかし表面波探査では、調査目的や地盤の条件に応じて受振器(地震計)間隔を調整する必要がある。例えば、軟質の地盤では間隔を短く、硬質の地盤では間隔を長くするのが好ましく、実際には現地で受振器間隔を変えて試し受振を行い、好ましい間隔に受振器を配列して測定する必要がある。ところが従来技術では、受振器間隔を変えられないため、台座取付間隔の異なる複数の牽引ベルトを予め用意しておく必要があり、コストが増大するし、多数の台座付きベルトの保管・運搬・取り扱いなどが非常に煩瑣となる。
特開2002−62361公報
Further, in the traction system using a belt, even if the seismometer can be attached to and detached from the installation panel, the pedestal remains fixed to the belt, and the seismometer interval cannot be changed. However, in surface wave exploration, it is necessary to adjust the geophone (seismometer) interval according to the survey purpose and ground conditions. For example, it is preferable to shorten the interval on soft ground, and increase the interval on hard ground. Actually, it is necessary to perform trial vibrations at different locations of the geophones and to arrange the geophones at preferred intervals for measurement. There is. However, in the prior art, since the distance between the geophones cannot be changed, it is necessary to prepare a plurality of traction belts with different pedestal mounting intervals in advance, which increases the cost and stores, transports, and handles many belts with pedestals. Etc. becomes very cumbersome.
JP 2002-62361 A

本発明が解決しようとする課題は、地面上の礫や横風の影響などを受け難くし、調査目的や地盤の条件などに応じて最適条件に設定して精度の良い表面波探査を簡便に行うことができるようにすることである。   The problem to be solved by the present invention is less susceptible to the effects of gravel on the ground and crosswinds, etc., and it is easy to perform accurate surface wave exploration by setting optimum conditions according to the purpose of the survey and ground conditions. Is to be able to.

本発明は、ベース部材上に受振器を搭載した多数の受振器ユニットを、牽引用の長尺部材に間隔をおいて固定し、全体を一連の状態で牽引可能とした弾性波探査装置であって、牽引用の長尺部材は装置全体にわたって連続するように平行に引き延ばされた2本のロープ又はワイヤからなり、ベース部材はその底面の前後端縁が傾斜面もしくは湾曲面となっている形状をなし、該ベース部材は任意の位置で装着可能な機械的締結機構によって2本のロープ又はワイヤの間に架設され、それによって受振器間隔が自由に調整可能になっていることを特徴とする牽引式多チャンネル表面波探査装置である。   The present invention is an elastic wave exploration device in which a large number of geophone units having geophones mounted on a base member are fixed to a long member for towing at intervals, and the whole can be towed in a series of states. The long member for traction is composed of two ropes or wires that are extended in parallel so as to be continuous over the entire apparatus, and the base member has inclined front surfaces or curved surfaces at the front and rear end edges thereof. The base member is constructed between two ropes or wires by a mechanical fastening mechanism that can be mounted at any position, so that the distance between the geophones can be freely adjusted. Is a towed multi-channel surface wave exploration device.

例えば、ベース部材は、ほぼ矩形板状をなし、機械的締結機構は、ベース部材の上面の両側に形成したロープ又はワイヤの案内溝と、ベース部材の前後部の上方にそれぞれ位置するベースクランプとの間でロープ又はワイヤを挟み、ネジによりベースクランプをベース部材に締め付け固定する方式とする。あるいは、ベース部材を、ほぼ矩形板状をなすベース本体と、その前後面に沿って立設した前壁と後壁を有し、該前壁と後壁にロープ又はワイヤが挿通可能な貫通穴を備えた構造とし、機械的締結機構が、ベース部材の前壁と後壁の貫通穴を挿通するロープ又はワイヤを、前壁の前方及び後壁の後方でクリップ金具によって掴む方式でもよい。   For example, the base member has a substantially rectangular plate shape, and the mechanical fastening mechanism includes rope or wire guide grooves formed on both sides of the upper surface of the base member, and base clamps respectively located above the front and rear portions of the base member. A rope or wire is sandwiched between them, and the base clamp is fastened and fixed to the base member with screws. Alternatively, the base member has a base body having a substantially rectangular plate shape, and a front wall and a rear wall erected along the front and rear surfaces thereof, and a through hole through which a rope or a wire can be inserted into the front wall and the rear wall The mechanical fastening mechanism may be a system in which a rope or a wire inserted through a through hole in the front wall and the rear wall of the base member is gripped by a clip fitting in front of the front wall and behind the rear wall.

これらにおいて、ベース部材の底面に、直進性及び安定性付与のため前後方向に延びるそり(橇)部又は前後方向のみに転動するローラなどを設けることもできる。また、ベース部材の上面に、受振器を覆う防風フードを着脱自在とする構成が好ましい。横風が比較的強い時に防風フードを装着することで、風による振動の発生を抑制することができる。牽引用のロープは、両端にアイ加工が施され、本体部分には一定間隔の色分けもしくはマーキングが施されているものが好ましい。端部をアイ加工すると、フックにより容易に観測車に連結できる。また色分けもしくはマーキングによって、個別に間隔を測定することなく、受振器ユニットを容易に所定の間隔で設置できる。   In these, on the bottom surface of the base member, a sled (ridge) portion extending in the front-rear direction or a roller that rolls only in the front-rear direction can be provided for imparting straightness and stability. Moreover, the structure which makes the windproof hood which covers a geophone a detachable on the upper surface of a base member is preferable. By installing a windproof hood when the crosswind is relatively strong, the generation of vibration due to wind can be suppressed. It is preferable that the tow rope is subjected to eye processing at both ends and the main body portion is color-coded or marked at regular intervals. If the end is eye-processed, it can be easily connected to the observation vehicle by a hook. In addition, the geophone unit can be easily installed at a predetermined interval without separately measuring the interval by color coding or marking.

受振器ユニットの間に牽引安定化ユニットを組み込む構成も有効である。牽引安定化ユニットは、ベース部材と同様、底面の前後端縁が傾斜面もしくは湾曲面となっており、且つ底面に直進性及び安定性付与のため前後方向に延びるそり部、あるいは前後方向のみに転動可能なローラ又は車輪を配列した構造とする。受振器ユニットのベース部材をそのまま利用してもよい。重量が不足する場合には、ベース部材に重量物を搭載すればよい。このような牽引安定化ユニットを、多数の受振器ユニット間の1箇所以上の位置に、任意の位置で装着可能な機械的締結機構によって2本のロープ又はワイヤの間に架設する。   A configuration in which a traction stabilization unit is incorporated between the geophone units is also effective. As with the base member, the traction stabilization unit has a slanted or curved surface at the bottom and front and rear edges of the bottom, and a sledge that extends in the front-rear direction to provide straightness and stability to the bottom, or only in the front-rear direction. A structure in which rollable rollers or wheels are arranged. The base member of the geophone unit may be used as it is. If the weight is insufficient, a heavy object may be mounted on the base member. Such a traction stabilization unit is installed between two ropes or wires at one or more positions between a large number of geophone units by a mechanical fastening mechanism that can be mounted at an arbitrary position.

更に本発明は、このような牽引式多チャンネル表面波探査装置を使用し、多数の受振器からの多チャンネルデータを用い、2本のトレースの中心位置が等しいトレースを集めて解析(CMP(Common Mid Point)解析)することにより位相速度を求め、その結果から2次元S波速度構造を求める表面波探査方法である。   Furthermore, the present invention uses such a towed multi-channel surface wave exploration device, collects and analyzes traces having the same center position of two traces using multi-channel data from a large number of geophones (CMP (Common This is a surface wave exploration method for obtaining a two-dimensional S-wave velocity structure from a result of obtaining a phase velocity by analyzing (Mid Point).

本発明の牽引式多チャンネル表面波探査装置は、幅広のベルトと異なり、2本のロープ又はワイヤで牽引するため横風で煽られることがなく、風による振動の影響を受け難い。また、ベース部材の前後端縁が傾斜面もしくは湾曲面となっている形状であるため、地面上の大きな礫は排除し、小さな礫は乗り越えて移動でき、礫の影響を受け難く、地面と受振器との適正なカップリングが得られる。これらによって、低周波領域でのノイズを低減でき、受振感度が向上する。更に、ベース部材は任意の位置で装着可能な機械的締結機構によってロープ又はワイヤに架設され、それによって受振器間隔を自由に調整可能になっているため、受振器同士を最適な間隔に現地で自由に組み立てることができ、そのため機器コストを低減できるし、保管・運搬なども容易となり、調査目的や地盤の条件に適した状態で行えるため高精度のデータが得られる。   Unlike a wide belt, the towed multi-channel surface wave exploration device of the present invention is pulled by two ropes or wires, so that it is not beaten by a crosswind and is not easily affected by vibrations caused by wind. In addition, since the front and rear edges of the base member are inclined or curved, large gravel on the ground is eliminated and small gravel can move over and is not easily affected by gravel. Proper coupling with the vessel is obtained. As a result, noise in a low frequency region can be reduced, and vibration receiving sensitivity is improved. Furthermore, the base member is installed on the rope or wire by a mechanical fastening mechanism that can be mounted at an arbitrary position, so that the distance between the geophones can be freely adjusted. They can be assembled freely, so that equipment costs can be reduced, storage and transportation can be facilitated, and high-precision data can be obtained because it can be carried out in a state suitable for the purpose of investigation and ground conditions.

底面の前後端縁が傾斜面もしくは湾曲面となっているベース部材を用い、該ベース部材上に受振器を固着することで受振器ユニットを構成する。ベース部材は、平行に配置した2本のロープ又はワイヤの間に架設する。この架設は、機械的締結機構によって行い、任意の位置で装着可能とすることで、各受振器が所定の間隔で配列されるようにする。受振器を覆うことができるように、ベース部材の上面に対して防風フードを着脱自在とすることが好ましい。   A geophone unit is configured by using a base member whose front and rear end edges are inclined surfaces or curved surfaces and fixing the geophone on the base member. The base member is installed between two ropes or wires arranged in parallel. This erection is performed by a mechanical fastening mechanism and can be mounted at an arbitrary position so that each geophone is arranged at a predetermined interval. It is preferable to make the windproof hood detachable with respect to the upper surface of the base member so that the geophone can be covered.

本発明に係る牽引式多チャンネル表面波探査装置の一実施例の全体構成を図1に示す。ここで、Aは平面を、Bは側面を表している。牽引式多チャンネル表面波探査装置は、2本のロープ10を平行に装置全長にわたって連続するように引き延ばし、ベース部材12の上に受振器14を搭載した受振器ユニット16を多数個用意して、多数の受振器ユニット16を互いに所定の間隔をあけて一列に整列し、各受振器ユニット16を2本のロープ10の間に架設して、全体を一連の状態で牽引可能とした構造である。受振器ユニット16は、機械的締結機構18を具備し、それによって任意の位置でロープ10に取り付け可能であり、そのため受振器14の間隔を自由に調整できるようになっている。このように長い連続したロープの任意の位置に取り付けることから、2本のロープのみでいかなる配列間隔にも対応できる。また、ベース部材12は、ほぼ矩形板状をなし、その底面の前後端縁が傾斜面もしくは湾曲面となっている形状である。   FIG. 1 shows the overall configuration of an embodiment of a towed multi-channel surface wave survey apparatus according to the present invention. Here, A represents a plane and B represents a side surface. The towed multi-channel surface wave exploration device extends two ropes 10 in parallel so as to be continuous over the entire length of the device, and prepares a large number of geophone units 16 each equipped with a geophone 14 on a base member 12. A large number of geophone units 16 are arranged in a row at predetermined intervals, and each geophone unit 16 is installed between two ropes 10 so that the whole can be pulled in a series of states. . The geophone unit 16 includes a mechanical fastening mechanism 18 so that the geophone unit 16 can be attached to the rope 10 at an arbitrary position, so that the interval between the geophones 14 can be freely adjusted. Since it is attached to an arbitrary position of such a long continuous rope, any arrangement interval can be accommodated with only two ropes. The base member 12 has a substantially rectangular plate shape, and has a shape in which front and rear end edges of the bottom surface are inclined surfaces or curved surfaces.

十数個から数十個程度(例えば24〜48個)の受振器ユニット16を、50cm〜2m程度の間隔でロープ10に取り付け、観測車20によって牽引する。搭載する受振器14は、2〜40Hz程度の低い周波数の弾性波を受振するものである。受振器ユニット16の配列線上に位置する人工振源22により発生した弾性波のなかで、地表面近傍を伝播する表面波が各受振器14で検出され、その受振信号は信号線24によって観測車20のデータ収録装置26に伝送される。   Ten to several dozen (for example, 24 to 48) geophone units 16 are attached to the rope 10 at intervals of about 50 cm to 2 m and pulled by the observation vehicle 20. The mounted geophone 14 receives an elastic wave having a low frequency of about 2 to 40 Hz. Among the elastic waves generated by the artificial vibration source 22 located on the array line of the geophone unit 16, the surface wave propagating in the vicinity of the ground surface is detected by each geophone 14, and the vibration signal is transmitted to the observation vehicle by the signal line 24. 20 data recording devices 26.

ロープ10、受振器ユニット16、信号線24などは、それぞれが独立したユニットで構成されており、通常、使用前に各ユニットを組み立てることになる。機械的な締結は、受振器ユニット16−ロープ10間で行えばよく、機械的締結機構もロープクランプなどの単純な構造でよいが、着脱が容易で強固に固定できる構造が好ましい。それによって受振器ユニット16の間隔の変更も容易となる。   The rope 10, the geophone unit 16, the signal line 24, and the like are each composed of independent units, and each unit is usually assembled before use. The mechanical fastening may be performed between the geophone unit 16 and the rope 10, and the mechanical fastening mechanism may be a simple structure such as a rope clamp, but a structure that can be easily attached and detached and can be firmly fixed is preferable. Thereby, the interval of the geophone unit 16 can be easily changed.

ロープの材質は任意であるが、機械的強度が十分であることの他、地表面を牽引するために摩耗が少なく、耐候性に優れ、伸びの少ないものを使用する。例えば、合成樹脂(ポリエステル系、ポリエチレン系、アラミド系など)ロープが望ましい。また、任意の位置で受振器ユニットを取り付けることから、端部を除きロープのほぼ全長にわたって同一の形状とする。鋼製ワイヤなども使用可能であるが、柔軟性や重量の点で扱い難いことが多く、そのため樹脂ロープが好ましい。ロープであれば、万一切断した際にも、編み込みなどの結合処理を行うことで簡単に修復できる。   The material of the rope is arbitrary, but in addition to having sufficient mechanical strength, use a rope that has low wear, excellent weather resistance, and low elongation to pull the ground surface. For example, a synthetic resin (polyester, polyethylene, aramid, etc.) rope is desirable. In addition, since the geophone unit is attached at an arbitrary position, the shape is the same over almost the entire length of the rope except for the end. Steel wires and the like can be used, but are often difficult to handle in terms of flexibility and weight, and therefore a resin rope is preferred. If it is a rope, it can be easily repaired by performing a knitting process such as weaving.

電気的な締結については、受振器ユニット−信号線間で行えばよく、抗張力については殆ど考慮する必要はないので、信号線自体の構造やその接続構造は単純になる。受振器ユニットの間隔の変更に伴う信号線取り出し位置の変更は、信号線が簡単な構造で軽量化されることにより、バンドや紐で束ねることが可能になり、変更が容易になる。変更する長さによっては、束ねた信号線のボリュームが大きくなるので、信号線の固定は機械的締結を担うロープに対して確実に行うことが望ましい。   The electrical fastening may be performed between the geophone unit and the signal line, and there is almost no need to consider the tensile strength. Therefore, the structure of the signal line itself and its connection structure are simplified. The change of the signal line take-out position accompanying the change of the distance between the geophone units can be bundled with a band or a string because the signal line is reduced in weight with a simple structure and can be easily changed. Depending on the length to be changed, the volume of the bundled signal lines becomes large. Therefore, it is desirable to securely fix the signal lines to the rope that is responsible for mechanical fastening.

この牽引式多チャンネル表面波探査装置は、通常、調査の目的あるいは地盤の条件などに応じて現地で適正な間隔で組み立てる。同じ探査深度であっても、一般に地盤が軟質の場合には受振器間隔を狭く、地盤が硬質の場合には受振器間隔を広くすると、良好な表面波受振ができることが分かっている。しかし、不確定な要素も多い。そこで、現地で受振器間隔を変えて(例えば50cm間隔、1m間隔、2m間隔というように変えて)試し受振を行い、最適な受振器間隔を決定して組み立て、測定することになる。本発明では、そのような受振器ユニット取付位置の変更を容易に行える。   This towed multi-channel surface wave exploration device is usually assembled at appropriate intervals in the field according to the purpose of the survey or the ground conditions. It has been found that, even at the same exploration depth, in general, when the ground is soft, if the distance between the geophones is narrow, and when the ground is hard, if the distance between the geophones is wide, good surface wave vibration can be received. However, there are many uncertain factors. Therefore, trial vibration is received at different locations (for example, 50 cm, 1 m, and 2 m), and the optimum receiver interval is determined, assembled, and measured. In the present invention, it is possible to easily change such a geophone unit mounting position.

表面波探査は、2〜40Hzというような低い周波数領域の振動を検出するため、一般に横風による影響を受け易い。しかし本発明では、2本のロープで牽引するため、横風を受けても煽られる恐れがなく、風による微動の影響を受け難い。   The surface wave exploration detects vibrations in a low frequency region such as 2 to 40 Hz, and thus is generally easily affected by crosswinds. However, in the present invention, since it is towed by two ropes, there is no fear of being beaten even if it receives a cross wind, and it is difficult to be affected by fine movement caused by the wind.

受振器ユニットの一実施例を図2に示す。ここで、Aは締結前の状態を、Bは締結後の状態をそれぞれ斜視図で表し、Cは平面を、Dは側面を表している。ベース部材30は、ほぼ矩形板状をなし、その底面の前後端縁に傾斜面30aが形成されている。受振器32は、その下面の取付ネジ32aをベース部材30の中央上面に形成されているネジ穴30bにねじ込むことによって固定される。機械的なロープ締結機構としてはベースクランプ34を用いる。ベース部材30の上面の両側にロープ収容用の浅い案内溝30cを形成しておき、ベース部材30の上面で前後に配置したベースクランプ34でロープ10を挟み締め付けて固定する。   One embodiment of the geophone unit is shown in FIG. Here, A represents a state before fastening, B represents a state after fastening, in a perspective view, C represents a plane, and D represents a side surface. The base member 30 has a substantially rectangular plate shape, and an inclined surface 30a is formed on the front and rear end edges of the bottom surface. The geophone 32 is fixed by screwing a mounting screw 32 a on the lower surface thereof into a screw hole 30 b formed on the central upper surface of the base member 30. A base clamp 34 is used as a mechanical rope fastening mechanism. A shallow guide groove 30c for accommodating the rope is formed on both sides of the upper surface of the base member 30, and the rope 10 is clamped and fixed by the base clamps 34 arranged at the front and rear on the upper surface of the base member 30.

ベースクランプ34は、帯板35の両端に湾曲したロープ押さえ部35aを形成しておき、中央の穴35bにノブ付きボルト36を挿通し、ベース部材30に設けたネジ穴30dにねじ込んでクランプ締め付けを行う構造である。この締結機構は、僅か2本のノブ付きボルト36の締め付けでよいため、組立作業性は極めて良好である。勿論、ワンタッチで締め付けられるような構造を採用してもよいが、ねじ込み方式は締め付け加減を調整できるのでロープがずれ難く、耐久性に優れている点で好ましい。引っ張りに対してロープをずれ難くするため、図示するのを省略するが、ベース部材のロープ案内溝に円弧状の突条を1本以上横断方向に形成し、それに対向するベースクランプの湾曲したロープ押さえ部にも円弧状の突条を1本以上設けると、抵抗が大きくなり、ずれ防止に効果的である。   The base clamp 34 has a curved rope holding portion 35a formed at both ends of the band plate 35, a knob-attached bolt 36 is inserted into the central hole 35b, and is screwed into a screw hole 30d provided in the base member 30 to be clamped. It is the structure which performs. Since this fastening mechanism only needs to tighten two bolts 36 with knobs, the assembling workability is very good. Of course, a structure that can be tightened with one touch may be adopted, but the screwing method is preferable in that the rope can be hardly displaced and the durability is excellent because the tightening can be adjusted. In order to make it difficult for the rope to slip with respect to the tension, although not shown in the drawing, one or more arc-shaped ridges are formed in the transverse direction in the rope guide groove of the base member, and the curved rope of the base clamp facing it If one or more arc-shaped protrusions are provided on the pressing portion, the resistance increases, which is effective in preventing deviation.

ベース部材30は、地面と受振器32とのカップリングを適正にでき、且つ牽引時に過負荷にならず、牽引が不安定にならず、摩耗や変形が生じ難い材質や構造が望まれる。そこで、ステンレス鋼やアルミニウムなどの金属製とし、底面の前後端縁に傾斜面30aや湾曲面が形成されている形状とする。このようにすると、ある程度重量があるために安定化し風による影響で微動することもなく、また地面に礫などがあっても、大きければ排除するし、小さければ乗り越えられる。図示していないが、前後両端の中央を突出させた舟形にしてもよく、そのようにすると礫などの排除効果は増大する。   The base member 30 is desired to be made of a material and a structure that can properly couple the ground and the geophone 32, are not overloaded during towing, do not become unstable towing, and are not easily worn or deformed. Therefore, it is made of a metal such as stainless steel or aluminum and has a shape in which inclined surfaces 30a and curved surfaces are formed on the front and rear end edges of the bottom surface. In this way, since there is a certain amount of weight, it stabilizes and does not finely move due to the influence of the wind, and even if there are gravel on the ground, it is eliminated if it is large, and it can be overcome if it is small. Although not shown in the figure, it may be formed in a boat shape in which the center of both front and rear ends is projected, and if so, the effect of removing gravel and the like increases.

ベース部材の底面形状の例を図3に示す。Aは最も単純な例であり、底面を平坦面としている。Bは両側に横断面が逆三角形状のそり部40をほぼ全長にわたって取り付けた構造である。溝に嵌め込むような構造でもよく、着脱可能としてもよい。一般に道路面は、横断面で見ると、排水などのため幅方向で中央が高く両側が僅かに下がるような凸面状をなしている。従って道路面での表面探査においては、牽引につれて後側に連結している受振器ユニットほど路端へとずれ落ちるようにカーブし易い。しかし、Bのように両側にそり部40を設けると、横方向の抵抗が増し直進性が向上するため、各受振器ユニットの直線的な整列状態を維持し易くなる。Cは前方(又は後方)の中央と後方(又は前方)の両側2箇所に(合計3箇所に)短いそり部41を設けた構造である。このようにすると、実質的に3点支持形式になるため、安定性は向上する。Dは前後方向のみに転動可能なローラ42を配列した構造、Eは車輪43を設けた構造である。いずれも牽引時における各受振器ユニットの直線配列性は向上する。Eでは4輪に代えて3輪構造にしてもよい。   An example of the bottom shape of the base member is shown in FIG. A is the simplest example, and the bottom surface is a flat surface. B has a structure in which sled portions 40 having an inverted triangular cross section are attached to both sides over almost the entire length. It may be a structure that fits into the groove, or may be removable. In general, when viewed in cross section, the road surface has a convex shape such that the center is high in the width direction and both sides are slightly lowered due to drainage. Therefore, in surface exploration on the road surface, as the tow unit is connected to the rear side as it is pulled, it tends to curve so as to slip down to the road end. However, if the sled portions 40 are provided on both sides as in B, the resistance in the lateral direction is increased and the straightness is improved, so that it is easy to maintain the linear alignment state of each geophone unit. C is a structure in which short sled portions 41 are provided at two locations on the front (or rear) center and two sides on the rear (or front) (total of three locations). If it does in this way, since it will become a three-point support system, stability will improve. D is a structure in which rollers 42 that can roll only in the front-rear direction are arranged, and E is a structure in which wheels 43 are provided. In either case, the linear arrangement of each geophone unit during towing is improved. In E, instead of four wheels, a three-wheel structure may be used.

上記のベース部材と同様、底面の前後端縁が傾斜面もしくは湾曲面となっており、且つ底面に直進性及び安定性付与のため前後方向に延びるそり部、あるいは前後方向のみに転動可能なローラ又は車輪を配列した構造は、牽引の安定性向上に有効である。そこで、このような構造を持つ牽引安定化ユニットを受振器ユニットの間に組み込む構成も有効である。牽引安定化ユニットは、図3のB〜Eに示すような受振器ユニットのベース部材をそのまま利用してもよい。重量が不足する場合には、ベース部材上に重量物を搭載すればよい。このような牽引安定化ユニットを、多数の受振器ユニット間の1箇所以上の任意の位置に、任意の位置で装着可能な機械的締結機構によって2本のロープ又はワイヤの間に架設する。   Similar to the above base member, the front and rear edges of the bottom surface are inclined surfaces or curved surfaces, and the bottom surface is a sled portion extending in the front-rear direction for imparting straightness and stability, or can be rolled only in the front-rear direction. A structure in which rollers or wheels are arranged is effective in improving the traction stability. Therefore, it is also effective to incorporate the traction stabilization unit having such a structure between the geophone units. The traction stabilization unit may use the base member of the geophone unit as shown in FIGS. If the weight is insufficient, a heavy object may be mounted on the base member. Such a traction stabilization unit is installed between two ropes or wires by a mechanical fastening mechanism that can be mounted at an arbitrary position at one or more arbitrary positions between a large number of geophone units.

本発明では、このような受振器ユニットや牽引安定化ユニットを組み合わせた様々な構成が可能である。受振器ユニットのみを連結してもよいし、それに牽引安定化ユニットを組み合わせてもよい。受振器ユニットのみを連結する場合でも、底部構造の異なるものを組み合わせてもよい。例えば、図3のAに示すような底部の受振器ユニットを主体とし、図3のB〜Eに示すような底部の受振器ユニットを適宜分散配置する構成がある。あるいは、図3のAに示すような底部の受振器ユニットを主体とし、図3のB〜Eに示すような底部の牽引安定化ユニットを1個以上分散配置する構成でもよい。特に後者は、単純な底面形状の受振器ユニットで地盤の振動を効率よく検出でき、特殊な底面構造の牽引安定化ユニットで測線に沿って直線的に安定に牽引できるため、作業も容易となる利点がある。   In the present invention, various configurations combining such a geophone unit and a traction stabilization unit are possible. Only the geophone unit may be connected, or a traction stabilization unit may be combined therewith. Even when only the geophone unit is connected, ones having different bottom structures may be combined. For example, there is a configuration in which the bottom geophone unit as shown in FIG. 3A is mainly used and the bottom geophone units as shown in FIGS. Alternatively, a configuration in which a bottom geophone unit as shown in FIG. 3A is a main body and one or more bottom traction stabilization units as shown in FIGS. In particular, the latter can detect ground vibrations efficiently with a simple bottom-shaped geophone unit, and the traction stabilization unit with a special bottom structure can be towed linearly and stably along the measurement line, facilitating work. There are advantages.

図4は機械的締結機構の他の例を示している。ベース部材50は、ほぼ矩形板状をなすベース本体51と、その前後面に沿って立設した壁部(前壁と後壁)52を有し、該壁部52にロープ10が挿通可能な貫通穴を備えた構造であり、上面中央に受振器32が搭載されている。機械的締結機構は、ベース部材50の壁部52の貫通穴を挿通するロープ10を、前壁の前方及び後壁の後方でクリップ金具で掴む方式である。クリップ金具はU型ボルト54であり、前壁と後壁の外側で、それぞれロープ10を囲むように設け、両端を押さえ板55に挿通し、ナット56で締め付ける。   FIG. 4 shows another example of the mechanical fastening mechanism. The base member 50 includes a base body 51 having a substantially rectangular plate shape, and wall portions (front wall and rear wall) 52 erected along the front and rear surfaces thereof, and the rope 10 can be inserted into the wall portion 52. The structure has a through hole, and a geophone 32 is mounted at the center of the upper surface. The mechanical fastening mechanism is a system in which the rope 10 that is inserted through the through hole of the wall portion 52 of the base member 50 is gripped by a clip fitting at the front of the front wall and the rear of the rear wall. The clip metal fittings are U-shaped bolts 54, which are provided outside the front wall and the rear wall so as to surround the rope 10, and both ends are inserted into the holding plate 55 and tightened with nuts 56.

受振器32をベース部材に固定する構造の他の例を図5に示す。Aは、ベース部材60の中央に貫通穴61及びそれを囲むように底面側に凹部62を設け、貫通穴61に受振器取付ネジ63を挿通して、底面から取り付けナット64で締め付け、ベース部材60を挟み固定する構造である。この構造は、ねじ形状の異なる受振器でもベース部材に固定できる利点がある。Bは、粘土66を用いてベース部材68に固定する構造である。適切なナットが無い場合、受振器取付ネジが極端に短い場合などは、このようにして固定することができる。   Another example of the structure for fixing the geophone 32 to the base member is shown in FIG. A is provided with a through hole 61 in the center of the base member 60 and a recess 62 on the bottom surface side so as to surround it, and through the through hole 61 a vibration receiving device mounting screw 63 is inserted and tightened with a mounting nut 64 from the bottom surface. This is a structure in which 60 is sandwiched and fixed. This structure has an advantage that a geophone having a different screw shape can be fixed to the base member. B is a structure that is fixed to the base member 68 using clay 66. If there is no suitable nut, or if the geophone mounting screw is extremely short, it can be fixed in this way.

図6は、横風対策としてベース部材30にフード68を被せ、受振器32などを覆った例を示している。本発明に係る牽引式多チャンネル表面波探査装置は、牽引にロープ10を用いているため、僅かな横風ならば特に問題は生じない。しかし、横風が顕著となる場合は、ベース部材30の上面全体を覆うようなフード68を装着するのが好ましい。例えば、流線型の合成樹脂成形品として、容易にベース部材に対して着脱できるようにする。表面波探査は、河川の堤防など横風をうけ易い地域で行うことも多く、このようにフードを着脱できる構成は有効である。これによって、横風による振動の影響を極力低減することが可能となる。   FIG. 6 shows an example in which the base member 30 is covered with a hood 68 to cover the geophone 32 and the like as a measure against cross wind. The towed multi-channel surface wave exploration device according to the present invention uses the rope 10 for towing, so that there is no particular problem with a slight crosswind. However, when a cross wind becomes prominent, it is preferable to install a hood 68 that covers the entire top surface of the base member 30. For example, it can be easily attached to and detached from the base member as a streamlined synthetic resin molded product. Surface wave exploration is often performed in areas that are subject to crosswinds, such as river dikes, and a configuration in which a hood can be attached and detached is effective. As a result, it is possible to reduce the influence of vibration caused by the cross wind as much as possible.

図7に牽引に用いるロープ10の一例を示す。両端にアイ加工10aを施しておくと、観測車に対してフックによる取り付けが可能となり、作業性が向上する。なお、両端にアイ加工を施しているのは、一方向のみならず位置を微調整するために逆方向に引っ張る場合もあるし、多数の受振器ユニットを直線的に整列させるために往復動させる場合もあるからである。また、ロープのアイ加工した端部を除く大部分10bについて、図示のように、一定の長さ毎に交互に色を変えるのも有効である。マーキングを施してもよい。本発明では受振器ユニットの取付位置を自由に変更できることから、例えば50cm毎に色を変えておくと、それを目安として容易に受振器ユニットを所定の位置に取り付けることができる。   FIG. 7 shows an example of the rope 10 used for towing. If the eye processing 10a is applied to both ends, it is possible to attach the observation vehicle with a hook, and the workability is improved. In addition, the eye processing is applied to both ends, and sometimes it is pulled not only in one direction but also in the reverse direction in order to finely adjust the position, and a large number of geophone units are reciprocated to align them linearly. This is because there are cases. Further, as shown in the figure, it is also effective to change the color alternately for every fixed length of the majority 10b excluding the eye-finished end of the rope. Marking may be applied. In the present invention, the mounting position of the geophone unit can be freely changed. Therefore, if the color is changed, for example, every 50 cm, the geophone unit can be easily installed at a predetermined position by using it as a guide.

図8は、ベース部材を取り付けたワイヤを巻き取るための移動台車を示している。車輪付きの手押し台車70に巻き取りドラム72を搭載した構造である。展開した表面波探査装置は、巻き取りドラム72を回転させて巻き取ることにより容易に撤収できる。また、巻き取りドラム72から引き出すだけで容易に展開できる。これは特に鋼製などの硬いワイヤを用いる場合に有効である。ロープの場合は屈曲性に優れているため、このような巻き取りドラムを用いなくても折り畳んで収容できる。   FIG. 8 shows a moving carriage for winding a wire to which a base member is attached. This is a structure in which a take-up drum 72 is mounted on a wheeled hand truck 70. The developed surface wave exploration device can be easily withdrawn by rotating the winding drum 72 and winding it. Further, it can be easily deployed simply by pulling out from the take-up drum 72. This is particularly effective when using a hard wire such as steel. Since the rope is excellent in flexibility, it can be folded and stored without using such a winding drum.

図9は、受振器ユニットを測線に沿って直線状に整列させるための測線戻し用具を示している。前述のように、道路面は排水のために中央よりも側方が低くなっている。受振器ユニット80の列を牽引すると、後方の受振器ユニットほど側方にずれ落ちていき、測線からずれていくことがある。前後に2個の車輪81を有し、前後に側方に湾曲した修整板82を有する移動体83に、ハンドル84を立設した構造である。作業者がハンドル84を握って移動体83を測線に沿って動かすことによって、測線からそれている受振器ユニットを測線に沿って戻すことができる。受振器ユニットの位置を修正するために、作業者がいちいちしゃがんで受振器ユニットを動かす煩瑣な作業が無くなるため、作業性は良好となる。   FIG. 9 shows a line return tool for linearly aligning the geophone unit along the line. As mentioned above, the road surface is lower than the center because of drainage. When the row of the geophone units 80 is pulled, the rear geophone unit is displaced to the side and may be displaced from the measurement line. This is a structure in which a handle 84 is erected on a moving body 83 having two wheels 81 on the front and rear sides and a modification plate 82 curved sideways on the front and rear sides. When the operator holds the handle 84 and moves the moving body 83 along the survey line, the geophone unit deviating from the survey line can be returned along the survey line. In order to correct the position of the geophone unit, an operator does not have to bother crouching and moving the geophone unit, so workability is improved.

このような牽引式多チャンネル表面波探査装置を使用して、多数の受振器からの多チャンネルデータを用い、2本のトレースの中心位置が等しいトレースを集めて解析(CMP解析)することにより地盤の2次元表面波速度分布を求めて、その結果から2次元S波速度構造を求めることができる。人工振源に起振したタイミングを収録装置に与えるショットマーク発生器を取り付けておき、起振の瞬間にショットマークを収録装置に伝送し、データ収録を開始する。   Using such a towed multi-channel surface wave exploration device, using multi-channel data from a large number of geophones, collecting traces with the same center position of two traces and analyzing (CMP analysis) The two-dimensional surface wave velocity distribution is obtained, and the two-dimensional S wave velocity structure can be obtained from the result. Attach a shot mark generator that gives the recording device the timing when the artificial vibration source is excited, transmit the shot mark to the recording device at the moment of vibration, and start data recording.

得られたデータは、例えば次のような手順で解析する。
(1)全ての共通起振点記録毎に、考えられる全ての2本のトレースの組み合わせに対して、クロスコリレーションを計算する。
(2)全起振点記録から、2本のトレースの中心位置が同じ場所となる全てのクロスコリレーションを集める。
(3)同じ受振点間隔のものを重合する。
(4)受振点間隔が異なるクロスコリレーションは、直接重合できないので、先に求めた同一受振点間隔のクロスコリレーションを重合して求めた記録を受振点間隔に応じて並べる。これを疑似共通起振点記録と呼ぶ。
(5)この疑似共通起振点記録に対して、トレース毎に周波数領域に変換し、次に受振点間隔に応じた位相シフトを与えて空間方法に積分する。この手順により、距離−時間の疑似共通起振点記録を周波数領域の見掛け速度分布に変換することができる。
(6)周波数−位相速度のプロットにおいて、周波数毎にその振幅の最も大きくなる位相速度を読み取り、位相速度曲線(分散曲線)とする。
(7)分散曲線から非線形最小二乗法により一次元S波速度構造を逆解析により求める。
(8)二次元S波速度構造解析においては、一次元の逆解析過程において、隣りあるいは近傍の分散曲線や速度構造を関連させながら解析を行って求める。
これにより、水平方向に連続性のよいS波速度構造を求めることができる。
The obtained data is analyzed by the following procedure, for example.
(1) Calculate cross-correlation for all possible combinations of two traces for every common origin point recording.
(2) Collect all cross-correlation where the center positions of the two traces are the same location from all the starting point records.
(3) Polymerize those with the same receiving point interval.
(4) Since cross-correlation with different receiving point intervals cannot be directly superposed, the records obtained by superimposing the cross-correlation with the same receiving point interval previously arranged are arranged according to the receiving point intervals. This is called pseudo common oscillation point recording.
(5) The pseudo common oscillation point recording is converted into a frequency domain for each trace, and then a phase shift according to the oscillation point interval is given to integrate the spatial method. By this procedure, the distance-time pseudo common oscillation point record can be converted into an apparent velocity distribution in the frequency domain.
(6) In the frequency-phase velocity plot, the phase velocity having the largest amplitude for each frequency is read and used as a phase velocity curve (dispersion curve).
(7) A one-dimensional S-wave velocity structure is obtained by inverse analysis from the dispersion curve by a non-linear least square method.
(8) In the two-dimensional S-wave velocity structure analysis, in a one-dimensional inverse analysis process, the analysis is performed while relating adjacent or neighboring dispersion curves and velocity structures.
Thereby, an S wave velocity structure with good continuity in the horizontal direction can be obtained.

本発明は、舗装あるいは未舗装の道路、河川の堤防などの健全度調査、あるいは埋立により造成された宅地地盤の調査などに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for surveying the degree of soundness of paved or unpaved roads, river dikes, etc., or surveying residential land created by landfill.

本発明に係る表面波探査装置の一実施例の全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram of one Example of the surface wave search apparatus which concerns on this invention. 受振器ユニットの一実施例を示す説明図。Explanatory drawing which shows one Example of a geophone unit. ベース部材の底面形状の例を示す説明図。Explanatory drawing which shows the example of the bottom face shape of a base member. 機械的締結機構の他の例を示す説明図。Explanatory drawing which shows the other example of a mechanical fastening mechanism. 受振器をベース部材に固定する構造の他の例を示す説明図。Explanatory drawing which shows the other example of the structure which fixes a geophone to a base member. 受振器ユニットにフードを被せた例を示す説明図。Explanatory drawing which shows the example which put the hood on the geophone unit. ロープの一例を示す説明図。Explanatory drawing which shows an example of a rope. 移動台車の説明図。Explanatory drawing of a moving trolley | bogie. 測線戻し用具の説明図。Explanatory drawing of a survey line return tool.

符号の説明Explanation of symbols

10 ロープ
12 ベース部材
14 受振器
16 受振器ユニット
18 締結機構
20 観測車
22 人工振源
24 信号線
26 データ収録装置
10 rope 12 base member 14 geophone 16 geophone unit 18 fastening mechanism 20 observation vehicle 22 artificial vibration source 24 signal line 26 data recording device

Claims (7)

ベース部材上に受振器を搭載した多数の受振器ユニットを、牽引用の長尺部材に間隔をおいて固定し、全体を一連の状態で牽引可能とした弾性波探査装置であって、牽引用の長尺部材は装置全体にわたって連続するように平行に引き延ばされた2本のロープ又はワイヤからなり、ベース部材はその底面の前後端縁が傾斜面もしくは湾曲面となっている形状をなし、該ベース部材は任意の位置で装着可能な機械的締結機構によって2本のロープ又はワイヤの間に架設され、それによって受振器間隔が自由に調整可能になっていることを特徴とする牽引式多チャンネル表面波探査装置。 An elastic wave exploration device in which a large number of geophone units having geophones mounted on a base member are fixed to a long member for towing at intervals, and the whole can be towed in a series of states. The long member is composed of two ropes or wires extending in parallel so as to be continuous over the entire device, and the base member has a shape in which the front and rear end edges of the bottom surface are inclined surfaces or curved surfaces. The base member is constructed between two ropes or wires by a mechanical fastening mechanism which can be mounted at an arbitrary position, whereby the distance between the geophones can be freely adjusted. Multi-channel surface wave probe. ベース部材はほぼ矩形板状をなし、機械的締結機構は、ベース部材の上面の両側に形成したロープ又はワイヤの案内溝と、ベース部材の前後部の上方にそれぞれ位置するベースクランプとの間でロープ又はワイヤを挟み、ネジによりベースクランプをベース部材に締め付け固定する方式である請求項1記載の牽引式多チャンネル表面波探査装置。 The base member has a substantially rectangular plate shape, and the mechanical fastening mechanism is between a rope or wire guide groove formed on both sides of the upper surface of the base member and a base clamp located above the front and rear portions of the base member. 2. The towed multi-channel surface wave survey device according to claim 1, wherein a rope or wire is sandwiched and a base clamp is fastened and fixed to a base member with a screw. ベース部材の底面に直進性及び安定性付与のため前後方向に延びるそり部、あるいは前後方向のみに転動可能なローラ又は車輪を配列した請求項1又は2記載の牽引式多チャンネル表面波探査装置。 3. A towed multi-channel surface wave exploration device according to claim 1, wherein a sled portion extending in the front-rear direction for imparting straightness and stability, or a roller or a wheel capable of rolling only in the front-rear direction is arranged on the bottom surface of the base member. . 底面の前後端縁が傾斜面もしくは湾曲面となっており、且つ底面に直進性及び安定性付与のため前後方向に延びるそり部、あるいは前後方向のみに転動可能なローラ又は車輪を配列した構造の牽引安定化ユニットを、多数の受振器ユニット間の1箇所以上の位置に、任意の位置で装着可能な機械的締結機構によって2本のロープ又はワイヤの間に架設した請求項1乃至3のいずれかに記載の牽引式多チャンネル表面波探査装置。 A structure in which the front and rear end edges of the bottom surface are inclined surfaces or curved surfaces, and a sled portion extending in the front-rear direction for imparting straightness and stability to the bottom surface, or a roller or wheel that can roll only in the front-rear direction. The traction stabilization unit is constructed between two ropes or wires at one or more positions between a plurality of geophone units by a mechanical fastening mechanism that can be mounted at an arbitrary position. A towed multi-channel surface wave exploration device according to any one of the above. ベース部材の上面に受振器を覆う防風フードを着脱自在とした請求項1乃至4のいずれかに記載の牽引式多チャンネル表面波探査装置。 The tow type multi-channel surface wave exploration device according to any one of claims 1 to 4, wherein a windproof hood that covers the geophone is detachable on an upper surface of the base member. 牽引用のロープは、両端にアイ加工が施され、本体部分には一定間隔の色分けもしくはマーキングが施されている請求項1乃至5のいずれかに記載の牽引式多チャンネル表面波探査装置。 The tow-type multichannel surface wave survey device according to any one of claims 1 to 5, wherein the tow rope is subjected to eye processing at both ends, and the main body portion is color-coded or marked at regular intervals. 請求項1乃至6のいずれかに記載の牽引式多チャンネル表面波探査装置を使用し、多数の受振器からの多チャンネルデータを用い、2本のトレースの中心位置が等しいトレースを集めて解析することにより位相速度を求め、その結果から2次元S波速度構造を求める表面波探査方法。
Using the towed multi-channel surface wave survey device according to any one of claims 1 to 6, using multi-channel data from a large number of geophones, collecting and analyzing traces having the same center position of two traces The surface wave exploration method which calculates | requires a phase velocity by this and calculates | requires a 2-dimensional S wave velocity structure from the result.
JP2003347409A 2003-10-06 2003-10-06 Towed multi-channel surface wave probe Expired - Lifetime JP4093944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347409A JP4093944B2 (en) 2003-10-06 2003-10-06 Towed multi-channel surface wave probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347409A JP4093944B2 (en) 2003-10-06 2003-10-06 Towed multi-channel surface wave probe

Publications (2)

Publication Number Publication Date
JP2005114485A true JP2005114485A (en) 2005-04-28
JP4093944B2 JP4093944B2 (en) 2008-06-04

Family

ID=34539995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347409A Expired - Lifetime JP4093944B2 (en) 2003-10-06 2003-10-06 Towed multi-channel surface wave probe

Country Status (1)

Country Link
JP (1) JP4093944B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101304532B1 (en) * 2011-05-02 2013-09-05 (주) 케이씨디엔지니어링 Method for investigating the ground using surface waves
KR101425748B1 (en) 2013-03-06 2014-08-06 중앙대학교 산학협력단 Non-contacting elastic wave measuring unit and Non-contacting elastic wave measuring apparatus including the same
JP2016099183A (en) * 2014-11-20 2016-05-30 国立研究開発法人土木研究所 Hybrid surface wave survey method and hybrid surface wave survey system
JP2017009457A (en) * 2015-06-23 2017-01-12 国立研究開発法人土木研究所 Method and device for ground structure survey
KR101815788B1 (en) * 2016-09-09 2018-01-08 중앙대학교 산학협력단 Air-Coupled Sensor Unit for Continuous Surface-Wave Tests
JP2020098103A (en) * 2018-12-17 2020-06-25 西日本高速道路エンジニアリング関西株式会社 Geological survey device and geological survey method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101304532B1 (en) * 2011-05-02 2013-09-05 (주) 케이씨디엔지니어링 Method for investigating the ground using surface waves
KR101425748B1 (en) 2013-03-06 2014-08-06 중앙대학교 산학협력단 Non-contacting elastic wave measuring unit and Non-contacting elastic wave measuring apparatus including the same
JP2016099183A (en) * 2014-11-20 2016-05-30 国立研究開発法人土木研究所 Hybrid surface wave survey method and hybrid surface wave survey system
JP2017009457A (en) * 2015-06-23 2017-01-12 国立研究開発法人土木研究所 Method and device for ground structure survey
KR101815788B1 (en) * 2016-09-09 2018-01-08 중앙대학교 산학협력단 Air-Coupled Sensor Unit for Continuous Surface-Wave Tests
JP2020098103A (en) * 2018-12-17 2020-06-25 西日本高速道路エンジニアリング関西株式会社 Geological survey device and geological survey method
JP7138850B2 (en) 2018-12-17 2022-09-20 西日本高速道路エンジニアリング関西株式会社 Geological exploration device and geological exploration method

Also Published As

Publication number Publication date
JP4093944B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
US6532190B2 (en) Seismic sensor array
Xia et al. Simple equations guide high-frequency surface-wave investigation techniques
US8335126B2 (en) Method for compensating marine geophysical sensor measurements for effects of streamer elongation
MXPA06004595A (en) Seismic streamer system and method.
Han et al. Distributed acoustic sensing with sensitivity-enhanced optical cable
JP4093944B2 (en) Towed multi-channel surface wave probe
Vantassel et al. Extracting high-resolution, multi-mode surface wave dispersion data from distributed acoustic sensing measurements using the multichannel analysis of surface waves
US20170371069A1 (en) Fiber optic streamer monitoring
CN108168510B (en) Roadbed settlement deformation monitoring system based on fiber bragg grating and installation method thereof
Park et al. Seismic investigation of pavements by MASW method—geophone approach
KR101267016B1 (en) Singnal apparatus for the survey of buriedstructures by used gpr unit
JP6531934B2 (en) Hybrid surface wave search method and hybrid surface wave search system
Yuan et al. Urban system monitoring using combined vehicle onboard sensing and roadside distributed acoustic sensing
Ajo-Franklin et al. A field test of distributed acoustic sensing for ambient noise recording
Yust et al. DAS for 2-D MASW imaging: a case study on the benefits of flexible subarray processing
Winsborrow et al. Acquisition and inversion of Love wave data to measure the lateral variability of geo-acoustic properties of marine sediments
Karray et al. Techniques for mode separation in Rayleigh wave testing
Taipodia et al. A review of active and passive MASW techniques
Schmidt-Hattenberger et al. Bragg grating seismic monitoring system
Inazaki et al. Geotechnical characterization of levee by integrated geophysical surveying
Czarny et al. Estimating Rayleigh surface wave from ambient noise recorded by distributed acoustic sensing (DAS) dark fiber array in the city
JP3665821B2 (en) High-density three-dimensional reflection seismic survey equipment
Coe et al. Comparison of dispersion curves acquired using multichannel analysis of surface waves with various striker plate configurations
Taipodia et al. Influence of receiver layout on active MASW survey conducted at different sites having varying substrata characteristics
Obando et al. Roadside MASW surveys using a portable road bump: a case-study in Managua, Nicaragua

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4093944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term