JP3664947B2 - 分子線エピタキシャル装置 - Google Patents
分子線エピタキシャル装置 Download PDFInfo
- Publication number
- JP3664947B2 JP3664947B2 JP2000153663A JP2000153663A JP3664947B2 JP 3664947 B2 JP3664947 B2 JP 3664947B2 JP 2000153663 A JP2000153663 A JP 2000153663A JP 2000153663 A JP2000153663 A JP 2000153663A JP 3664947 B2 JP3664947 B2 JP 3664947B2
- Authority
- JP
- Japan
- Prior art keywords
- molecular beam
- bent
- crucible
- cell
- beam source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明が属する技術分野】
本発明は分子線結晶成長法(Molecular Beam Epitaxy、以下「MBE法」と称する)で使用される分子線エピタキシャル装置(以下「MBE装置」と称する)に関する。
【0002】
【従来の技術】
MBE法は、高純度の分子線発生材料(以下、「分子線材料」と称する)を蒸発、昇華させることによって分子線を発生させ、高真空中でGaAs基板等に結晶を成長させる技術であり、半導体レーザー等の化合物半導体を構成する半導体薄膜の作製法として広く用いられ、現在なお研究、開発が進められている方法である。
その半導体薄膜の作製時に重要な事項として、真空チャンバ内の残留不純物を少なくすることが挙げられる。そのために排気効率の改良やチャンバベーキングなどが行われ、良好な半導体が得られるようになった。
【0003】
MBE法では、分子線材料を入れる坩堝、坩堝を加熱するヒータおよび温度較正用の熱電対からなる分子線源セルを真空容器で封入し、この真空容器を介して真空チャンバ(成膜室)の外側に開口したポートに分子線源セルが接続される。MBE装置は、通常、複数個の分子線源セルが取り付けられており、坩堝に純粋な分子線材料が充填されたそれぞれの分子線源セルの開口部(坩堝の開口部)が総て真空チャンバ内に配置されたターゲットとなる基板に向けて配置される。したがって、複数個の分子線源セルのそれぞれの開口部は、基板に対して所定の角度をもって配置されることになる。
【0004】
MBE装置には大きく分けて縦置き型と横置き型とがある。
縦置き型のMBE装置は、基板が成膜面を下向きにして配置され、分子線源セルの開口部が基板の鉛直方向に対して所定の角度をもって、つまり水平より上向きになるよう配置される。
横置き型のMBE装置は、基板が成膜面を横向きにして配置され、各分子線源セルの開口部が基板の回転軸から所定の角度をもって同心円上に配置される。したがって、真空チャンバの上部ポートに接続される分子線源セルの開口部は水平より下向きになる。
【0005】
前記の縦置き型のMBE装置では、分子線材料のガス出しや結晶成長時に、蒸発または昇華させた分子線材料が基板以外の部分、例えばシュラウドなどに付着し、シュラウドから液体窒素を除去すると、付着物が剥離して分子線源セルに落下することがある。セルに落下した付着物はそれ自体が不純物となって結晶性を低下させ、半導体薄膜の膜質を低下させたり、分子線源セルの加熱ヒータや温度校正用の熱電対リード線などに入り込んで絶縁不良などのトラブルを発生させたりする。
【0006】
このため、真空チャンバを傾けた、縦置き型と横置き型の中間構造を有する傾斜型のMBE装置とすることにより、基板の周りのシュラウドなどについた付着物が落下しても分子線源セルに入らないような対策が採られている。
しかしながら、前記の横置き型や傾斜型の装置を使用しても、例えば、図9あるいは図10に示すような従来構造の坩堝610、710を用いる場合には、下部ポートに取り付けた分子線源セルより上部ポートに取り付けた分子線源セルの方が、坩堝610、710内に充填できる溶融分子線材料の量は少なくなる。したがって、一回の材料充填で稼働できる時間が短くなり、装置稼働率の低下および製品コストの増大を招いていた。
【0007】
さらに、真空チャンバの傾斜角度が大きい傾斜型のMBE装置や横置き型のMBE装置では、幾つかの分子線源セルはその開口部が水平より下向きになるように取り付けられるので、図9あるいは図10に示す従来構造の坩堝610、710を用いた場合は、溶融分子線材料を使用することができず、昇華型の分子線材料の使用に限定されてしまう。
さらに、図9に示す坩堝610では、分子線材料を消費するにしたがって蒸発面積が小さくなるため、ヒータ温度が一定の場合はフラックス強度が徐々に低下していく。このため、一定のフラックス強度を得るためには常にヒータ温度を補正する必要がある。通常、このフラックス補正は、数回の結晶成長後に行うことが必要である。
図10の坩堝710を使用した場合は、材料充填部が平行円筒状であるため、分子線材料を消費してもその上面の一部が坩堝の底面に達するまでは蒸発面積が変化しない。そのため、ヒータ温度を一定にすれば、フラックス強度もほぼ一定になる。したがってフラックス補正の間隔を長くすることが可能となり、MBE装置の可動率は向上する。しかしながら、分子線材料の減少に伴い分子線材料の液面が基板から遠ざかるため、若干の修正は必要になる。
【0008】
前記のように、シュラウドなどについた付着物の落下を防ぐために真空チャンバを傾斜させた傾斜型のMBE装置や横置き型のMBE装置の場合、上部ポート側の溶融分子線材料の充填容量が少なくなり、分子線源セルの開口部が水平より下を向くポート側においては昇華型の分子線材料の使用に限られる。
【0009】
一方、図11に示すような平行円筒形の折れ曲がり形状の坩堝510を有する分子線源セル500は、傾斜型あるいは横置き型のMBE装置の開口部が水平より下を向くポートにおいても溶融分子線材料を使用することができる。
図11において、分子線源セル500は、分子線材料m( 例えば、ガリウム)を充填する坩堝510、ヒータ502・503、熱電対(図示せず)、反射板504および真空容器550を備えている。坩堝510およびヒータ502・503ならびに熱電対および反射板504等の付属部材からなる組み立て部材をセル部530と称する。
坩堝510は、分子線材料が充填される充填部分511と、坩堝開口部512と充填部分511の間に形成された屈曲部513と、開口部512と屈曲部513との間の分子線形状決定部分514とからなる。
【0010】
平行円筒形状の真空容器550は、坩堝510の底部を支持する固定具551が配設された末端フランジ552と、末端フランジ552に一端が接続される直線状の直線筒553とからなり、直線筒553の他端は坩堝510の屈曲部513を逃がすよう傾斜し、分子線形状決定部分514を真空チャンバのポートに直角に取り付けるための接続フランジ553bを形成する。真空容器550は、図示しない真空チャンバのポートに接続フランジ553bを介して取り付けられ、セル部530を封入しかつ固定させる。
【0011】
図12の(a)〜(d)は、前記の分子線源セル500を真空チャンバのポートに取り付ける際の分子線源セル500の組み立ての手順を示す。なお、同図(a)〜(c)は正面断面図、(d)は正面図で示す。
まず、坩堝510にヒータ502、503を装着し、反射板504を取り付けてセル部530を形成する(a)。次いで、セル部530の底部539側から直線筒553を通した後、固定具551とセル部530を互いに接続固定する(b)。このとき、直線筒553の接続フランジ553aと末端フランジ552は互いに固定されない。
【0012】
次いで、前記の接続フランジ553aと末端フランジ552の隙間から、末端フランジ552のフィードスルー555を介してヒータ502、503および熱電対に配線Lを結線する(c)。そして直線筒553の接続フランジ553aと末端フランジ552をフランジ接続して分子線源セル500の組み立てが終了する(d)。
【0013】
このような分子線源セル500を使用すれば、分子線源セル500の分子線形状決定部分514を水平に設置した場合あるいは分子線源セル500の開口部512が水平より下向きになるよう設置した場合でも、溶融分子線材料を使用することができる。坩堝510は、図10の坩堝710と同じく材料充填部511が平行円筒状であるため、最終段階までフラックス補正の必要もなく、分子線材料の量によってフラックス強度も変化しない。さらに、ヒータを材料充填部511のヒータ503と開口部512から屈曲部513を覆うヒータ502とに分離することによって、分子線材料の蒸発量と分子線のエネルギーを別々にコントロールすることもでき、膜質をさらに向上させることができる。
【0014】
【発明が解決しようとする課題】
前記の図12(c)で示すように、配線Lの結線は、直線筒553の接続フランジ553aと末端フランジ552の隙間から行わねばならない。また、分子線材料の充填あるいはセル部530の掃除などのメンテナンスのために真空チャンバのポートから分子線源セル510を取り外して分解する場合、前記の逆の手順で分子線源セル500を分解することになるが、この場合にも直線筒553の接続フランジ553aと末端フランジ552の隙間から各部に結線された配線Lを外すことになり、作業効率の低下を引き起こし、人為的ミスが発生しやすい。
【0015】
前記の問題を回避するためにセル部530をより大きい真空容器で封入し、それによって前記両フランジ553a、552間の作業スペースを拡大することが考えられるが、真空容器の径を大きくすると真空チャンバの外部に配設されるポートの占有空間が大きくなる。このため、真空チャンバに配設されるポート数を少なくするか、あるいは真空チャンバを大きくする必要が生じる。
また、真空チャンバの外部に配設されるポートの占有空間を小さくするために、セル部530を小さく作った場合や、直線筒553を小型化するために坩堝510の材料充填部511を短く作った場合には、材料充填部511の分子線材料の充填量が減少し、材料充填のためのメンテナンス回数の増加を引き起こし、高い生産性が得られない。
【0016】
本発明は、このような問題点に鑑みてなされたものであり、組み立ておよび分解が容易で生産性の高い分子線エピタキシャル装置を提供することを目的とする。
【0017】
【課題を解決するための手段】
この発明によれば、開口部、分子線材料が充填される材料充填部および開口部と充填部との間に形成された少なくとも1つの屈曲部を有する坩堝と、充填部に充填された分子線材料を加熱により蒸発させて坩堝開口部から分子線を発射させるヒータと、前記分子線が照射されるターゲットが配置される真空チャンバと、坩堝およびヒータを封止しかつ真空チャンバに固定させるための互いに分離可能に接続される複数の筒状部材からなる真空容器とを備え、真空容器が、材料充填部を覆う直線状の軸線を有する直線筒と、屈曲部を覆う折れ曲がった軸線を有する屈曲筒と、直線筒の一端開口部に分離可能に接続され、坩堝およびヒータを真空容器に対して固定・封止させる固定封止部材とを有し、直線筒および屈曲筒が坩堝の開口部から坩堝の屈曲部を通り抜け、固定封止部材が屈曲部を通り抜けた直線筒の一端開口部を封止できるよう構成されたことを特徴とする分子線エピタキシャル装置が提供される。
【0018】
すなわち、屈曲部を有する坩堝および坩堝を囲むヒータを含む分子線源セルの本体(以下、「セル部」と称する)に直線筒および屈曲筒からなる真空容器を装着する際、まず、セル部を組み立てた後、真空容器の固定封止部材でセル部を固定し、次いでヒータの配線を行い、さらにセル部の開口部側から直線筒および屈曲筒をこの順に屈曲部に挿通させ、次いで固定封止部材と直線筒と屈曲筒とを連結することにより、一端が固定封止部材で封止された真空容器を装着した分子線源セルが組み立てられる。この場合、前記セル部に結線されたヒータ等の配線は予め固定封止部材のフィードスルー等を貫通させて外部に導出させておくことができる。
【0019】
つまり、図11のような真空容器は、真空容器(屈曲筒および/または直線筒)をセル部の底部側(材料充填部側)から挿通させるので、真空容器をセル部に挿通させた後でなければ真空容器を固定封止部材で封止できない。したがって、セル部に挿通され材料充填部側を覆う直線筒が、真空容器に対するセル部の固定作業の障害になったり、あるいは固定封止部材を固定部材と封止部材との別部材とし、それぞれを別個に組み付ける必要が生じる。また、配線は、セル部と直線筒との間の狭い空間でセル部に対して着脱を行わなくてはならないし、真空容器の一部から外部に引き出すためにフィードスルーを介して真空容器の貫通させる作業を固定封止部材と直線筒との間から行わなくてはならない。
しかしながら、この発明では、ヒータの取り付けおよび配線等を含む組み立てが終わったセル部に対して、その開口部から真空容器の各筒を順次挿通させ、それによって真空容器を真空チャンバに対して密閉可能に固定することができるので、組み立ておよび分解等を含むメンテナンス作業が容易になり、作業効率および装置の稼動率が上昇する。また、溶融分子線材料を大量に充填できる大容量の坩堝を使用でき、坩堝の容量に対して真空容器の大きさを小型化できる。
【0020】
この発明では、真空チャンバのポートの占有空間を最小化して真空チャンバの無用な大型化を避けるために、真空容器の寸法、特にポートとの接続部における外形寸法の最小化を図る必要がある。そのために、屈曲筒および直線筒の内径および管路長さを、屈曲筒および直線筒がセル部の屈曲部を挿通可能な最小限の寸法に抑えるための寸法設定がなされることが好ましい。
【0021】
この発明の分子線エピタキシャル装置は、屈曲部を有する坩堝、ヒータおよび熱電対等の付属部材を有するセル部ならびに真空容器を含む分子線源セルと、真空チャンバとからなる。
この発明において、坩堝は、それぞれの軸線が同一平面に存在する複数の屈曲部を有し、真空容器が坩堝の前記屈曲部のそれぞれに対応する形状の各屈曲筒を有する形態も例示される。
真空容器が、複数の直線筒を有しておれば、坩堝の材料充填部が長い場合にも、短い直線筒のそれぞれを坩堝の屈曲部に挿通させた後、互いに接続させることによって一本の直線筒を形成することができるので、材料充填部の充填容量を大きく設定することができる。
【0022】
直線筒および屈曲筒の各接続部の構成としては、嵌合、ねじ込み、フランジ継手等が挙げられる。また、固定封止部材の接続部の構成としては、嵌合あるいはねじ込み式のキャップ、プラグあるいは閉鎖フランジ(フランジ継手)等が挙げられる。特に、着脱操作が容易であることおよび非回転であることから、フランジ継手が好ましい。
【0023】
この発明において、固定封止部材が、配線を引き出して真空容器内を気密に保持するフィードスルーを有する構成が例示される。フィードスルーとは、真空容器を真空側と大気側に貫通する配線を行う場合に通常用いられる真空保持配線部材であり、両端に接続端子をもつコネクタ本体と、両端の接続端子が真空側と大気側にそれぞれ位置するようコネクタ本体を気密に支持するフランジとからなるものが例示される。
真空チャンバが、坩堝およびヒータを封入した真空容器を真空チャンバに接続させるためのポートを複数備えておれば、複数の分子線源セルを真空チャンバに配置したターゲット(例えば、基板等)に向け、それぞれの分子線源セルから分子線を発射することができるので、成膜時間が短縮される。
【0024】
この発明の別の観点によれば、前記した分子線エピタキシャル装置を構成する真空容器が提供される。
この発明の分子線エピタキシャル装置では、分子線源セルの開口部が基板ホルダの中心(ターゲット)を向き、材料充填部が鉛直方向を向く形態をとることができるので、ホットウォール効果、すなわち、溶融分子線材料の液面から蒸発した分子線が坩堝の屈曲部等からの再蒸発により分子線が飛来するため、分子線量と飛来するエネルギーを独立して制御できるという効果を用いて、真空チャンバ内における成膜の際の膜質の改善を図ることができる。
【0025】
【発明の実施の形態】
以下、図に示す分子線エピタキシ装置の実施の形態に基づいて本発明を説明する。なお、これによって本発明は限定されるものではない。
実施例1
図1は本発明に係る分子線源セルの実施の形態の一例を示す。
図1において、分子線源セル100は、分子線材料m( 例えば、ガリウム)を充填する坩堝110、ヒータ102・103、温度較正用の熱電対(図示せず)、反射板104および真空容器150を備えている。坩堝110と、坩堝110を囲むように取り付けられたヒータ102・103、熱電対および反射板104をセル部130と称する。
【0026】
坩堝110は、PBN(熱分解窒化ホウ素)からなる嵌め合い構造を有し、分子線材料が充填される材料充填部111と、開口部112と材料充填部111の間に形成された屈曲部113と、開口部112と屈曲部113との間の分子線形状決定部分114とからなり、材料充填部111に充填された分子線材料が開口部112からは見えない構成となっている。
材料充填部111から開口部112までは略円筒形状であり、材料充填部111と分子線形状決定部分114の屈曲角度は135°である。
【0027】
ヒータ102は分子線形状決定部分114を、ヒータ103は材料充填部111をそれぞれ独立してほぼ全体を覆うように配置された抵抗発熱体である(図中では板状に省略して表されている)。これらのヒータ102・103のうち分子線形状決定部分114のヒータ102の間隔(抵抗発熱体の配置密度)は、開口部112近傍がその他の部分より密になるよう配置されている。
【0028】
各ヒータ102・103は、分子線形状決定部分114および材料充填部111の各近傍にそれぞれ配設された熱電対による測定結果に基づいて制御される。反射板104は、前記のヒータ102・103および熱電対を覆うように配設される。
【0029】
真空容器150は、坩堝110と同様に135°の屈曲角度で曲げられたステンレス製の円筒からなり、坩堝110の底部139を支持する固定具151が配設された末端フランジ152と、末端フランジ152に一端が接続される直線状の直線筒153と、直線筒153の他端にその一端が接続される屈曲筒154とからなる。
この例では直線筒153は1つであるが、材料充填部111の長さによって複数に分割することができる。
【0030】
屈曲筒154の他端は、後記のMBE装置の真空チャンバ201に形成されたポート204にフランジ接続可能なフランジ154bを有し、フランジ154bの近傍には135°の屈曲角度で曲げられた屈曲部155が形成される。
直線筒153および屈曲筒154は、後記のように、セル部130の開口部112から挿通される際、セル部130の屈曲部113を通り抜けられるように、それらの内径および管路長さが設定される。なお、セル部130の屈曲角度は坩堝110の屈曲角度と同じであるため、便宜上、坩堝110の屈曲部113を用いてセル部130の屈曲部113と呼称する。
【0031】
図2は、前記の分子線源セル100を用いたMBE装置200の構成を示す。MBE装置200は、回転および加熱機構を備えた基板ホルダ202、シュラウド203および複数のポート204a・204b・・・・を備えた真空チャンバ201と、ポート204a・204bに接続される2基の前記分子線源セル100とからなる。基板ホルダ202の回転軸は鉛直方向に対し54°の角度で傾斜している。なお、図2では、複数のポートの中の204a・204bの2つを示す。
【0032】
ポート204a・204bに接続された2基の分子線源セル100は、各開口部112が基板ホルダ202の中心を向き、各分子線源セル100から発射される分子線は基板ホルダ202の法線方向に対し36°の角度で入射するよう設定されている。分子線源セル100の真空容器150の外側には水冷ジャケット(図示せず)が設置され、真空チャンバ201に接続された外部の真空ポンプが駆動されると、真空容器150内は真空に保持される。
【0033】
図3は、分子線源セル100を真空チャンバ201の各ポート204a・204bに取り付ける際に行われる分子線源セル100の組み立て手順を示す。
まず、坩堝110にヒータ102、103を装着し、熱電対(図示せず)、反射板104を取り付けてセル部130を形成する。次いで、固定具151を介してセル部130を末端フランジ152に固定する(正面断面図a)。
次いで、末端フランジ152に埋め込まれたフィードスルー155を介してヒータ102、103および熱電対の配線Lをセル部130側に導入し、セル部130の屈曲部113近傍および底部139近傍に露出した各電極端子(図示せず)に結線する(正面図b)。
【0034】
次いで、セル部130の開口部112から、直線筒153および屈曲筒154をこの順で挿通し、直線筒153の一端側のフランジ153aが末端フランジ152にフランジ接続され、直線筒153の他端側のフランジ153bが屈曲筒154の一端側のフランジ154aとフランジ接続されて、分子線源セル100の組み立てが終了する(c)。
組み立てられた分子線源セル100は、屈曲筒154のフランジ154bを介して、真空チャンバ201の、例えば、ポート204aに取り付けられ、その外側に水冷ジャケット(図示せず)が設置される。
一方、分子線材料mを補充したり、真空チャンバ201あるいは分子線源セル100のメンテナンスを行う場合は、前記と逆の手順で分子線源セル100の取り外しおよび分解を行う。そのとき、屈曲筒154と直線筒153を切り離し、屈曲筒154をポート204に残した状態で分子線源セル100を真空チャンバ201から取り外してもよい。これにより作業性が良くなる。
【0035】
図4は、本発明のMBE装置200における坩堝の屈曲角度と坩堝に充填される分子線材料の容量を測定した結果を示すグラフであり、図5は、前記測定に使用された分子線源セルを示す。
図5に示した分子線源セルは、セル部130の外径を100mm、直線筒153および屈曲筒154の内径を147mm、各フランジの外径を203mm、各フランジの厚さを20mmとした。坩堝の屈曲角度θと屈曲筒154の屈曲部155の屈曲角度は同一とした。
【0036】
坩堝の屈曲角度θは約110°から160°の範囲で設定され、それぞれのセル部130の開口部112の向き(分子線形状決定部分114の軸線方向)を垂直方向に対して45°傾けた場合および鉛直方向から90°傾けた場合(水平方向)のそれぞれについて、坩堝の各屈曲角度θにおける分子線材料の充填容量を測定した。結果を図4に示す。
【0037】
屈曲角度θが90°付近にあって、材料充填部111の軸線が鉛直方向に近い程、基板に対して照射される分子線によって良好な膜質が得られることが実験により確かめられている。しかし、屈曲角度θを110°より小さい角度に設定すると、後記のように、セル部130の屈曲部113を挿通させうる直線筒153および屈曲筒154の内径が大きくなり、真空チャンバ201のポート204に多数の分子線源セルを取り付けられなくなる。また、セル部130の外径を小さくすると、充填容量が減少する。
【0038】
一方、屈曲角度θを150°以上にした場合には、図4に示すように、4000mlを超える最大容量が確保できるが、この容量ではセル部130の屈曲部113から末端フランジ152の端部までの長さは700mmにも達するので、真空チャンバ201の設置場所等の諸条件により、他の空間的な制限を受けることが考えられるので好ましくない。
【0039】
本実施例の分子線源セルを用いた場合、開口部112が鉛直方向に対し90°方向(水平方向)に向けた場合でも、図5に示した条件で図1の分子線源セル100を鉛直方向に対して45°の角度で設置した場合と同様に、溶融分子材料を最大で1500cc充填することができる。
【0040】
図5に示した分子線源セルの屈曲角度θを135°とした場合は、基板回転軸が鉛直方向に対し54°の傾きをもち、分子線源セルの開口部の中心軸が基板回転軸に対し36°の角度をもって配置されるMBE装置に対し、最上部のポート204aでは最大500cc、最下部のポート204bでは最大1500ccの溶融分子線材料を材料充填部111に充填することができた。
なお、図11に示した従来の真空容器を用いた分子線源セル500で同程度の充填容量を得ようとした場合、直線筒553の端部が傾斜しているので、真空チャンバに分子線源セル500を接続するフランジ553bの直径は、前記分子線源セル100のフランジ径の約1.3倍程度にしなければならない。したがって、真空チャンバに取り付けられるポートの数が減ったり、真空チャンバ自体の大型化を招く。
【0041】
さらに、図11における分子線源セル500の材料充填部511だけを大きくするには、屈曲部113前後で分割できる坩堝を使用し、かつ材料充填部511の坩堝・ヒータ・反射板等を組み立てて末端フランジ552に固定した後、分子線形状決定部514の坩堝・ヒータ・反射板等を別途組み立てる必要がある。これらの組立作業は狭い空間で行わなければならないため、非常に困難である。これに対して本実施例の真空容器を用いた場合、坩堝・ヒータ・反射板を完全に組み立てた後に末端フランジ152に固定し、直線筒153を接続することができるため、組み立てが容易であり、組み立て時におけるミスを抑え、組み立て作業に要する時間を大幅に短縮できる。
【0042】
なお、本実施例では坩堝110および真空容器150の屈曲部155の屈曲角度を135°としているが、屈曲部155の角度は任意に設定することができる。特に、屈曲部155の角度は110°から150°の範囲が好適である。
【0043】
この発明の分子線エピタキシャル装置200においては、真空チャンバ200のポート204近傍における分子線源セル100の占有体積を最小限にし、かつ分子線材料の十分な充填容量を確保するために、直線筒153および屈曲筒154の内径を最小に、かつ直線筒153および屈曲筒154の長さを最大に設定するのが好ましい。そこで、直線筒153および屈曲筒154をセル部130の屈曲部113に挿通させるため、セル部130の屈曲部113の屈曲角度θおよび屈曲部113の前後におけるセル部130の外径に応じた直線筒153および屈曲筒154については、以下のような寸法設定が必要になる。
【0044】
図6は、直線筒153および屈曲筒154の内面がセル部130の外面に接触して屈曲部113に挿通される状態を示す。図6(a)および(b)において、屈曲筒154の短い管路長さをa1 、長い管路長さをb1 あるいはb2 、直線筒153および屈曲筒154の内径(最小径)をD、屈曲筒154およびセル部130の屈曲角度をθ、セル部130の外径(最大径)をdとする。
また、図6(c)において、屈曲筒154の短軸の長さをa、長軸の長さをb、直線筒153の軸長さをcとする。
まず、屈曲角度θに対する長い管路長さb1 ・b2 の最大値を求める。このとき、屈曲筒154の短い管路長さa1 は最小長さに設定する。
【0045】
図6(a)において、屈曲筒154の短い管の内面とセル部130の外面とが、軸線と平行な面で形成する角度をα、屈曲筒130の長い管の内面とセル部130の外面とが、軸線と平行な面で形成する角度をβとすると、
α=90°−〔arcsin[ d/( a2 +D2)1/2]+arctan(a1 / D) 〕となる。これを用いて長い管路長さb1 を求めると、
b1 =a1sinα/sinβ ( β=180 °−θ−α) となる。
【0046】
図6(b)において、
b2 =2 (D−d/sin θ/ 2 )tan θ/ 2 で求められる。
ここで、b1 >b2 のとき、b=b2 +D/ 2 tan θ/ 2
b1 ≦b2 のとき、b=b1 +D/ 2 tan θ/ 2 となる。
直線筒153の軸長さc=長い管路長さb2 となる。
さらに、屈曲筒154の短軸の長さaは、
a=a1 +D/ 2 tan θ/ 2 となる。
なお、a>bの場合は、製作できない。
【0047】
実施例2
図7は本発明に係る分子線源セルの他の実施の形態を示す。
図7において、分子線源セル300は、分子線材料m( 例えば、ガリウム)を充填する坩堝310、ヒータ302・303、温度較正用の熱電対(図示せず)、反射板304および真空容器350を備えている。坩堝310と、坩堝310に取り付けられたヒータ302・303、熱電対および反射板304をセル部330と称する。
【0048】
坩堝310は、PBN(熱分解窒化ホウ素)からなり、分子線材料が充填される材料充填部311と、開口部312と材料充填部311の間に形成された2つの屈曲部316および317と、開口部312と屈曲部317との間の分子線形状決定部分314と、2つの屈曲部316および317の間の中央部分318とからなり、材料充填部311に充填された分子線材料が開口部312からは見えない構成となっている。
材料充填部311から開口部312までは略円筒形状であり、材料充填部311と分子線形状決定部分314の屈曲角度は90°である。屈曲部316および317の屈曲角度は共に135°である。
【0049】
ヒータ302は開口部312から屈曲部316までを、ヒータ303は材料充填部311をそれぞれ独立してほぼ全体を覆うように配置された抵抗発熱体である(図中では板状に省略して表されている)。
【0050】
真空容器350は、坩堝310と同様に90°の屈曲角度で曲げられたステンレス製の円筒からなり、坩堝310の底部339を支持する固定具351が配設された末端フランジ352と、末端フランジ352に一端が接続される直線状の直線筒353と、直線筒353に順に接続される屈曲筒354および355とからなる。
この例では直線筒353は1つであるが、材料充填部111の長さによって複数に分割することができる。
【0051】
この分子線源セル300は、図8に示す真空チャンバ401に接続され、MBE装置400を構成する。
MBE装置400は、回転および加熱機構を備えた基板ホルダ402、シュラウド403および複数のポート404a・404b・・・・を備えた真空チャンバ401と、前記の屈曲筒355の一端のフランジ355bを介してポート404a・404bに接続される2基の前記分子線源セル300とからなる。基板ホルダ402の回転軸は鉛直方向に対し54°の角度で傾斜している。なお、図8では、複数のポートの中の404a・404bの2つのポートを示す。
【0052】
ポート404a・404bに接続された2基の分子線源セル300は、各開口部312が基板ホルダ402の中心を向き、各分子線源セル300から発射される分子線は基板ホルダ402の法線方向に対し36°の角度で入射するよう設定されている。分子線源セル300の真空容器350の外側には水冷ジャケット(図示せず)が設置され、真空チャンバ401に接続された外部の真空ポンプが駆動されると、真空容器350内は真空に保持される。
【0053】
このようなMBE装置400では、真空チャンバ401の設置場所等の諸条件を考慮して使用されることにより、他の空間的な制限を回避できる点で好ましい。
また、材料充填部311の軸線を鉛直方向に近づけることにより、分子線材料の充填容量が増加するだけでなく、開口部312と材料充填部311の軸線の角度を90°に近づけることにより、生成する膜質の改善も望める。
なお、直線筒353および屈曲筒354・355をセル部330の屈曲部113に挿通させるための各筒の寸法設定は、図6で説明した手法で同様に行うことができるので、説明は省略する。
図1に示した分子線源セル100では、屈曲角度は110°以上の範囲に限られるが、図7に示した、2ヶ所の屈曲部316および317を有する真空容器350の軸線が同一平面上に存在する分子線源セル300では、屈曲角度を理論上40°以上とすることができる。
【0054】
なお、前記の実施例1および実施例2では、各MBE装置200・400が2つのポートをそれぞれ有しているが、ポートの数はこれに限定されない。また、各MBE装置200・400において、それぞれのポートに異なる形状の分子線源セルを取り付けることもこの発明の範囲に含まれる。
【0055】
【発明の効果】
この発明では、ヒータの取り付けおよび配線等を含む組み立てが終わったセル部に対して、その開口部から真空容器の各筒を順次挿通させ、それによって真空容器を真空チャンバに対して密閉可能に固定することができるので、真空容器自体がセル部の固定あるいはヒータの配線の支障になることがない。さらに、屈曲筒を真空チャンバに残した状態で分子線源セルを真空チャンバから取り外すこともできる。
よって、組み立ておよび分解等を含むメンテナンス作業が容易になり、作業効率および装置の稼動率が向上する。
また、溶融分子線材料を大量に充填できる大容量の坩堝を使用することにより、材料充填の間隔を長くすることができ、さらに真空容器を小型化することにより、装置の大型化が防止できる。
この発明により、組み立ておよび分解が容易な大容量の分子線源セルを備えた生産性の高い分子線エピタキシャル装置が提供される。
【図面の簡単な説明】
【図1】本発明の実施例1の分子線エピタキシャル装置を構成する分子線源セルの一つの実施形態を示す縦断面模式図。
【図2】図1の分子線源セルを備えた分子線エピタキシャル装置の縦断面模式図。
【図3】図1の分子線源セルの組み立ておよび取り付けを説明する模式図。
【図4】本発明の分子線エピタキシ装置における坩堝の屈曲角度と坩堝に充填される分子線材料の容量を測定した結果を示すグラフ。
【図5】図4の測定に使用された分子線源セルを説明する模式図。
【図6】直線筒および屈曲筒の寸法および形状を設定する手順を説明する模式図。
【図7】本発明の実施例2の分子線エピタキシ装置を構成する分子線源セルの一つの実施形態を示す縦断面模式図。
【図8】図7の分子線源セルを備えた分子線エピタキシ装置の縦断面模式図。
【図9】従来のコニカル形状の分子線源坩堝の模式図。
【図10】従来の円筒形分子線源坩堝の模式図。
【図11】従来の分子線エピタキシ装置を構成する分子線源セルの一つの実施形態を示す縦断面模式図。
【図12】図11の分子線源セルの組み立ておよび取り付けを説明する模式図。
【符号の説明】
100 分子線源セル
102、103 ヒータ
110 坩堝
112 開口部
113 屈曲部
150 真空容器
151 固定具(固定封止部材)
152 末端フランジ(固定封止部材)
153 直線筒
154 屈曲筒
200 分子線エピタキシ装置
300 分子線源セル
302、303 ヒータ
310 坩堝
312 開口部
317 屈曲部
350 真空容器
351 固定具(固定封止部材)
352 末端フランジ(固定封止部材)
353 直線筒
354、355 屈曲筒
400 分子線エピタキシ装置
m 分子線材料
Claims (6)
- 開口部、分子線発生材料が充填される材料充填部および開口部と材料充填部との間に形成された少なくとも1つの屈曲部を有する坩堝と、充填部に充填された分子線発生材料を加熱により蒸発させて坩堝開口部から分子線を発射させるヒータと、前記分子線が照射されるターゲットが配置される真空チャンバと、坩堝およびヒータを封止しかつ真空チャンバに固定させるための互いに分離可能に接続される複数の筒状部材からなる真空容器とを備え、真空容器が、材料充填部を覆う直線状の軸線を有する直線筒と、屈曲部を覆う折れ曲がった軸線を有する屈曲筒と、直線筒の一端開口部に分離可能に接続され、坩堝およびヒータを真空容器に対して固定・封止させる固定封止部材とを有し、直線筒および屈曲筒が坩堝の開口部から坩堝の屈曲部を通り抜け、固定封止部材が屈曲部を通り抜けた直線筒の一端開口部を封止できるよう構成されたことを特徴とする分子線エピタキシャル装置。
- 坩堝は、それぞれの軸線が同一平面に存在する複数の屈曲部を有し、真空容器が坩堝の前記屈曲部のそれぞれに対応する形状の各屈曲筒を有する請求項1に記載の分子線エピタキシャル装置。
- 真空チャンバが、坩堝およびヒータを封入した前記の真空容器を真空チャンバに接続させるためのポートを複数備えた請求項1または2に記載の分子線エピタキシャル装置。
- 真空容器が、複数の直線筒を有する請求項1から3のいずれか1つに記載の分子線エピタキシャル装置。
- 直線筒、屈曲筒および固定封止部材のそれぞれが、フランジ接続可能な接続部を有する請求項1から4のいずれか1つに記載の分子線エピタキシャル装置。
- 請求項1から5のいずれか1つに記載の分子線エピタキシャル装置を構成する真空容器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000153663A JP3664947B2 (ja) | 2000-05-24 | 2000-05-24 | 分子線エピタキシャル装置 |
KR10-2000-0061874A KR100434890B1 (ko) | 1999-10-21 | 2000-10-20 | 분자빔 소스 및 분자빔 에피택시 장치 |
TW089122183A TWI230209B (en) | 1999-10-21 | 2000-10-21 | Molecular beam source apparatus and molecular beam epitaxy apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000153663A JP3664947B2 (ja) | 2000-05-24 | 2000-05-24 | 分子線エピタキシャル装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001335395A JP2001335395A (ja) | 2001-12-04 |
JP3664947B2 true JP3664947B2 (ja) | 2005-06-29 |
Family
ID=18658874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000153663A Expired - Fee Related JP3664947B2 (ja) | 1999-10-21 | 2000-05-24 | 分子線エピタキシャル装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3664947B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4880647B2 (ja) * | 2008-07-01 | 2012-02-22 | 東京エレクトロン株式会社 | 有機elの成膜装置および蒸着装置 |
JP5520871B2 (ja) * | 2011-03-31 | 2014-06-11 | 株式会社日立ハイテクノロジーズ | 蒸着装置 |
JP2012214834A (ja) * | 2011-03-31 | 2012-11-08 | Hitachi High-Technologies Corp | 真空蒸着装置および有機el表示装置の製造方法 |
-
2000
- 2000-05-24 JP JP2000153663A patent/JP3664947B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001335395A (ja) | 2001-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1336156C (en) | Apparatus and method for growth of large single crystals in plate/slab form | |
KR100255429B1 (ko) | 박막 성장 장치 | |
EP0271351B1 (en) | Vacuum evaporating apparatus | |
EP1132506B1 (en) | Thermal processing apparatus | |
US10837121B2 (en) | Susceptor support | |
EP0581496A2 (en) | Molecular beam epitaxy (MBE) effusion source utilizing heaters to achieve temperature gradients | |
US4777022A (en) | Epitaxial heater apparatus and process | |
JP3664947B2 (ja) | 分子線エピタキシャル装置 | |
US8192547B2 (en) | Thermally isolated cryopanel for vacuum deposition systems | |
US5156815A (en) | Sublimating and cracking apparatus | |
JPH0357073B2 (ja) | ||
US6709520B1 (en) | Reactor and method for chemical vapor deposition | |
US20230374697A1 (en) | Energy-saving ingot growing device | |
US20200002844A1 (en) | Semiconductor synthesizing device and method | |
KR100400856B1 (ko) | 분자빔원 및 분자빔 에피택시 장치 | |
KR100434890B1 (ko) | 분자빔 소스 및 분자빔 에피택시 장치 | |
CN102605420A (zh) | 一种泡生法单晶炉的全角度视窗 | |
CN107488875B (zh) | 一种内置换热器的多晶铸锭炉 | |
CN113388884A (zh) | 一种双坩埚蒸发源 | |
CN114438594A (zh) | 一种碳化硅炉 | |
CN112430799A (zh) | 热蒸发坩埚和热蒸发装置 | |
US20240158948A1 (en) | Direct heating and temperature control system for crystal growth | |
JP2013115281A (ja) | 気相成長装置 | |
WO2024103009A1 (en) | Direct heating and temperature control system for crystal growth | |
JPH04356915A (ja) | ガスソースセル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050330 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080408 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090408 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |