JP3665772B2 - Manufacturing method of composite electroformed metal mold - Google Patents

Manufacturing method of composite electroformed metal mold Download PDF

Info

Publication number
JP3665772B2
JP3665772B2 JP2002132572A JP2002132572A JP3665772B2 JP 3665772 B2 JP3665772 B2 JP 3665772B2 JP 2002132572 A JP2002132572 A JP 2002132572A JP 2002132572 A JP2002132572 A JP 2002132572A JP 3665772 B2 JP3665772 B2 JP 3665772B2
Authority
JP
Japan
Prior art keywords
electroformed
metal plate
metal
bonding surface
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002132572A
Other languages
Japanese (ja)
Other versions
JP2003328175A (en
Inventor
紹禎 邱
錫杭 楊
基鋒 鄭
Original Assignee
▲緑▼點高新科技股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ▲緑▼點高新科技股▲分▼有限公司 filed Critical ▲緑▼點高新科技股▲分▼有限公司
Priority to JP2002132572A priority Critical patent/JP3665772B2/en
Publication of JP2003328175A publication Critical patent/JP2003328175A/en
Application granted granted Critical
Publication of JP3665772B2 publication Critical patent/JP3665772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一種の電鋳金属型の製造方法に関し、特に一種の複合電鋳金属型の製造方法で、その結合介面が堅固であり、加工が快速であり、高温で容易に変形しない長所及び効果を有するものに関する。
【0002】
【従来の技術】
従来より使用している電鋳方式で形成した電鋳金属板と金型鋼材中子との結合方式には各々その欠点がある。
真空吸着方式では、快速に必要な電鋳板の厚さを達成することができるが、金型の製作は相当に精密度が必要で、尚且つ真空設備が必要であり、金型のメンテは困難である。
【0003】
火焔噴射溶接接合又はレーザー溶接法を使用した時には、電鋳金属板を変形し、電鋳金属板の表面の輪郭を破壊する。
また、機械のはめ合せ又はボルトしめ合せの方式を使用する時には、電鋳金属板は相当な厚さを必要とするので、電鋳の時間は相当に長い。
【0004】
仮に、従来の電鋳方式で、十分な厚さがある電鋳金属板を形成するとき、例えば厚さ3mm(3000μm)を例にすると、沈積成長速度を0.4μm/分で計算した場合、片方向の沈積であるため、理論上では7500分を必要とし、換算すれば125時間になる。これは、5.2日に相当し、非常に時間がかかる。尚且つ電鋳を完成した後、内応力が厚層に堆積し、容易に変形する恐れがある。
【0005】
図1をご参照下さい。電鋳基板91には設計及び製作をしたプラスチックの型の中子92があって、その両側には絶縁版93があり、そしてこの元有の極めて薄い電鋳金属板80は、電鋳を完成した後、相当に厚くなっている(例えば数百μmから3mmに厚くなる)。このときの内応力は、累積した後で容易に変形の欠点を生じる。図1は誇張化した示意図を示す。
【0006】
【発明が解決しようとする課題】
このため、新しい製造方法を研究及び開発し、上記の欠点を解決する必要がある。
すなわち、本発明の目的は、結合後の結合介面が堅固で、且つ大幅に金型の製造時間を短縮できる他、高温下で容易に変形しない効果を達成することができる複合電鋳金属型の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、上記の点を解決するためになされたものであり、その製造方法は下記のステップを含む。
一、金属材の準備ステップ。
二、電鋳金属板及びプラスチック型中子と電鋳基板との準備ステップ。
【0008】
三、電源の準備ステップ。
四、電鋳沈積層形成ステップ。
五、離型ステップ。
上記のように提供する製造方法は、相当の厚さがある金属材を巧みに利用して、尚且つ両結合面に同時に内部方向(両方向)に電鋳沈積を行う。結合後の結合介面は堅固で、且つ大幅に金型の製造時間を短縮できる他、高温下で容易に変形しない効果の目的を達成することができる。
【0009】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。
図2をご参照下さい。本発明の一実施例による一種の複合電鋳金属型の製造方法のステップは下記のものを含む。
一、金属材の準備ステップ11。
【0010】
二、電鋳金属板及びプラスチック型中子と電鋳基板との準備ステップ12。
三、電源の準備ステップ13。
四、電鋳沈積層の形成ステップ14。
五、離型ステップ15。
【0011】
下記に本実施例の各ステップを詳細に説明する。
一、金属材の準備ステップ11:図3をご参照下さい。所定の厚さがあり且つ導電できる一つの金属材20(鋼又は銅等でよい)を準備する。該金属材20は、一つの少々凸出した第一結合面21を有し、その他の表面は一つの絶縁層22が被せられ、且つ該金属材20の厚さは最少1mmを超え、後作業時で挟み工具の挟み止めをする。
【0012】
二、電鋳金属板及びプラスチック型の中子と電鋳基板との準備ステップ12:平均厚さが500μmより小さい一つの電鋳金属板30を準備し、該電鋳金属板30には該第一結合面21に対応する一つの第二結合面31と一つの加工表面32とがあり、該電鋳金属板30の加工表面32には一つの不導電のプラスチック型の中子40と一つの不導電の電鋳基板50とを結合する。この三者は暫時一体に結合する。該電鋳金属板30の加工表面32には、予定形状を形成する構造、又は特定の外形紋柄を形成する(例えば一つの特定の微構造であり、後工程の中で光ガイドモジュールを形成する)構造が設けられている。
【0013】
三、電源の準備ステップ13:二つの電源60、70を準備し、各電源には一つの陰極61、71と一つの陽極62、72とがある。
四、電鋳沈積層の形成ステップ14:図3、図4及び図5をご参照下さい。該少々凸出した第一結合面21と該第二結合面31とを一つの予定した小面積で接触させて電鋳を行う。電鋳を行う時、該二つの電源60、70の陽極62、72を一つの電鋳材料源80(例えば、ニッケル)につなぎ、尚且つ電鋳の時、該金属材20と該電鋳金属板30とを同時に該二つの電源60、70の陰極61、71につなぐ。二者は同時に徐々に該金属材20の第一結合面21と該電鋳金属板30の第二結合面31との間の空間に沈積する。図5及び図6をご参照下さい。両方向の沈積の厚さが厚くなること、ならびに金属間の結合力によって、該金属材20と該電鋳金属板30とは一つの新しく形成される電鋳沈積層15により緊密に結合し、該金属材20、電鋳沈積層15、該電鋳金属板30、プラスチック型の中子40、ならびに不導電の電鋳基板50は順に一体に結合する。
【0014】
五、離型ステップ15:図7をご参照下さい。不導電のプラスチック型中子40及び電鋳基板50を取り除く(絶縁層22も含む),即ち離型で電鋳金属板30に翻鋳原来の加工表面32を保持し、且つこの電鋳沈積層15によって該金属材20と緊密に接合して、一つの複合電鋳金属型を形成する。
【0015】
更に詳細に説明すると、該電鋳基板50の材料はシリコン、二酸化シリコン、ガラス、石英、プラスチック又はエポキシ樹脂の中の一つの不導電材料を選択することができる。
実務上、精密金具例えば液晶螢幕(LCD)の光ガイドモジュールに対する加工の時、該金属材の厚さは約2〜3mmであり、且つ該電鋳金属板の厚さは250〜350μmである。
【0016】
当然、該第一結合面21は図8のように一つの少々凸出した錐面に変えることもでき、該第二結合面31は一つの平面であり、同様に小面積の接触から徐々に沈積を行う。
上記の光ガイドモジュール以外に、本発明は、関連の産業に応用することができる。例えば、四輪車又はバイクのランプモジュールはその表面に微小な紋柄(これによって光線の霧化の拡散を差し通す)が必要である。又、レーザー全写真等に応用する。
【0017】
上記の本実施例は下記の長所及び効果がある。
(一)結合の介面が堅固である。この電鋳沈積層15の結合力は、材料内部の金属間の結合力であるので、金属材20と電鋳金属板30とを十分に堅固に固定することができ、本実施例の複合電鋳金属型の使用寿命を向上できる。
【0018】
(二)加工が快速である。本実施例の主な厚さ(仮に2.5mmの挟み止め用と仮説)の部分は、現有の金属材20から提供し、その必要な電鋳沈積の厚さは非常に小さい。仮に0.5mmであって、その沈積成長速度を毎分間0.4μmで計算すると、本実施例は二つの内表面に対して同時に内側に向けて成長するので、単辺での必要な成長の長さは250μm(0.25mm)であり、これを0.4μm/secで割ると、理論上では625分間(約10.4時間)必要である。従来の全工程で電鋳沈積を3mm(2.5+0.5mm)沈積するのに必要の時間は7500分間(約125時間、5.2日に等しい)であるので、本実施例の加工速度は従来の技術の加工速度より約12倍速く、大幅に金属型の加工時間を短縮することができる。
【0019】
(三)高温下で容易に変形しない。本実施例による結合介面は金属と金属の電鋳沈積の結合であるので、結合後は、後加工の作業中で耐高温性を有し、容易に変形しない。
以上は比較的よい実施例で詳細に本発明を説明したが、該実施例に対して行った任意の簡単な修正及び変化はすべて本発明の精神と範囲に見出すことを特に強調する。
上記の詳細な説明によって、本発明の技術を熟知した技術者により本発明は確かに上記の目的を達成できることが明らかであり、特許法の規定に合致しているため、本発明は特許申請を提出する。
【図面の簡単な説明】
【図1】従来の方法で、電鋳金属型の変形を生じた状態を示す模式図である
【図2】本発明の一実施例による複合電鋳金属型の製造方法のフローを示す模式図である。
【図3】本発明の一実施例による複合電鋳金属型の製造方法において電鋳前の組立の状態を示す模式図である。
【図4】本発明の一実施例による複合電鋳金属型の製造方法において電鋳中の局部を示す拡大図(一)である。
【図5】本発明の一実施例による複合電鋳金属型の製造方法において電鋳中の局部を示す拡大図(二)である。
【図6】本発明の一実施例による複合電鋳金属型の製造方法において電鋳完了の状態を示す模式図である。
【図7】本発明の一実施例による複合電鋳金属型の製造方法において離型ステップ後の状態を示す模式図である。
【図8】本発明の他の実施例による複合電鋳金属型の製造方法において局部を示す拡大図である。
【符号の説明】
11 金属材の準備ステップ
12 電鋳金属板及びプラスチック型の中子と電鋳基板との準備ステップ13 電源の準備ステップ
14 電鋳沈積層の形成ステップ
15 離型ステップ
20 金属材
21 第一結合面
22 絶縁層
30 電鋳金属板
31 第二結合面
32 加工表面
40 プラスチック中子
50 電鋳基板
60、70 電源
61、71 陰極
62、72 陽極
90 電鋳金属板
91 電鋳基板
92 プラスチック金型中子
93 絶縁板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a kind of electroformed metal mold, in particular, a kind of method for producing a composite electroformed metal mold, in which the bonding interface is firm, the processing is fast, and it is not easily deformed at high temperatures and It has an effect.
[0002]
[Prior art]
Each of the conventional methods of joining an electroformed metal plate formed by an electroforming method and a die steel core has its drawbacks.
The vacuum suction method can achieve the thickness of the electroformed plate necessary for high speed, but the manufacture of the mold requires considerable precision, and also requires vacuum equipment. Have difficulty.
[0003]
When the flame injection welding or laser welding method is used, the electroformed metal plate is deformed and the surface contour of the electroformed metal plate is destroyed.
Also, when using the mechanical fitting or bolting method, the electroformed metal plate requires a considerable thickness, so the electroforming time is considerably long.
[0004]
For example, when an electroformed metal plate having a sufficient thickness is formed by a conventional electroforming method, for example, when the thickness is 3 mm (3000 μm), the deposition growth rate is calculated at 0.4 μm / min. Since it is a unidirectional deposition, theoretically, 7500 minutes are required, and if converted, 125 hours are required. This corresponds to 5.2 days and is very time consuming. In addition, after electroforming is completed, internal stress accumulates in a thick layer and may be easily deformed.
[0005]
Please refer to Fig.1. The electroformed substrate 91 has a designed and manufactured plastic mold core 92 with insulating plates 93 on both sides thereof, and this original very thin electroformed metal plate 80 completes electroforming. After that, it is considerably thicker (for example, thicker from several hundred μm to 3 mm). The internal stress at this time easily causes a defect of deformation after being accumulated. FIG. 1 shows an exaggerated illustration intention.
[0006]
[Problems to be solved by the invention]
For this reason, it is necessary to research and develop a new manufacturing method to solve the above-mentioned drawbacks.
That is, the object of the present invention is to provide a composite electroformed metal mold that has a solid joining interface after joining and can significantly reduce the manufacturing time of the mold, and can achieve the effect of not easily deforming at high temperatures. It is to provide a manufacturing method.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and a manufacturing method thereof includes the following steps.
First, the metal material preparation step.
2. Preparation step of electroformed metal plate and plastic mold core and electroformed substrate.
[0008]
Three, power supply preparation steps.
4. Electroforming deposition layer forming step.
Five, mold release step.
In the manufacturing method provided as described above, a metal material having a considerable thickness is skillfully used, and electroforming deposition is simultaneously performed on both coupling surfaces in the inner direction (both directions). The bonded interface after the bonding is firm, and the manufacturing time of the mold can be greatly shortened, and the object of the effect of not easily deforming at high temperatures can be achieved.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Please refer to Figure 2. The steps of a method of manufacturing a type of composite electroformed metal mold according to an embodiment of the present invention include the following.
First, metal material preparation step 11.
[0010]
2. Preparation step 12 of the electroformed metal plate and plastic mold core and the electroformed substrate.
3. Power supply preparation step 13.
4. Step 14 of forming an electroformed sediment layer.
5. Mold release step 15.
[0011]
Each step of the present embodiment will be described in detail below.
First, metal material preparation step 11: Please refer to FIG. One metal material 20 (which may be steel or copper) having a predetermined thickness and capable of conducting is prepared. The metal material 20 has one slightly protruding first bonding surface 21, the other surface is covered with one insulating layer 22, and the thickness of the metal material 20 exceeds a minimum of 1 mm. At times, pinch the tool.
[0012]
2. Preparation of electroformed metal plate / plastic core and electroformed substrate Step 12: One electroformed metal plate 30 having an average thickness of less than 500 μm is prepared. There is one second coupling surface 31 corresponding to one coupling surface 21 and one machining surface 32. The machining surface 32 of the electroformed metal plate 30 has one non-conductive plastic core 40 and one machining surface 32. A non-conductive electroformed substrate 50 is coupled. These three parties are joined together for a while. The processed surface 32 of the electroformed metal plate 30 has a structure for forming a predetermined shape or a specific outer shape pattern (for example, one specific microstructure, and a light guide module is formed in a later process) ) Structure is provided.
[0013]
3. Power supply preparation step 13: Two power supplies 60, 70 are prepared, and each power supply has one cathode 61, 71 and one anode 62, 72.
4. Electroforming deposition layer forming step 14: Please refer to Fig.3, Fig.4 and Fig.5. Electroforming is performed by bringing the first coupling surface 21 and the second coupling surface 31 protruding slightly into contact with each other in a predetermined small area. When performing electroforming, the anodes 62 and 72 of the two power sources 60 and 70 are connected to one electroforming material source 80 (for example, nickel), and at the time of electroforming, the metal material 20 and the electroformed metal are connected. The plate 30 is connected to the cathodes 61 and 71 of the two power sources 60 and 70 simultaneously. The two gradually deposit in the space between the first bonding surface 21 of the metal material 20 and the second bonding surface 31 of the electroformed metal plate 30 at the same time. Please refer to Fig.5 and Fig.6. The metal material 20 and the electroformed metal plate 30 are tightly coupled to each other by the newly formed electroformed deposition laminate 15 due to the increase in the thickness of the deposit in both directions and the bonding force between the metals, The metal material 20, the electroformed deposit 15, the electroformed metal plate 30, the plastic core 40, and the nonconductive electroformed substrate 50 are joined together in order.
[0014]
5. Mold release step 15: Please refer to Fig.7. The non-conductive plastic core 40 and the electroformed substrate 50 are removed (including the insulating layer 22), that is, the original processing surface 32 is retained on the electroformed metal plate 30 by mold release, and this electroformed sedimentation is performed. 15 is tightly joined to the metal material 20 to form one composite electroformed metal mold.
[0015]
More specifically, the material of the electroformed substrate 50 can be selected from one non-conductive material among silicon, silicon dioxide, glass, quartz, plastic or epoxy resin.
In practice, when processing a precision fitting such as a liquid crystal screen (LCD) on a light guide module, the thickness of the metal material is about 2 to 3 mm, and the thickness of the electroformed metal plate is 250 to 350 μm.
[0016]
Naturally, the first coupling surface 21 can be changed to one slightly protruding conical surface as shown in FIG. 8, and the second coupling surface 31 is a single plane, and gradually gradually from a small area contact. Sedimentation is performed.
In addition to the light guide module described above, the present invention can be applied to related industries. For example, a lamp module of a four-wheeled vehicle or a motorcycle needs a minute pattern on the surface thereof (this allows the diffusion of light atomization to pass through). It is also applied to all laser photos.
[0017]
The above-described embodiment has the following advantages and effects.
(1) The interface between the bonds is solid. Since the bonding force of the electroformed sedimentation layer 15 is a bonding force between metals inside the material, the metal material 20 and the electroformed metal plate 30 can be fixed sufficiently firmly. The service life of the cast metal mold can be improved.
[0018]
(2) Processing is fast. The main thickness portion (assuming that it is for 2.5 mm clamping) is provided from the existing metal material 20, and the required thickness of the electroformed deposit is very small. If it is 0.5 mm and the deposition growth rate is calculated at 0.4 μm per minute, this embodiment grows inward with respect to the two inner surfaces at the same time. The length is 250 μm (0.25 mm), and dividing this by 0.4 μm / sec theoretically requires 625 minutes (about 10.4 hours). Since the time required to deposit 3 mm (2.5 + 0.5 mm) of electroformed deposition in all the conventional processes is 7500 minutes (approximately 125 hours, equal to 5.2 days), the processing speed of this example is The processing speed of the metal mold can be greatly shortened by about 12 times faster than the processing speed of the prior art.
[0019]
(3) Does not easily deform at high temperatures. Since the bonding interface according to the present embodiment is a combination of metal and metal electroforming deposition, after bonding, it has high temperature resistance during post-processing and does not easily deform.
Although the foregoing has described the invention in detail with relatively good embodiments, it is particularly emphasized that all simple modifications and variations made to the embodiments will be found in the spirit and scope of the invention.
From the above detailed description, it is clear that an engineer who is familiar with the technology of the present invention can surely achieve the above-mentioned object, and is consistent with the provisions of the Patent Law. hand in.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a state where an electroformed metal mold is deformed by a conventional method. FIG. 2 is a schematic view showing a flow of a method of manufacturing a composite electroformed metal mold according to an embodiment of the present invention. It is.
FIG. 3 is a schematic view showing an assembled state before electroforming in a method for producing a composite electroformed metal mold according to an embodiment of the present invention.
FIG. 4 is an enlarged view (1) showing a local part during electroforming in a method for producing a composite electroformed metal mold according to an embodiment of the present invention.
FIG. 5 is an enlarged view (2) showing a local part during electroforming in a method for producing a composite electroformed metal mold according to an embodiment of the present invention.
FIG. 6 is a schematic view showing a state of completion of electroforming in a method for producing a composite electroformed metal mold according to an embodiment of the present invention.
FIG. 7 is a schematic view showing a state after a release step in a method for manufacturing a composite electroformed metal mold according to an embodiment of the present invention.
FIG. 8 is an enlarged view showing a local part in a method of manufacturing a composite electroformed metal mold according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Metal material preparation step 12 Electroforming metal plate and plastic mold core and electroforming substrate preparation step 13 Power supply preparation step 14 Electroforming deposition forming step 15 Mold release step 20 Metal material 21 First bonding surface 22 Insulating layer 30 Electroformed metal plate 31 Second bonding surface 32 Processing surface 40 Plastic core 50 Electroformed substrate 60, 70 Power supply 61, 71 Cathode 62, 72 Anode 90 Electroformed metal plate 91 Electroformed substrate 92 In plastic mold Child 93 Insulation plate

Claims (5)

一種の複合電鋳金属型の製造方法であり、下記のステップを含み、
(1)金属材準備ステップは、所定の厚さがあり且つ導電できる金属材を準備し、該金属材には少々凸出した第一結合面があり、その他の表面は絶縁層を被せ、該金属材の厚さは最少1mmを超え、
(2)電鋳金属板及びプラスチック型の中子と電鋳基板との準備ステップは、平均厚さが500μmより小さい電鋳金属板を準備し、該電鋳金属板には該第一結合面に対応する第二結合面及び加工表面があり、該電鋳金属板の加工表面上では不導電のプラスチック型中子と不導電の電鋳基板とを結合し、暫時一体に結合し、該電鋳金属板の加工表面上には所定形状を形成する構造、又は特定の外形紋柄を形成する構造が設けられ、
(3)電源準備ステップは、二つの電源を準備し、各電源は陰極と陽極とを有し、
(4)電鋳沈積層の形成ステップは、該少々凸出した第一結合面と該第二結合面とを所定の小さい面積で接触させて電鋳を進め、電鋳を行う時、該二つの電源の陽極を電鋳材料源につなぎ、電鋳の時、該金属材と該電鋳金属板とを同時に該二つの電源の陰極につなぎ、二者は同時に徐々に該金属材の第一結合面と該電鋳金属板の第二結合面との間の空間に沈積し、両方向の沈積の厚さがますます厚くなること、ならびに金属間の結合力により、該金属材と該電鋳金属板とが電鋳沈積層によって緊密に結合することで、該金属材、電鋳沈積層、該電鋳金属板、プラスチック型の中子、ならびに不導電の電鋳基板は順に一体に結合し、
(5)離型ステップは、不導電のプラスチック型の中子と電鋳基板とを取り除く離型で電鋳金属板に翻鋳の元来の加工表面を保持し、電鋳の沈積層により該金属材と緊密に接合し、複合電鋳金属型を形成することを特徴とする複合電鋳金属型の製造方法。
A method of manufacturing a type of composite electroformed metal mold, including the following steps:
(1) In the metal material preparation step, a metal material having a predetermined thickness and being conductive is prepared, the metal material has a slightly protruding first bonding surface, and the other surface is covered with an insulating layer, The thickness of the metal material exceeds 1 mm,
(2) The step of preparing the electroformed metal plate and the plastic mold core and the electroformed substrate is to prepare an electroformed metal plate having an average thickness of less than 500 μm, and the electroformed metal plate includes the first bonding surface. A non-conductive plastic mold core and a non-conductive electroformed substrate are bonded to each other on the processed surface of the electroformed metal plate and bonded together for a while. On the processed surface of the cast metal plate, a structure for forming a predetermined shape, or a structure for forming a specific external pattern is provided,
(3) The power supply preparation step prepares two power supplies, each power supply has a cathode and an anode,
(4) The step of forming the electroformed sedimentation layer is carried out when the slightly protruding first bonding surface and the second bonding surface are brought into contact with each other in a predetermined small area, and the electroforming is performed. The anodes of two power sources are connected to the electroforming material source, and at the time of electroforming, the metal material and the electroformed metal plate are simultaneously connected to the cathodes of the two power sources. It is deposited in the space between the bonding surface and the second bonding surface of the electroformed metal plate, and the thickness of the deposit in both directions becomes larger and the bonding force between the metals, and the metal material and the electroforming The metal plate, the electroformed deposit layer, the electroformed metal plate, the plastic core, and the non-conductive electroformed substrate are joined together in sequence by tightly bonding the metal plate to the electroformed deposit layer. ,
(5) The mold release step is a mold release that removes the non-conductive plastic mold core and the electroformed substrate, holds the original processing surface of the reverse casting on the electroformed metal plate, A method for producing a composite electroformed metal mold, characterized in that the composite electroformed metal mold is formed by tightly joining a metal material.
該電鋳基板の材料は、シリコン、二酸化シリコン、ガラス、石英、プラスチック又はエポキシ樹脂の中から選出した一つの不導電材料であることを特徴とする請求項1記載の複合電鋳金属型の製造方法。2. The composite electroformed metal mold according to claim 1, wherein the material of the electroformed substrate is one non-conductive material selected from silicon, silicon dioxide, glass, quartz, plastic or epoxy resin. Method. 該金属材の厚さは2mm〜3mmであり、該電鋳金属板の厚さは250μm〜350μmであることを特徴とする請求項1記載の複合電鋳金属型の製造方法。2. The method of manufacturing a composite electroformed metal mold according to claim 1, wherein the metal material has a thickness of 2 mm to 3 mm, and the electroformed metal plate has a thickness of 250 [mu] m to 350 [mu] m. 該第一結合面は少々凸出した弧面であり、該第二結合面は平面であることを特徴とする請求項1記載の複合電鋳金属型の製造方法。2. The method of manufacturing a composite electroformed metal mold according to claim 1, wherein the first bonding surface is a slightly protruding arc surface, and the second bonding surface is a flat surface. 該第一結合面は、少々凸出した錐面であり、該第二結合面は平面であることを特徴とする請求項1記載の複合電鋳金属型の製造方法。2. The method of manufacturing a composite electroformed metal mold according to claim 1, wherein the first bonding surface is a slightly protruding conical surface, and the second bonding surface is a flat surface.
JP2002132572A 2002-05-08 2002-05-08 Manufacturing method of composite electroformed metal mold Expired - Fee Related JP3665772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002132572A JP3665772B2 (en) 2002-05-08 2002-05-08 Manufacturing method of composite electroformed metal mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002132572A JP3665772B2 (en) 2002-05-08 2002-05-08 Manufacturing method of composite electroformed metal mold

Publications (2)

Publication Number Publication Date
JP2003328175A JP2003328175A (en) 2003-11-19
JP3665772B2 true JP3665772B2 (en) 2005-06-29

Family

ID=29696086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002132572A Expired - Fee Related JP3665772B2 (en) 2002-05-08 2002-05-08 Manufacturing method of composite electroformed metal mold

Country Status (1)

Country Link
JP (1) JP3665772B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108018585A (en) * 2018-01-09 2018-05-11 范龙飞 A kind of metal texture plate electroforming mould and method

Also Published As

Publication number Publication date
JP2003328175A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
US20120021244A1 (en) Process for joining stainless steel part and alumina ceramic part and composite articles made by same
US6332568B1 (en) Wafer scale micromachine assembly method
JP3665772B2 (en) Manufacturing method of composite electroformed metal mold
KR20050088327A (en) Electroformed adhesive laminated tooling surface with precision structured interfaces
JP2004345897A (en) Method for producing mold for pressing glass
TW201518527A (en) Structure of silicon target and method of producing the same
CN111799152B (en) Wafer double-sided metal process
CN114101475A (en) Ultrasonic impression forming method and forming equipment for high-temperature high-strength amorphous alloy micro-mold
JP2004352545A (en) Method for manufacturing vitreous carbon made pipe and vitreous carbon made pipe manufactured by the method
US6644537B1 (en) Manufacturing method for bonded electroforming metallic mold
US20110120626A1 (en) Method of producing ultra fine surfacing bulk substrate
JP2006028604A (en) Method for transferring minute shape, method for manufacturing casting mold, surface treatment method for casting mold, and casting mold
US20050139475A1 (en) Insert dies, molds, and methods for fabricating the same
KR100505534B1 (en) A Machining And Brazing Methood Of Thin Metal Plate With Micro Flow Path And Pattern
JPH027491A (en) Manufacture of solid forming printed circuit board and plating formation film of forming die
JP2010194805A (en) Molding die, and manufacturing method therefor
US7270732B2 (en) Method for enhancing bonding strength of a metal spraying thickened layer of electroformed mold inserts
CN113387321B (en) Processing method for realizing high-centering double-sided glass microstructure array
JPH1087385A (en) Metal-ceramic composite substrate and its production
TW200811300A (en) A treatment method of metalization of metal or ceramic substrate
JP2009239066A (en) Ceramic substrate, and manufacturing method therefor
JP2017172991A (en) Precision component manufacturing method
CN112346154A (en) Method for manufacturing microlens master mold and microlens master mold
US20070039826A1 (en) Thickening method of an electroforming shim
CN109411453A (en) A kind of perpendicular interconnection method of 3 D stereo encapsulation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees