JP3664603B2 - Mowing harvester - Google Patents

Mowing harvester Download PDF

Info

Publication number
JP3664603B2
JP3664603B2 JP08289099A JP8289099A JP3664603B2 JP 3664603 B2 JP3664603 B2 JP 3664603B2 JP 08289099 A JP08289099 A JP 08289099A JP 8289099 A JP8289099 A JP 8289099A JP 3664603 B2 JP3664603 B2 JP 3664603B2
Authority
JP
Japan
Prior art keywords
distance
detection
machine body
traveling
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08289099A
Other languages
Japanese (ja)
Other versions
JP2000270612A (en
Inventor
高原  一浩
宙 相田
博 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP08289099A priority Critical patent/JP3664603B2/en
Publication of JP2000270612A publication Critical patent/JP2000270612A/en
Application granted granted Critical
Publication of JP3664603B2 publication Critical patent/JP3664603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、走行機体の前部側に昇降自在に設けられた刈取部と、未刈茎稈群の外周に沿う1つの作業行程の終端位置に達するに伴って、前記未刈茎稈群に接近する側に向けて前進旋回走行させ、次に、前記1つの作業行程と交差する次の作業行程の手前個所に後進旋回走行させる作業行程切換用の旋回走行を行わせるように、走行装置の作動を制御する旋回制御手段が設けられた刈取収穫機に関する。
【0002】
【従来の技術】
上記刈取収穫機の一例であるコンバインでは、例えば特開昭62‐163117号公報に示されるように、地磁気方位センサ等の方位検出手段により、走行機体の方位を検出するとともに、走行駆動軸の回転パルスを積算する走行距離センサにより走行機体の走行距離を検出する構成として、上記方位検出手段の検出情報、及び、前記走行距離センサの距離検出情報等に基づいて、未刈茎稈群に接近する側に向けて前進旋回走行させ、次に、次の作業行程の手前個所に後進旋回走行させるように、予め設定された経路に沿って走行すべく旋回制御する構成のものがあった。
【0003】
【発明が解決しようとする課題】
上記従来技術では、地磁気方位センサや走行距離センサの検出情報に基づいて、設定経路に沿って走行するように旋回制御する構成であるから、未刈茎稈群に対する機体位置を的確に検出することができ難く、その結果、未刈茎稈群に対する前記作業行程切換え用の旋回走行を的確に行うことができないという不具合があった。因みに、上記従来技術において未刈茎稈群に対する機体位置が的確に検出でき難い原因としては、例えば走行装置と地面との間でスリップが発生した場合に、走行距離センサの検出値が実際の走行距離に対して誤差が生じることが挙げられる。
又、上記従来技術では、隣接する次の行程へ移動するときの旋回角度は、例えば矩形形状の未刈茎稈群では90度のように、未刈茎稈群の形状に基づいて予め設定しているので、実際に旋回走行させる箇所における未刈茎稈群の外周形状が、例えば上記90度に対して鈍角や鋭角になるように、少し異形形状であるような場合には、設定角度で旋回走行させると、走行機体が次の作業行程の手前箇所に適切に位置していないおそれもあった。
【0004】
そこで、上記したような不利を回避するために、前記未刈茎稈群の外周までの離間距離を検出する検出手段(例えば、超音波式センサ等)を走行機体の外周部に備えさせて、その検出手段の検出情報に基づいて未刈茎稈群の外周に対する走行機体の位置を検出するように構成することが考えられる。このとき、前記検出手段としては、未刈茎稈群の上端部よりも低い位置に設置するとともに前記未刈茎稈群に対する検出方向を水平方向に設定して、未刈茎稈群の外周までの水平方向での離間距離を検出するように構成することが考えられる。
しかし、この種の刈取作業機においては、収穫作業に伴って湿田を走行する場合も多く、このとき、泥土が周囲に飛散することもある。そこで、上記したように低い位置に検出手段が設けられると、泥土が飛散して検出手段に付着して適切な検出作動が継続できなくなるおそれがある。
【0005】
本発明はかかる点に着目してなされたものであり、その目的は、距離検出を長期にわたり良好に行える状態で、未刈茎稈群の外周に対する機体位置を距離情報によって的確に検出して、上記したような作業行程切換え用の旋回走行を適切に行うことが可能となる刈取収穫機を提供する点にある。
【0006】
【課題を解決するための手段】
請求項1に記載の特徴構成によれば、前記未刈茎稈群の外周までの距離を検出して、その検出距離の情報に基づいて前記未刈茎稈の外周に対する走行機体の位置を検出する位置検出手段が設けられ、前記旋回制御手段は、前記位置検出手段の検出情報に基づいて前記旋回制御を実行するように構成され、前記位置検出手段は、前記未刈茎稈群の外周に対する距離検出方向が斜め下方に向う設定角度になる状態で且つ距離検出方向を機体横側方に向ける状態で、走行機体横側方で且つ前記刈取部が位置する走行機体前部側に位置するように走行機体固定部から延設されたステーに取り付け支持されて、検出対象物までの離間距離を検出する非接触式の距離検出手段と、前記距離検出手段により検出される検出距離情報に基づいて、前記未刈茎稈群の外周に対する走行機体の位置を判別する位置判別手段とを備えて構成され、前記位置判別手段は、前記未刈茎稈群の外周に対する走行機体の位置として、前記未刈茎稈群に接近する側に向けて前進旋回させる前進旋回走行の停止位置を判別するように構成されている。
【0007】
つまり、非接触式の距離検出手段により未刈茎稈群の外周までの距離を検出して、その検出距離の情報に基づいて未刈茎稈の外周に対する走行機体の位置を判別して、その情報に基づいて、未刈茎稈群に接近する側に向けて前進走行させ、次に、1つの作業行程と交差する次の作業行程の手前個所に後進走行させるように走行装置の作動を制御するのである。
【0008】
その結果、未刈茎稈群の外周までの検出距離に基づいて未刈茎稈群の外周に対する走行機体の位置を直接検出しながら、交差状態で隣接する作業行程間で旋回走行させるので、例えば走行装置と地面との間でスリップが生じる等しても、未刈茎稈群の外周に対する機体位置を的確に検出しながら前記作業行程切換え用の旋回走行を的確に行うことができ、未刈茎稈群の外周形状が少し異形形状であるような場合であっても、適切な旋回走行を行わせるようにすることができる。
【0009】
そして、前記距離検出手段は、未刈茎稈群の外周に対する距離検出方向が斜め下方に向う設定角度になる状態で走行機体に備えられて、検出対象物までの離間距離を非接触状態で検出する。つまり、距離検出手段は、未刈茎稈群の外周に対する距離検出方向が斜め下方に向うように、例えば、未刈茎稈群よりも上方側の高い位置から斜め下方に向うように距離を検出するように設けることもできる。
従って、未刈茎稈群の外周に対する機体位置を距離情報によって的確に検出して、上記したような作業行程切換え用の旋回走行を適切に行うことが可能なものでありながら、距離検出手段を、その距離検出方向が斜め下方に向う状態で、例えば上方側の高い位置から距離を検出するように設けることによって、泥土等が飛散して検出作動を阻害される虞が少なく、距離検出作動を長期にわたり良好に行えるようにすることが可能となる。
又、上記した前進走行行程において、1つの作業行程の刈取作業が終了して終端位置に達するに伴って未刈茎稈群に接近する側に向けて旋回走行させる場合、例えば、走行途中で走行装置のスリップ等が発生しても、距離検出情報に基づいて、旋回走行を停止すべき目標旋回位置に達したか否かを的確に検出することができ、作業行程切換用の旋回走行を適正に行うことができる。
【0010】
請求項2に記載の特徴構成によれば、請求項1において、前記距離検出手段の距離検出方向を変更調節自在な角度調節手段が設けられている。
【0011】
前記距離検出方向が走行機体に対して固定されるようにすると、常に、走行機体から一定距離離間した個所を検出対象とするだけであり、作業状況に応じて走行機体からの離間距離が異なる個所を検出対象個所として設定することができないものとなるが、上記したように、角度調節手段が設けられることによって、そのときの作業状況等に応じて前記相対角度を適切な状態に変更調節することができ、未刈茎稈群の外周に対する機体位置をより的確に検出することが可能となる。
【0012】
請求項3に記載の特徴構成によれば、請求項2において、前記走行機体の水平基準姿勢に対する傾斜角度を検出する傾斜角検出手段が設けられ、前記傾斜角検出手段の検出情報に基づいて、前記距離検出手段の前記距離検出方向と鉛直方向との間の相対角度が設定値に維持されるように、前記角度調節手段の作動を制御する角度補正手段が設けられている。
【0013】
つまり、角度調節手段は、傾斜角検出手段の検出情報に基づいて、距離検出手段の検出方向が常に鉛直方向との間の相対角度が設定値に維持されるように変更調節されるので、例えば、圃場の凹凸等に起因して走行機体が傾斜姿勢になっても、前記相対角度が設定値になるように補正することによって距離検出手段の距離検出方向が一定の方向に向くことになり、未刈茎稈群の外周に対する機体位置をより的確に検出することが可能となる。
【0014】
請求項4に記載の特徴構成によれば、請求項1〜3のいずれかにおいて、前記距離検出手段は、前記検出方向に向けて超音波を発信してから検出対象物にて反射した超音波が受信されるまでの時間に基づいて、前記検出対象物までの離間距離を検出する超音波センサにて構成されている。
【0015】
前記距離検出手段として、例えば光学式のセンサを用いる場合には、刈取作業走行に伴って発生する細かな藁屑や粉塵等の塵埃が検出光の投受光部に付着して適切に距離検出できなくなるおそれがある等の不利があるのに比べて、上記構成のよれば、塵埃等の影響を受けることなく適切に距離検出できるようにしながら、超音波の発信部と受信部とを備えた極力簡素な構成にて距離検出手段を構成できることになる。
【0018】
【発明の実施の形態】
以下、本発明に係る刈取収穫機の一例としてのコンバインについて図面に基づいて説明する。
図1に示すように、コンバインには、左右一対のクローラ走行装置1R,1L、脱穀装置2、操縦部4等を備えた走行機体9の前部側に、走行に伴って圃場の植立穀稈Tを刈り取る刈取部3が、刈取昇降用の油圧シリンダ23によって昇降自在な状態で設けられている。
【0019】
刈取部3は、倒伏している穀稈を引き起こす引き起こし装置5、引き起こされた植立穀稈の株元を切断する刈刃6、刈取穀稈を横倒れ姿勢に変更しながら機体後部側の脱穀用のフィードチェーン8に向けて搬送する搬送装置7等を備えている。上記引き起こし装置5の下部後方側個所に、刈取部3の対地高さを検出する超音波式の刈高センサS5が設けられ、搬送装置7の搬送始端側箇所に、刈取穀稈の株元が接当するとON作動し、刈取穀稈の株元が接当しない状態ではOFF作動する株元センサS0が設けられている。つまり、この株元センサS0の検出情報に基づいて刈取作業状態であるか否かが判別される。
【0020】
次に、図2に基づいてコンバインの動力伝達系、及び、制御構成について説明する。
エンジンEの動力が油圧式の無段変速装置10に伝動され、この変速装置10の変速後の出力が、ミッションケース11を介してクローラ走行装置1R,1Lに伝達されている。ミッションケース11には、上記変速装置10の変速後の出力を前進又は後進状態に切り換えるための前後進切換機構(図示しない)と、上記変速後の出力を左右クローラ走行装置1L,1Rに各別に断続して伝えると共に各クローラ走行装置1L,1Rを各別に制動作動させるための左右一対の操向クラッチブレーキ17L,17Rとが設けられている。そして、左側の操向クラッチブレーキ17Lを切り操作又は制動操作すると機体は左旋回し、右側の操向クラッチブレーキ17Rを切り操作又は制動操作すると機体は右旋回するように構成されている。
【0021】
上記無段変速装置10は、変速操作用の電動モータ13によって変速操作されるとともに、操縦部4に設けた変速レバー12に連動連結され、且つ、この変速レバー12による人為的な変速操作を電動モータ13による変速操作に優先させるようにするために、変速レバー12と変速装置10との連係経路中に、電動モータ13が摩擦式の伝動機構14を介して連係されている。
又、前記刈取昇降シリンダ23に対する圧油の供給を制御して刈取部3を昇降操作するための電磁弁25と、前記左右の各操向クラッチブレーキ17L,17Rに対する圧油の供給を制御して各クラッチを入り切り及び制動操作するための操向用の電磁弁19とが設けられている。
【0022】
又、エンジンEと脱穀装置2及び刈取部3とがベルトテンション式の脱穀クラッチ33及び刈取クラッチ34を介して夫々連動連結されている。そして、脱穀クラッチ33及び刈取クラッチ34を夫々人為的に入り切り操作する脱穀クラッチレバー32及び刈取クラッチレバー31が操縦部4に設けられ、それらの入り操作に伴ってオン作動する脱穀スイッチSW2及び刈取スイッチSW1が設けられている。エンジンEの回転数を検出する回転数検出センサS1と、ミッションケース11の入力軸に伝動される変速装置10の出力回転数に比例するパルスを計数して、走行距離や車速を検出するためのロータリーエンコーダS2とが設けられている。尚、エンジンEの出力は、エンジン始動後、図示しないアクセルレバー等によって上昇操作されて、作業用の回転数にセットされる。
前記エンジン回転数や車速等の検出情報を用いて、刈取作業中においてエンジンEの無負荷回転数との差によってエンジン負荷を検出するとともに、機体操縦部4に備えられた上限車速設定器22によって設定される上限車速を越えない範囲で、エンジン負荷が設定負荷に維持されるように車速(具体的には、変速用電動モータ13の作動状態)を自動調節する車速制御を実行する構成となっている。
【0023】
又、前記刈取部3の引き起こし装置5の下部側には、走行に伴って刈取部3に導入される植立穀稈に接当して機体後方側に揺動する検出バーを備えて、その検出バーの揺動状態に基づいて植立穀稈の機体横方向での位置を検出する接触式の方向センサS4が設けられている。尚、この方向センサS4の検出情報は、前記未刈茎稈群Mの外周に沿って刈取走行するときに、走行機体9を操向制御する際の制御情報として使用される。
【0024】
図1、図2、図4に示すように、走行機体9の前部側の既刈り側(機体右側)箇所に、機体前方に位置する植立穀稈Tまでの距離Lを検出する一対の超音波センサS3a1,S3a2が検出方向を機体前方に向ける状態で左右方向に並んで設けられている。又、走行機体9の未刈り側(機体左側)の横側部には、機体横側方に位置する植立穀稈Tまでの距離Lを検出する一対の超音波センサS3b,S3cが、検出方向を機体横側方に向ける状態で機体前後方向に設定間隔を隔てて設けられている。
前記各超音波センサS3a1,S3a2,S3b,S3cは、夫々、機体外方側に向けて超音波を発信する発信器と、検出対象物にて反射された超音波を受信する受信器とを備えて、超音波を発信してから受信するまでの時間に基づいて、検出対象物(植立穀稈Tや地面)までの距離を検出するように構成されている。尚、機体前部に位置する超音波センサS3a1,S3a2及び機体横側方の前部側に位置する超音波センサS3bは、植立穀稈Tよりも上方に位置して、検出方向が機体外方側で且つ斜め下方に向かう状態で超音波を発信して距離を計測するように構成され、機体横側方の後部側に位置する超音波センサS3cは機体横側部の低い位置に設けられている。
具体的には、機体前部に位置する超音波センサS3a1,S3a2は機体の操縦筒45に備えられ、機体横側方の前部側に位置する超音波センサS3bは機体固定部から延設されたステー46に取り付け支持されている。
【0025】
前記機体横側方の前部側に位置する超音波センサS3bは、図9に示すように、機体前後方向に沿う水平軸芯X周りで上下揺動自在に前記ステー46に支持されるとともに、角度調節機構47(角度調節手段)によって超音波の発信方向(距離検出方向)を上下方向に沿って変更調節自在に構成されている。尚、詳述はしないが角度調節機構47は、電動モータとギア式操作機構等からなる。このように超音波センサS3bは、前記検出方向と前記走行機体との間の上下方向に沿う相対角度を変更調節自在に構成されている。そして、前記超音波センサS3bの実際の上下揺動調節位置(前記距離検出方向と走行機体との間の上下方向に沿う相対角度情報に相当する)は、角度検出センサS6にて検出される構成となっている。
又、走行機体9の水平基準面に対する左右傾斜角度を検出する傾斜角センサS7が設けられ、走行機体9の左右傾斜に拘わらず前記超音波センサS3bによる超音波の発信方向(距離検出方向)が常に一定の方向になるように前記角度調節機構47が制御されるようになっている。
【0026】
図2に示すように、マイクロコンピュータ利用の制御装置16が設けられ、この制御装置16に、株元センサS0、回転数検出センサS1、ロータリーエンコーダS2、方向センサS4、刈高センサS5、各超音波センサS3a1,S3a2,S3b,S3c、角度検出センサS6、傾斜角センサS7、脱穀スイッチSW2及び刈取スイッチSW1、上限車速設定器22の各検出情報が入力されている。一方、制御装置16からは、前記変速操作用の電動モータ13、角度調節機構47、刈取昇降用の電磁弁25及び操向用の電磁弁19に対する各駆動信号が出力されている。
【0027】
コンバインは、図3に示すように、矩形状の未刈茎稈群Mに対して、いわゆる回り刈り形式で、未刈茎稈群Mの外周の各辺M1〜M4に沿う各作業行程を順次刈取走行し、各作業行程の終端位置に達すると、隣接する次の作業行程に移動するように走行制御される。つまり、前記制御装置16を利用して、未刈茎稈群Mの外周に沿う1つの作業行程の終端位置に達するに伴って、未刈茎稈群Mに接近する側に向けて前進旋回走行させ、次に、前記1つの作業行程と交差する次の作業行程の手前箇所に後進旋回走行させる作業行程切換用の旋回走行を行わせるように、前記クローラ走行装置1の作動を制御する旋回制御手段100が構成されている。
【0028】
前記制御装置16は、前記超音波センサS3bにより検出される検出距離情報、並びに、その前記超音波センサS3bの検出方向と走行機体との間の上下方向に沿う相対角度情報に基づいて、未刈茎稈群の外周に対する走行機体の位置を判別するように構成され、その判別結果に基づいて、旋回走行すべくクローラ走行装置1R,1Lの作動を制御する構成となっている。従って、制御装置16を利用して位置判別手段101が構成されている。
【0029】
前記制御装置16は、走行機体が前記水平基準姿勢にあり且つ前記相対角度が設定値にあるときを基準状態として設定し、且つ、傾斜角センサS7の検出情報に基づいて、前記超音波センサS3bによる超音波の発信方向(距離検出方向)が常に一定の方向になるように前記角度調節機構47の作動を制御するようになっている。従って、制御装置16を利用して角度補正手段102が構成されている。
【0030】
以下、この制御装置16による走行制御について、図6〜図8のフローチャートに従って具体的に説明する。
図6に示すように、未刈茎稈群Mの外周に沿う1つの作業行程の始端位置から走行を開始すると、前記方向センサS4の検出情報に基づいて走行機体9を作業行程に沿って刈取走行させる操向制御と、前記刈高センサS5の検出情報に基づいて刈取部3の対地高さを適正高さに維持する刈高制御と、上限車速を越えない範囲でエンジン負荷が目標負荷に維持されるように車速を制御する車速制御とを、株元センサS0がオフして作業行程の終端位置に達したことが判別されるまで実行する。作業行程の終端位置に達したことが判別されると、未刈茎稈群Mに対する刈取作業が終了したか否かを判断して、作業終了でなければ、隣接する次の作業行程に移動させるための旋回制御を実行する。一方、作業終了であれば、走行を停止して制御を終える。
【0031】
旋回制御では、図7、図8に示すように制御が実行される。つまり、刈取部3を上昇させるとともに、図4(イ)に示すように、先ず直進状態で旋回走行開始位置まで前進走行させる。ここで、走行機体9が上記旋回走行開始位置に達したことは、図5に示すように、機体左前側の超音波センサS3bの距離検出信号bが先に距離小から距離大に変化した後、さらに機体が前進走行して、機体左後側の超音波センサS3cの距離検出信号cが距離小から距離大に変化したことによって判別する。
【0032】
旋回走行開始位置に達すると、図4(ロ)に示すように、左側のクローラ走行装置1Lをブレーキ作動させて、機体前部側が未刈茎稈群Mに接近するように走行機体9を左旋回走行させるとともに、その旋回走行中において機体左前部側の超音波センサS3bの検出距離情報に基づいて、走行機体9が未刈茎稈群Mに対して位置する角度(例えば次の辺に対してなす角度θ)を判断して(この動作が位置判別処理に対応する)、その角度が設定角度(例えば45度)になるに伴って前進の左旋回走行を停止させ、左側のクローラ走行装置1Lのブレーキ作動を解除する。
上記左旋回走行を実行するとき、走行機体の左右傾斜に拘わらず前記超音波センサS3bの超音波発信方向(距離検出方向)が常に適正な方向に向くように、角度調節機構47の作動を制御する角度補正制御を実行する。つまり、走行機体9が水平基準姿勢にあるときに前記角度θが前記設定角度(例えば45度)に対応する旋回位置にて、超音波センサS3bが未刈茎稈群Mの外周の存在を検出する検出方向となる姿勢(図9(イ)、(ロ)参照)が角度調節機構47における基準姿勢として予め設定されている。そして、機体が左右傾斜してもその検出方向が維持されるように、傾斜角センサS7の検出情報に基づいて角度調節機構47の作動を制御するのである(図9(ハ)参照)。
【0033】
そして、超音波センサS3bが前記所定検出方向での距離検出を実行しながら旋回走行が行われ、超音波センサS3bによる検出距離が設定値より短くなり、未刈茎稈群Mの外周の存在を検出すると(図9(イ)参照)、そこで上記左旋回走行を停止することになる。
【0034】
次に、図4(ハ)に示すように、上記旋回走行の停止位置から、直進状態で旋回走行開始位置まで後進走行させる。ここで、走行機体9が旋回走行開始位置に達したことは、図5に示すように、機体左前側の超音波センサS3bの距離検出信号bが極小値を過ぎて増加に転じたことによって判別される。
【0035】
このとき、前記角度調節機構47における基準姿勢として、図9(ニ)に示すように、上記左旋回走行を実行するとき(角度α1)よりも下向き(角度α2)に変更させて上記補正制御を実行することで、走行機体が未刈茎稈群Mの外周(角部)の近くを通過する場合であっても未刈茎稈群Mの外周までの距離を有効に検出することができる。
【0036】
旋回走行開始位置に達すると、図4(ハ)〜(ニ)に示すように、右側の操向クラッチブレーキ17Rを切り操作して、走行機体9を緩旋回状態で後進左旋回走行させる。そして、走行機体9が隣接する次の作業行程の手前箇所に位置するに伴って、後進左旋回走行を停止させる。ここで、走行機体9が次の作業行程の手前箇所に位置したことは、機体前部側の超音波センサS3aの距離検出信号aが距離大の状態から、機体前方側の植立穀稈Tを検出する状態に変化したことによって判断される。この機体前部側の超音波センサS3a1,S3a2も機体左前側の超音波センサS3bと同様に、下向きで走行機体に対する相対角度が一定の検出方向に向けて超音波を発信するように構成され、検出対象物までの検出距離により茎稈の存否を判断するようになっている。
次に、次の作業行程の手前箇所から、機体前部側における左右一対の超音波センサS3a1,S3a2のうち左側に位置する超音波センサS3a1の距離検出信号aが機体前方側の植立穀稈Tを検出する状態を維持し、他方側の超音波センサS3a2の距離検出信号aが距離大を検出する状態を維持するように操向用の電磁弁19を制御しながら直進前進走行させて、刈取部3を下降させた後に次の作業行程での刈取作業を開始させる。刈取作業が開始されて株元センサS0がオンするに伴って、前記操向制御、刈高制御及び車速制御を実行する状態に移行する。
【0037】
この実施形態では、前記位置判別手段101にて判別される未刈茎稈群Mの外周に対する走行機体9の位置として、具体的には、前進左旋回走行の停止位置(図4(ロ))を用いている。従って、機体左前側の超音波センサS3bにより距離検出手段が構成される。そして、この距離検出手段と前記位置判別手段101により、未刈茎稈群の外周までの距離を検出して、その検出距離の情報に基づいて前記未刈茎稈の外周に対する走行機体の位置を検出する位置検出手段が構成されることになる。
【0038】
〔別実施形態〕
(1)上記実施形態では、走行機体の傾斜角センサS7が設けられ、その検出情報に基づいて、距離検出手段(超音波センサS3b)の前記検出方向が基準状態における検出方向になるように前記角度調節機構47の作動を制御する構成としたが、このような構成に限らず、前記角度調節機構47を手動で調節する構成としてもよく、あるいは、このような構成に代えて、走行機体の傾斜姿勢そのものを基準姿勢になるように復帰させる姿勢変更手段を備える構成としてもよい。
又、上記実施形態では、距離検出手段(超音波センサS3b)の前記検出方向が走行機体に対して位置固定状態で距離検出作動を行うようにしたが、例えば、機体走行に伴って例えば上下方向や左右方向に所定範囲で走査させながら距離を計測するようにしてもよい。
【0039】
(2)上記実施形態では、機体左前側の超音波センサS3bに対してのみ、距離検出方向と走行機体との間の上下方向に沿う相対角度を変更調節自在な角度調節手段が設けられる構成としたが、その他のセンサ(例えば、機体前部側のセンサS3a等)に対しても、機体の前後傾斜に対する角度調節手段を設ける構成としてもよく、又、このような角度調節手段を設けることなく、検出方向と走行機体との相対角度が常に一定になるように構成するものでもよい。
【0040】
(3)上記実施形態では、機体左後側の超音波センサS3cは、一つの作業行程が終了してから旋回走行開始位置の検出するために茎稈群の存否を確実に検出するために低い位置に設けられる構成としたが、このような構成に代えて、このセンサについても、 例えば、図10に示すように、機体左前側の超音波センサS3bと同様に高い位置に設置して角度変更可能に構成する等、種々の形態で実施してもよい。
【0041】
(4)上記実施形態では、機体左前側の超音波センサS3bの検出情報だけで、前進左旋回走行の停止位置(図4(ロ))を検出する構成としたが、このような構成に代えて、図11に示すように、前進左旋回走行の停止位置を判別するときに、機体左前側の超音波センサS3bの検出情報Lbと、機体左後側の超音波センサS3cの検出情報Lcとを用いて、それらの間の離間距離が予め判別しているので、それらの検出情報に基づいて、未刈茎稈に対する走行機体の正確な位置を判別するようにしてもよい。
【0042】
(5)上記実施形態では、前記旋回制御手段100が、前記位置判別手段101の判別情報に基づいて走行装置の作動を制御するときに、走行機体9の位置として、前進左旋回走行の停止位置(図4(ロ))を用いたが、これ以外の機体位置、例えば、上記各旋回走行の開始位置と停止位置との中間において検出される機体位置情報に基づいて、旋回制御の内容を修正する等してもよい。又は、前記各開始位置のうちのいずれか1つ、あるいは2つ以上の位置のみを検出する構成としてもよい。
【0043】
(6)上記実施形態では、未刈茎稈群Mの外周までの距離を検出する距離検出手段として、走行機体9に、超音波式の距離検出手段を設けたが、これ以外に、例えば、検出光を植立茎稈Tに対して投受光する光式の距離検出手段等を用いてもよい。
【0044】
(7)上記実施形態では、各走行装置1L,1Rを各別に制動作動させるための左右一対の操向クラッチブレーキを設ける構成としたが、このような構成に限らず、左右一対の油圧式無段変速装置を備えて左右各別に無段変速可能な構成としたり、遊星ギア式の変速機構とする等、各種の駆動形態で実施してもよい。
【0045】
(8)上記実施形態では、刈取収穫機をコンバインにて構成したが、コンバイン以外に、例えば、イグサ用の刈取収穫機等でもよい。
【図面の簡単な説明】
【図1】コンバインの側面図
【図2】コンバインの制御構成のブロック図
【図3】コンバインによる刈取走行の経路を示す平面図
【図4】未刈茎稈群の作業行程端部における旋回走行を示す平面図
【図5】距離検出信号の時間変化を示すタイムチャート
【図6】制御作動を示すフローチャート
【図7】制御作動を示すフローチャート
【図8】制御作動を示すフローチャート
【図9】距離検出状態を示す背面図
【図10】別実施形態のコンバインの側面図
【図11】別実施形態の距離検出作動を示す平面図
【符号の説明】
1L,1R 走行装置
9 走行機体
47 角度調節手段
100 旋回制御手段
101 位置判別手段
102 角度補正手段
S3b 距離検出手段
[0001]
BACKGROUND OF THE INVENTION
According to the present invention, as the cutting portion provided so as to be movable up and down on the front side of the traveling machine body and the end position of one work process along the outer periphery of the uncut stem pod group, The traveling apparatus is configured to perform a turning travel for switching a work stroke that causes the vehicle to make a forward turning turn toward the approaching side, and then to make a reverse turning turn at a location before the next work stroke that intersects the one work stroke. The present invention relates to a harvesting and harvesting machine provided with a turning control means for controlling the operation.
[0002]
[Prior art]
In a combine that is an example of the harvesting and harvesting machine, as shown in, for example, Japanese Patent Application Laid-Open No. Sho 62-163117, the orientation detection means such as a geomagnetic orientation sensor detects the orientation of the traveling machine body and rotates the traveling drive shaft. As a configuration for detecting the travel distance of the traveling machine body by a travel distance sensor that integrates pulses, it approaches the uncut stem group based on the detection information of the azimuth detecting means, the distance detection information of the travel distance sensor, and the like. There is a configuration in which turning control is performed so that the vehicle travels along a predetermined route so that the vehicle travels forward and turns toward the side, and then travels backward to a location before the next work process.
[0003]
[Problems to be solved by the invention]
In the above-described conventional technology, since the turning control is performed so that the vehicle travels along the set route based on the detection information of the geomagnetic azimuth sensor and the travel distance sensor, the airframe position with respect to the uncut stem group is accurately detected. As a result, there has been a problem that the turning travel for switching the work stroke with respect to the uncut stem group cannot be performed accurately. Incidentally, the reason why it is difficult to accurately detect the position of the airframe with respect to the uncut stem group in the above-mentioned prior art is that, for example, when a slip occurs between the traveling device and the ground, the detected value of the traveling distance sensor is the actual traveling value. An error occurs with respect to the distance.
In the above prior art, the turning angle when moving to the next adjacent stroke is set in advance based on the shape of the uncut stem group, for example, 90 degrees in a rectangular uncut stem group. Therefore, in the case where the outer shape of the uncut stem culm group at the location where the vehicle actually turns is an irregular shape such as an obtuse angle or an acute angle with respect to the above 90 degrees, for example, When the vehicle is swiveled, there is a possibility that the traveling machine body is not properly positioned at a position before the next work process.
[0004]
Therefore, in order to avoid the disadvantages as described above, detection means (for example, an ultrasonic sensor or the like) that detects a separation distance to the outer periphery of the uncut stem pod group is provided on the outer peripheral portion of the traveling aircraft body, It may be configured to detect the position of the traveling machine body with respect to the outer circumference of the uncut stem group based on the detection information of the detection means. At this time, as the detection means, it is installed at a position lower than the upper end portion of the uncut stem pod group, and the detection direction for the uncut stem pod group is set in the horizontal direction to the outer periphery of the uncut stem pod group It may be configured to detect the separation distance in the horizontal direction.
However, this type of cutting machine often travels in a wet paddy during the harvesting operation, and mud is sometimes scattered around. Therefore, if the detection means is provided at a low position as described above, mud soil may scatter and adhere to the detection means, and an appropriate detection operation may not be continued.
[0005]
The present invention was made paying attention to such a point, and its purpose is to accurately detect the position of the aircraft relative to the outer circumference of the uncut stem pod group with distance information in a state where distance detection can be performed well over a long period of time, The point is to provide a harvesting and harvesting machine capable of appropriately performing the turning for switching the operation stroke as described above.
[0006]
[Means for Solving the Problems]
According to the characteristic configuration of claim 1, the distance to the outer periphery of the uncut stem pod group is detected, and the position of the traveling machine body with respect to the outer periphery of the uncut stem pod is detected based on the information of the detection distance. Position detecting means is provided, and the turning control means is configured to execute the turning control based on detection information of the position detecting means, and the position detecting means is adapted to the outer circumference of the uncut stem group. In a state in which the distance detection direction is set to be inclined downward and in a state in which the distance detection direction is directed to the side of the aircraft, the vehicle is located on the side of the vehicle body and on the front side of the vehicle body where the cutting unit is located. And a non-contact type distance detecting means for detecting a separation distance to the detection object, and a detection distance information detected by the distance detecting means. The uncut stem Position discriminating means for discriminating the position of the traveling machine body relative to the outer periphery of the vehicle, and the position determining means approaches the uncut pod group as the position of the traveling machine body relative to the outer periphery of the uncut shoot group. It is configured to determine the stop position of the forward turning traveling that makes the forward turning toward the side.
[0007]
That is, the distance to the outer periphery of the uncut stem pod group is detected by the non-contact type distance detecting means, and the position of the traveling machine body with respect to the outer periphery of the uncut stem pod is determined based on the information of the detected distance, Based on the information, control the operation of the travel device so that it travels forward toward the side closer to the uncut stem group and then travels backward to the position before the next work process that intersects with one work process. To do.
[0008]
As a result, while directly detecting the position of the traveling machine body with respect to the outer periphery of the uncut stem pod group based on the detection distance to the outer periphery of the uncut stem pod group, turning between adjacent work strokes, for example, Even if a slip occurs between the traveling device and the ground, the turning movement for switching the work stroke can be accurately performed while accurately detecting the position of the machine body relative to the outer periphery of the uncut stem culm group. Even when the outer peripheral shape of the stalk group is a little deformed, it is possible to perform an appropriate turning travel.
[0009]
The distance detection means is provided in the traveling machine body in a state in which the distance detection direction with respect to the outer periphery of the uncut stem group is an obliquely downward set angle, and detects the separation distance to the detection object in a non-contact state. To do. In other words, the distance detection means detects the distance so that the distance detection direction with respect to the outer periphery of the uncut stem pod group is obliquely downward, for example, from a higher position on the upper side than the uncut stem pod group. It can also be provided.
Therefore, the distance detection means can detect the position of the machine body relative to the outer periphery of the uncut stem group accurately by the distance information and can appropriately perform the turning travel for switching the work stroke as described above. In such a state that the distance detection direction is obliquely downward, for example, by providing the distance detection from a high position on the upper side, there is little possibility that mud or the like is scattered and the detection operation is hindered, and the distance detection operation is performed. It becomes possible to perform well over a long period of time.
Further, in the above-described forward travel stroke, when the cutting operation of one work stroke is completed and the end position is reached, turning is performed toward the side closer to the uncut stem group, for example, traveling in the middle of the travel Even if a device slip or the like occurs, it is possible to accurately detect whether or not the target turning position at which turning should be stopped is reached based on the distance detection information. Can be done.
[0010]
According to a characteristic configuration of a second aspect of the present invention, in the first aspect, there is provided an angle adjusting means capable of changing and adjusting a distance detection direction of the distance detecting means.
[0011]
When the distance detection direction is fixed with respect to the traveling machine body, it is always only a part that is separated by a certain distance from the traveling machine body, and the distance from the traveling machine body differs depending on the work situation. Cannot be set as a detection target location, but as described above, by providing an angle adjusting means, the relative angle can be changed and adjusted to an appropriate state according to the working situation at that time. This makes it possible to more accurately detect the position of the aircraft relative to the outer periphery of the uncut stem group.
[0012]
According to the characteristic configuration of the third aspect, in the second aspect, an inclination angle detection unit that detects an inclination angle with respect to a horizontal reference posture of the traveling aircraft body is provided, and based on detection information of the inclination angle detection unit, Angle correction means for controlling the operation of the angle adjustment means is provided so that the relative angle between the distance detection direction and the vertical direction of the distance detection means is maintained at a set value.
[0013]
That is, the angle adjusting means is changed and adjusted based on the detection information of the inclination angle detecting means so that the relative angle between the detection direction of the distance detecting means and the vertical direction is always maintained at the set value. Even if the traveling machine body is inclined due to the unevenness of the field, etc., the distance detection direction of the distance detection means is directed to a fixed direction by correcting the relative angle to be a set value. It becomes possible to detect the body position with respect to the outer periphery of the uncut stem group more accurately.
[0014]
According to the characteristic configuration described in claim 4, in any one of claims 1 to 3, the distance detection unit transmits an ultrasonic wave toward the detection direction and then reflects an ultrasonic wave on a detection target. Is constituted by an ultrasonic sensor that detects a separation distance to the detection object based on a time until the signal is received.
[0015]
For example, when an optical sensor is used as the distance detection means, dust such as fine shavings and dust generated during the cutting operation travels on the light projecting / receiving part of the detection light, and the distance can be detected appropriately. Compared to disadvantages such as the possibility of disappearing, the above configuration allows the distance to be detected appropriately without being affected by dust, etc., and has an ultrasonic transmitter and receiver as much as possible. The distance detecting means can be configured with a simple configuration.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a combine as an example of a harvesting harvester according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the combine has a planted cereal on the front side of a traveling machine body 9 provided with a pair of left and right crawler traveling devices 1R and 1L, a threshing device 2, a control unit 4 and the like as the vehicle travels. The cutting part 3 for cutting the cocoon T is provided in a state in which it can be lifted and lowered by a hydraulic cylinder 23 for lifting and lowering.
[0019]
The mowing unit 3 is a triggering device 5 that causes a lying cereal husk, a cutting blade 6 that cuts the root of the culled cereal culm, and a threshing on the rear side of the aircraft while changing the mowing cereal to a sideways posture. A conveying device 7 for conveying toward the feed chain 8 is provided. An ultrasonic cutting height sensor S5 that detects the height of the cutting unit 3 with respect to the ground is provided at a lower rear side portion of the raising device 5, and the root of the harvested cereal rice bran is located at the transfer start end side of the transfer device 7. There is provided a stock sensor S0 that is turned on when touched and is turned off when the stock of the harvested cereal is not touched. That is, it is determined whether or not it is a cutting work state based on the detection information of the stock sensor S0.
[0020]
Next, the power transmission system of the combine and the control configuration will be described with reference to FIG.
The power of the engine E is transmitted to the hydraulic continuously variable transmission 10, and the output after the transmission of the transmission 10 is transmitted to the crawler travel devices 1 </ b> R and 1 </ b> L via the mission case 11. The transmission case 11 includes a forward / reverse switching mechanism (not shown) for switching the output after shifting of the transmission 10 to a forward or reverse state, and the output after shifting to the left and right crawler traveling devices 1L and 1R. A pair of left and right steering clutch brakes 17L, 17R are provided for intermittently transmitting and braking each crawler travel device 1L, 1R. When the left steering clutch brake 17L is turned off or braked, the aircraft turns left, and when the right steering clutch brake 17R is turned off or braked, the aircraft turns right.
[0021]
The continuously variable transmission 10 is speed-changed by an electric motor 13 for speed change operation, is interlocked with a speed change lever 12 provided in the control unit 4, and is electrically driven by an artificial speed change operation by the speed change lever 12. In order to give priority to the speed change operation by the motor 13, the electric motor 13 is linked via the friction transmission mechanism 14 in the link path between the speed change lever 12 and the speed change device 10.
Further, by controlling the supply of pressure oil to the cutting lift cylinder 23 and controlling the supply of pressure oil to the left and right steering clutch brakes 17L and 17R, and the solenoid valve 25 for raising and lowering the cutting part 3. A steering solenoid valve 19 for turning on and off each clutch and braking is provided.
[0022]
Further, the engine E, the threshing device 2 and the reaping part 3 are interlocked and connected via a belt tension type threshing clutch 33 and a reaping clutch 34, respectively. A threshing clutch lever 32 and a reaping clutch lever 31 for manually turning on and off the threshing clutch 33 and the reaping clutch 34 are provided in the control unit 4, and a threshing switch SW2 and a reaping switch that are turned on in accordance with the entering operation. SW1 is provided. A rotation speed detection sensor S1 that detects the rotation speed of the engine E and a pulse proportional to the output rotation speed of the transmission 10 that is transmitted to the input shaft of the mission case 11 are counted to detect a travel distance and a vehicle speed. A rotary encoder S2 is provided. The output of the engine E is raised by an accelerator lever (not shown) after the engine is started, and set to the working rotational speed.
Using the detection information such as the engine speed and the vehicle speed, the engine load is detected by the difference from the no-load speed of the engine E during the cutting operation, and the upper limit vehicle speed setting unit 22 provided in the airframe control unit 4 is used. The vehicle speed control is performed to automatically adjust the vehicle speed (specifically, the operating state of the shift electric motor 13) so that the engine load is maintained at the set load within a range not exceeding the set upper limit vehicle speed. ing.
[0023]
The lower part of the raising device 5 of the cutting part 3 is provided with a detection bar that comes into contact with the planted culm introduced into the cutting part 3 as it travels and swings backward on the machine body. A contact-type direction sensor S4 that detects the position of the planted culm in the horizontal direction of the machine body based on the swinging state of the detection bar is provided. The detection information of the direction sensor S4 is used as control information for steering control of the traveling machine body 9 when cutting and traveling along the outer periphery of the uncut stem pod group M.
[0024]
As shown in FIGS. 1, 2, and 4, a pair of distance L to a planted cereal bud T located in front of the machine body is detected at an already cut-off side (machine body right side) portion on the front side of the traveling machine body 9. Ultrasonic sensors S3a1 and S3a2 are provided side by side in the left-right direction with the detection direction facing the front of the aircraft. In addition, a pair of ultrasonic sensors S3b and S3c for detecting a distance L to the planted culm T located on the lateral side of the machine body is detected on the lateral side portion of the traveling machine body 9 on the uncut side (left side of the machine body). It is provided at a set interval in the longitudinal direction of the aircraft with the direction directed to the lateral side of the aircraft.
Each of the ultrasonic sensors S3a1, S3a2, S3b, and S3c includes a transmitter that transmits an ultrasonic wave toward the outer side of the body and a receiver that receives the ultrasonic wave reflected by the detection target. And it is comprised so that the distance to a detection target (planted grain cocoon T and the ground) may be detected based on the time from transmitting an ultrasonic wave until receiving it. The ultrasonic sensors S3a1 and S3a2 located at the front of the machine body and the ultrasonic sensor S3b located on the front side of the machine body are located above the planted culm T and the detection direction is outside the machine body. The ultrasonic sensor S3c located on the rear side of the fuselage lateral side is provided at a low position on the lateral side of the fuselage, and is configured to measure the distance by transmitting ultrasonic waves in a state of being directed obliquely downward on the side. ing.
Specifically, the ultrasonic sensors S3a1 and S3a2 located at the front of the fuselage are provided in the control cylinder 45 of the fuselage, and the ultrasonic sensor S3b located on the front side of the side of the fuselage is extended from the fuselage fixing part. It is attached to and supported by the stay 46.
[0025]
As shown in FIG. 9, the ultrasonic sensor S3b located on the front side of the aircraft lateral side is supported by the stay 46 so as to be swingable up and down around a horizontal axis X along the longitudinal direction of the aircraft. The transmission direction (distance detection direction) of the ultrasonic waves can be changed and adjusted along the vertical direction by the angle adjustment mechanism 47 (angle adjustment means). Although not described in detail, the angle adjustment mechanism 47 includes an electric motor and a gear type operation mechanism. As described above, the ultrasonic sensor S3b is configured to be able to change and adjust the relative angle along the vertical direction between the detection direction and the traveling machine body. The actual vertical swing adjustment position (corresponding to the relative angle information along the vertical direction between the distance detection direction and the traveling machine body) of the ultrasonic sensor S3b is detected by the angle detection sensor S6. It has become.
In addition, an inclination angle sensor S7 is provided for detecting a right and left inclination angle with respect to the horizontal reference plane of the traveling machine body 9, and the ultrasonic wave transmission direction (distance detection direction) by the ultrasonic sensor S3b is irrespective of the left and right inclination of the traveling machine body 9. The angle adjusting mechanism 47 is controlled so as to be always in a fixed direction.
[0026]
As shown in FIG. 2, a control device 16 using a microcomputer is provided, and the control device 16 includes a stock sensor S0, a rotational speed detection sensor S1, a rotary encoder S2, a direction sensor S4, a cutting height sensor S5, each super The detection information of the sonic sensors S3a1, S3a2, S3b, S3c, the angle detection sensor S6, the inclination angle sensor S7, the threshing switch SW2, the reaping switch SW1, and the upper limit vehicle speed setting device 22 are input. On the other hand, the control device 16 outputs drive signals for the electric motor 13 for shifting operation, the angle adjusting mechanism 47, the electromagnetic valve 25 for lifting and lowering, and the electromagnetic valve 19 for steering.
[0027]
As shown in FIG. 3, the combine sequentially performs each work process along each side M <b> 1 to M <b> 4 on the outer periphery of the uncut stem pod group M in a so-called swivel type for the rectangular uncut stem pod group M. When the cutting operation is performed and the end position of each work process is reached, the travel control is performed so as to move to the next adjacent work process. That is, using the control device 16, as the terminal position of one work process along the outer periphery of the uncut stem group M is reached, the vehicle turns forward toward the side approaching the uncut stem group M. Next, the turning control for controlling the operation of the crawler traveling device 1 so as to perform the turning traveling for switching the work stroke to make the backward turning traveling at the position before the next working stroke crossing the one working stroke. Means 100 are configured.
[0028]
Based on the detection distance information detected by the ultrasonic sensor S3b and the relative angle information along the vertical direction between the detection direction of the ultrasonic sensor S3b and the traveling machine body, the control device 16 It is comprised so that the position of the traveling body with respect to the outer periphery of a stalk group may be discriminate | determined, and it becomes the structure which controls the action | operation of the crawler running apparatuses 1R and 1L to make a turning run based on the discrimination | determination result. Therefore, the position determination means 101 is configured using the control device 16.
[0029]
The control device 16 sets the reference state when the traveling body is in the horizontal reference posture and the relative angle is at a set value, and based on the detection information of the inclination angle sensor S7, the ultrasonic sensor S3b. The operation of the angle adjustment mechanism 47 is controlled so that the transmission direction of the ultrasonic wave (distance detection direction) is always a constant direction. Therefore, the angle correction means 102 is configured using the control device 16.
[0030]
Hereinafter, the traveling control by the control device 16 will be specifically described with reference to the flowcharts of FIGS.
As shown in FIG. 6, when traveling starts from the start position of one work stroke along the outer periphery of the uncut stem culm group M, the traveling machine body 9 is cut along the work stroke based on the detection information of the direction sensor S4. Steering control for traveling, cutting height control for maintaining the ground height of the cutting unit 3 at an appropriate height based on the detection information of the cutting height sensor S5, and engine load as a target load within a range not exceeding the upper limit vehicle speed The vehicle speed control for controlling the vehicle speed so as to be maintained is executed until it is determined that the stock sensor S0 is turned off and has reached the end position of the work process. When it is determined that the end position of the work process has been reached, it is determined whether or not the cutting operation for the uncut stem culm group M has been completed. If the work process has not been completed, it is moved to the next adjacent work process. The turning control is executed. On the other hand, if the work is finished, the traveling is stopped and the control is finished.
[0031]
In the turning control, the control is executed as shown in FIGS. That is, the mowing unit 3 is raised and, as shown in FIG. 4 (a), first, the vehicle is caused to travel forward to a turning start position in a straight traveling state. Here, the fact that the traveling machine body 9 has reached the turning start position is that, as shown in FIG. 5, the distance detection signal b of the ultrasonic sensor S3b on the left front side of the machine body has first changed from a small distance to a large distance. Further, the determination is made when the aircraft further travels and the distance detection signal c of the ultrasonic sensor S3c on the left rear side of the aircraft changes from a small distance to a large distance.
[0032]
When the turning start position is reached, as shown in FIG. 4 (b), the left crawler traveling device 1L is braked to turn the traveling body 9 counterclockwise so that the front side of the body approaches the uncut stem group M. And the angle at which the traveling machine body 9 is positioned with respect to the uncut stem group M (for example, with respect to the next side) based on the detection distance information of the ultrasonic sensor S3b on the left front side of the machine during the turning (This operation corresponds to position determination processing), and when the angle reaches a set angle (for example, 45 degrees), the forward left turn traveling is stopped, and the left crawler traveling device Release the 1L brake operation.
When the left turn is executed, the operation of the angle adjustment mechanism 47 is controlled so that the ultrasonic transmission direction (distance detection direction) of the ultrasonic sensor S3b is always in an appropriate direction regardless of the left-right inclination of the traveling body. The angle correction control to be executed is executed. That is, when the traveling machine body 9 is in the horizontal reference posture, the ultrasonic sensor S3b detects the presence of the outer periphery of the uncut stem group M at the turning position where the angle θ corresponds to the set angle (for example, 45 degrees). The posture (see FIGS. 9A and 9B) that is the detection direction to be detected is set in advance as a reference posture in the angle adjustment mechanism 47. Then, the operation of the angle adjustment mechanism 47 is controlled based on the detection information of the tilt angle sensor S7 so that the detection direction is maintained even if the aircraft tilts left and right (see FIG. 9C).
[0033]
Then, the turning is performed while the ultrasonic sensor S3b detects the distance in the predetermined detection direction, the detection distance by the ultrasonic sensor S3b becomes shorter than the set value, and the presence of the outer circumference of the uncut stem group M is detected. When detected (see FIG. 9 (A)), the left turn traveling is stopped.
[0034]
Next, as shown in FIG. 4 (C), the vehicle travels backward from the turning stop position to the turning start position in a straight traveling state. Here, as shown in FIG. 5, the fact that the traveling vehicle body 9 has reached the turning travel start position is determined by the fact that the distance detection signal b of the ultrasonic sensor S3b on the left front side of the vehicle body has started to increase beyond a minimum value. Is done.
[0035]
At this time, as shown in FIG. 9 (d), the reference control in the angle adjusting mechanism 47 is changed downward (angle α2) when executing the left turn (angle α1), and the correction control is performed. By executing, the distance to the outer periphery of the uncut stem group M can be detected effectively even when the traveling machine passes near the outer periphery (corner) of the uncut stem group M.
[0036]
When the turning travel start position is reached, as shown in FIGS. 4C to 4D, the steering clutch brake 17R on the right side is turned off to cause the traveling machine body 9 to travel backward and turn left in a slow turning state. Then, as the traveling machine body 9 is positioned at a position before the next adjacent work stroke, the backward left-turning traveling is stopped. Here, the fact that the traveling machine body 9 is located at the front side of the next work process is that the distance detection signal a of the ultrasonic sensor S3a on the front side of the machine body is large and the planted culm T on the front side of the machine body It is judged by having changed to the state which detects. The ultrasonic sensors S3a1 and S3a2 on the front side of the aircraft are configured to transmit ultrasonic waves in a downward direction and in a detection direction in which the relative angle to the traveling aircraft is constant, like the ultrasonic sensor S3b on the left front side of the aircraft, The presence or absence of pedicles is determined based on the detection distance to the detection object.
Next, the distance detection signal a of the ultrasonic sensor S3a1 located on the left side of the pair of left and right ultrasonic sensors S3a1 and S3a2 on the front side of the machine body from the location before the next work process is the planted cereal grain on the front side of the machine body. Maintaining the state of detecting T, and traveling straight forward while controlling the steering solenoid valve 19 so that the distance detection signal a of the ultrasonic sensor S3a2 on the other side detects the large distance, After the mowing unit 3 is lowered, the mowing work in the next work process is started. As the cutting work is started and the stock sensor S0 is turned on, the steering control, the cutting height control, and the vehicle speed control are performed.
[0037]
In this embodiment, as the position of the traveling machine body 9 with respect to the outer periphery of the uncut stem group M determined by the position determining means 101, specifically, the stop position of forward left turn traveling (FIG. 4 (B)). Is used. Accordingly, a distance detecting means is constituted by the ultrasonic sensor S3b on the left front side of the machine body. Then, the distance detecting means and the position determining means 101 detect the distance to the outer periphery of the uncut stem pod group, and based on the information of the detected distance, the position of the traveling machine body with respect to the outer periphery of the uncut stem pod is determined. Position detecting means for detecting is configured.
[0038]
[Another embodiment]
(1) In the above embodiment, the inclination angle sensor S7 of the traveling machine body is provided, and based on the detection information, the detection direction of the distance detection means (ultrasonic sensor S3b) is set so as to be the detection direction in the reference state. Although the configuration for controlling the operation of the angle adjustment mechanism 47 is not limited to this configuration, the angle adjustment mechanism 47 may be manually adjusted, or instead of such a configuration, It is good also as a structure provided with the attitude | position change means to return so that an inclination attitude | position itself may become a reference attitude.
In the above-described embodiment, the distance detection means (ultrasonic sensor S3b) performs the distance detection operation in a state where the detection direction is fixed with respect to the traveling machine body. Alternatively, the distance may be measured while scanning within a predetermined range in the left-right direction.
[0039]
(2) In the above-described embodiment, only the ultrasonic sensor S3b on the left front side of the aircraft is provided with an angle adjustment means that can change and adjust the relative angle along the vertical direction between the distance detection direction and the traveling aircraft. However, it is also possible to provide an angle adjusting means for the forward / backward tilt of the airframe for other sensors (for example, the sensor S3a on the front side of the airframe), and without providing such an angle adjusting means. The relative angle between the detection direction and the traveling machine body may always be constant.
[0040]
(3) In the above embodiment, the ultrasonic sensor S3c on the left rear side of the machine body is low in order to reliably detect the presence or absence of the pedicle group in order to detect the turning start position after the completion of one work process. However, instead of such a configuration, for this sensor, for example, as shown in FIG. 10, the angle is changed by installing it at a high position as with the ultrasonic sensor S3b on the left front side of the aircraft. You may implement with various forms, such as comprising.
[0041]
(4) In the above-described embodiment, the stop position (FIG. 4 (b)) of the forward left turn traveling is detected only by the detection information of the ultrasonic sensor S3b on the left front side of the aircraft. As shown in FIG. 11, when determining the stop position of the forward left turn, the detection information Lb of the ultrasonic sensor S3b on the left front side of the aircraft and the detection information Lc of the ultrasonic sensor S3c on the left rear side of the aircraft Since the separation distance between them is determined in advance, the exact position of the traveling machine body relative to the uncut stem culm may be determined based on the detected information.
[0042]
(5) In the above embodiment, when the turning control unit 100 controls the operation of the traveling device based on the determination information of the position determining unit 101, the position of the traveling machine body 9 is used as the stop position of the forward left turn traveling. (Fig. 4 (b)) is used, but the contents of the turn control are corrected based on other airframe positions, for example, the airframe position information detected between the start position and the stop position of each turn. You may do it. Alternatively, any one of the start positions, or only two or more positions may be detected.
[0043]
(6) In the above embodiment, the distance detecting means for detecting the distance to the outer periphery of the uncut stem group M is provided with the ultrasonic distance detecting means in the traveling machine body 9. Optical distance detection means for projecting and receiving detection light with respect to the planted stem T may be used.
[0044]
(7) In the above-described embodiment, a pair of left and right steering clutch brakes for individually braking the travel devices 1L and 1R are provided. You may implement with various drive forms, such as providing a step transmission and making it the structure which can carry out a stepless transmission separately for each right and left, or making it a planetary gear type transmission mechanism.
[0045]
(8) In the above embodiment, the harvesting and harvesting machine is configured by a combine. However, for example, a harvesting and harvesting machine for rush may be used in addition to the combine.
[Brief description of the drawings]
FIG. 1 is a side view of a combine. FIG. 2 is a block diagram of a control structure of the combine. FIG. 3 is a plan view showing a route of harvesting by the combine. FIG. 5 is a time chart showing a time change of a distance detection signal. FIG. 6 is a flowchart showing a control operation. FIG. 7 is a flowchart showing a control operation. FIG. 8 is a flowchart showing a control operation. FIG. 10 is a side view of a combine according to another embodiment. FIG. 11 is a plan view illustrating distance detection operation according to another embodiment.
1L, 1R traveling device 9 traveling machine body 47 angle adjusting means 100 turning control means 101 position determining means 102 angle correcting means S3b distance detecting means

Claims (4)

走行機体の前部側に昇降自在に設けられた刈取部と、未刈茎稈群の外周に沿う1つの作業行程の終端位置に達するに伴って、前記未刈茎稈群に接近する側に向けて前進旋回走行させ、次に、前記1つの作業行程と交差する次の作業行程の手前個所に後進旋回走行させる作業行程切換用の旋回走行を行わせるように、走行装置の作動を制御する旋回制御手段が設けられた刈取収穫機であって、
前記未刈茎稈群の外周までの距離を検出して、その検出距離の情報に基づいて前記未刈茎稈の外周に対する走行機体の位置を検出する位置検出手段が設けられ、前記旋回制御手段は、前記位置検出手段の検出情報に基づいて前記旋回制御を実行するように構成され、
前記位置検出手段は、
前記未刈茎稈群の外周に対する距離検出方向が斜め下方に向う設定角度になる状態で且つ距離検出方向を機体横側方に向ける状態で、走行機体横側方で且つ前記刈取部が位置する走行機体前部側に位置するように走行機体固定部から延設されたステーに取り付け支持されて、検出対象物までの離間距離を検出する非接触式の距離検出手段と、
前記距離検出手段により検出される検出距離情報に基づいて、前記未刈茎稈群の外周に対する走行機体の位置を判別する位置判別手段とを備えて構成され、
前記位置判別手段は、前記未刈茎稈群の外周に対する走行機体の位置として、前記未刈茎稈群に接近する側に向けて前進旋回させる前進旋回走行の停止位置を判別するように構成されている刈取収穫機。
A cutting portion provided on the front side of the traveling machine body so as to be movable up and down, and a side approaching the uncut stem group as it reaches the end position of one work process along the outer periphery of the uncut stem group. The operation of the traveling device is controlled so as to perform the turning travel for switching the work stroke to make the backward turning travel to the position before the next work stroke crossing the one work stroke. A harvesting and harvesting machine provided with a turning control means,
Position detecting means for detecting the distance to the outer periphery of the uncut stem pod group and detecting the position of the traveling machine body with respect to the outer periphery of the uncut stem pod based on the information of the detected distance is provided, and the turning control means Is configured to execute the turning control based on detection information of the position detection means,
The position detecting means includes
In the state where the distance detection direction with respect to the outer circumference of the uncut stem group is a set angle directed obliquely downward and in the state where the distance detection direction is directed to the aircraft lateral side, the cutting unit is located on the lateral side of the traveling aircraft. A non-contact type distance detecting means that is attached to and supported by a stay extending from the traveling machine body fixing portion so as to be located on the traveling machine body front side, and detects a separation distance to the detection target;
Based on the detection distance information detected by the distance detection means, comprising a position determination means for determining the position of the traveling machine body relative to the outer periphery of the uncut stem pod group,
The position determining means is configured to determine a stop position of the forward turning traveling for making a forward turn toward the side approaching the uncut stem group as the position of the traveling machine body with respect to the outer periphery of the uncut stem group. Cutting harvester.
前記距離検出手段の前記距離検出方向を変更調節自在な角度調節手段が設けられている請求項1記載の刈取収穫機。  The harvesting and harvesting machine according to claim 1, further comprising an angle adjusting means capable of changing and adjusting the distance detection direction of the distance detecting means. 前記走行機体の水平基準姿勢に対する傾斜角度を検出する傾斜角検出手段が設けられ、
前記傾斜角検出手段の検出情報に基づいて、前記距離検出手段の前記距離検出方向と鉛直方向との間の相対角度が設定値に維持されるように、前記角度調節手段の作動を制御する角度補正手段が設けられている請求項2記載の刈取収穫機。
Inclination angle detection means for detecting an inclination angle with respect to a horizontal reference posture of the traveling machine body is provided,
An angle for controlling the operation of the angle adjusting means so that the relative angle between the distance detecting direction and the vertical direction of the distance detecting means is maintained at a set value based on the detection information of the tilt angle detecting means. The harvesting and harvesting machine according to claim 2, wherein a correction means is provided.
前記距離検出手段は、前記検出方向に向けて超音波を発信してから検出対象物にて反射した超音波が受信されるまでの時間に基づいて、前記検出対象物までの離間距離を検出する超音波センサにて構成されている請求項1〜3のいずれか1項に記載の刈取収穫機。  The distance detection means detects a separation distance to the detection target object based on a time from when the ultrasonic wave is transmitted in the detection direction until the ultrasonic wave reflected by the detection target is received. The harvesting and harvesting machine according to any one of claims 1 to 3, comprising an ultrasonic sensor.
JP08289099A 1999-03-26 1999-03-26 Mowing harvester Expired - Fee Related JP3664603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08289099A JP3664603B2 (en) 1999-03-26 1999-03-26 Mowing harvester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08289099A JP3664603B2 (en) 1999-03-26 1999-03-26 Mowing harvester

Publications (2)

Publication Number Publication Date
JP2000270612A JP2000270612A (en) 2000-10-03
JP3664603B2 true JP3664603B2 (en) 2005-06-29

Family

ID=13786880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08289099A Expired - Fee Related JP3664603B2 (en) 1999-03-26 1999-03-26 Mowing harvester

Country Status (1)

Country Link
JP (1) JP3664603B2 (en)

Also Published As

Publication number Publication date
JP2000270612A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
JP3664603B2 (en) Mowing harvester
JP2000342013A (en) Reaping and harvesting machine
JP3612436B2 (en) Mowing harvester
JP2000270611A (en) Reaping harvester
JP2000270607A (en) Reaping harvester
JP3664595B2 (en) Mowing harvester
JP3664596B2 (en) Mowing harvester
JPH025705Y2 (en)
JP2000166312A (en) Working car
JP2000083433A (en) Farm working vehicle
JP2000270609A (en) Reaping harvester
JP2001269014A (en) Steering controller of reaping harvester
JP2000270610A (en) Reaping harvester
JP2955441B2 (en) Cutting height control device of reaper and harvester
JP2855680B2 (en) Combine cutting height control device
JP3558594B2 (en) Combine
JPH0215169B2 (en)
JP2955439B2 (en) Cutting height control device of reaper and harvester
JPS61192221A (en) Harvester
JP2619009B2 (en) Work vehicle ground height control device
JPS6233524Y2 (en)
JPH0216582Y2 (en)
JP3142228B2 (en) Reaper harvester
JP3719942B2 (en) Attitude control device for mowing harvester
JP2001224228A (en) Control system for working vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees