JP3664192B2 - Non-combustible sheet or non-combustible molded product - Google Patents

Non-combustible sheet or non-combustible molded product Download PDF

Info

Publication number
JP3664192B2
JP3664192B2 JP3315496A JP3315496A JP3664192B2 JP 3664192 B2 JP3664192 B2 JP 3664192B2 JP 3315496 A JP3315496 A JP 3315496A JP 3315496 A JP3315496 A JP 3315496A JP 3664192 B2 JP3664192 B2 JP 3664192B2
Authority
JP
Japan
Prior art keywords
sheet
weight
combustible
water
inorganic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3315496A
Other languages
Japanese (ja)
Other versions
JPH09208718A (en
Inventor
藤 芳 廣 斎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Paper Mills Ltd
Original Assignee
Hokuetsu Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Paper Mills Ltd filed Critical Hokuetsu Paper Mills Ltd
Priority to JP3315496A priority Critical patent/JP3664192B2/en
Publication of JPH09208718A publication Critical patent/JPH09208718A/en
Application granted granted Critical
Publication of JP3664192B2 publication Critical patent/JP3664192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は不燃シ−トまたは不燃成形体に関し、更に詳しくは高度の不燃性を有し、かつ機械的強度あるいは成形性に優れた不燃シ−トまたは不燃成形体に関する。
【0002】
【従来の技術】
従来から建築物の防火対策上、各種建材に不燃性を付与する不燃性基材として、水酸化アルミニウム粉体を多量に含有せしめた基材が使用されている。この水酸化アルミニウム粉体を多量に含有せしめた基材は水酸化アルミニウムの200〜300℃における脱水吸熱反応によって不燃化が図られている。
【0003】
【発明が解決しようとする課題】
しかるに、この水酸化アルミニウムの如き含水無機化合物を多量に含有せしめた基材は、一般に強度がきわめて弱いという難点を有していた。該不燃性基材の強度を増大させるためには、熱硬化性樹脂、熱可塑性樹脂あるいは合成ゴムなどの合成高分子を含有せしめる方法が考えられるが、該不燃性基材中に前記合成高分子を含有せしめた場合、その含有率の増加と共に急激に不燃性能が低下する。
従って、高度の不燃性を保つためには、該不燃性基材中に含有せしめ得る合成高分子の含有量はごく少量に制限され、この程度の合成高分子含有量では依然として、該不燃性基材の強度はきわめて不十分なものであった。
【0004】
そこで、本発明者はいち早く特開平5−112659号公報で、含水無機化合物と炭酸塩を特定配合比率範囲で併用することによる発煙量の低減効果により、含有し得る合成高分子の量を増加せしめ、かかる不燃性基材の強度を向上できることを提案したところである。
かかる技術により、比較的高度の不燃性を確保しつつ、たとえば熱硬化性樹脂と合成ゴムを併用し、熱成形前のシ−ト強度は合成ゴムにより与え、熱成形後の最終強度は熱硬化性樹脂の硬化に伴う強度発現により確保するといった対応が可能となった。
【0005】
しかし、かかる分野での不燃性向上及び強度向上に対する要求はさらに強いものがあり、より高度の不燃性を確保するために合成高分子の配合量を少なくすると強度の低下は避けられない。かかる場合、熱成形前の強度及び熱成形後の強度共に低下するが、相対的に熱成形前の強度はきわめて弱いものとなる。特に、成形性及び熱成形後の最終強度への寄与率の少ない合成ゴム等の配合率を減じたり、全く配合しなかった場合には、熱成形前の強度は極端に低下し、運搬あるいは成形型への挿入等の際に、シ−トが破断したりくずれるなどの支障を来しやすくなる。
従って、湿式抄造で得た不燃シ−トを熱成形して不燃成形体を得る際には、熱成形後の最終強度とともに熱成形前のシ−トの強度もできるだけ強くする必要がある。
【0006】
特開平6−272190号公報に、融点が60〜100℃の熱硬化性樹脂を用いることにより、湿式抄造工程の乾燥行程で、前記した熱硬化性樹脂を溶融せしめて強度向上を図る技術が開示されている。しかし、本発明者の実験によれば、含水無機化合物あるいは含水無機化合物と炭酸塩が多量に含有され、熱硬化性樹脂の含有率が少ない場合、たとえ、湿式抄造工程における乾燥温度より低い融点を有する熱硬化性樹脂を用いても、抄造シ−トの強度向上効果はきわめて不十分である。
【0007】
本発明者は、鋭意試行錯誤を繰り返したところ、含水無機化合物あるいは含水無機化合物と炭酸塩を多量に含有するシ−トの場合、特定の硬化特性を有する熱硬化性樹脂を用いることにより、該熱硬化性樹脂以外に、たとえば合成ゴム等を配合して熱成形前のシ−ト強度を向上せずとも、前記した特定の硬化特性を有する熱硬化性樹脂を用いるだけで熱成形前のシ−ト強度を十分に高め、かつ熱成形後の強度発現にも優れること、すなわち、高度の不燃性及び成形性と、熱成形前及び熱成形後の所要強度を併せ持たせることができることを見いだし本発明を完成した。
【0008】
【課題を解決するための手段】
本発明に係る不燃シートは、含水無機化合物を固形分で60〜95重量%と、セルロ−ス繊維を固形分で2〜30重量%と、無機繊維を固形分で0〜20重量%と、フェノール樹脂を固形分で1〜20重量%とを含有し、かつ該フェノール樹脂以外の合成ゴム等の合成高分子を含有しない湿式抄造による不燃シ−トであって、熱成形前の該不燃シートの機械的強度及び熱成形後の機械的強度発現にも優れ、かつ高度の不燃性及び成形性を確保する前記不燃シート中に含有するフェノール樹脂として、キュラストメ−タによる175℃での硬化速度が0.4〜1.2kg/分なる硬化特性を有するフェノール樹脂を用いるものである。
【0009】
また、本発明に係る不燃シートは、含水無機化合物と炭酸塩を固形分で合計60〜95重量%と、セルロ−ス繊維を固形分で2〜30重量%と、無機繊維を固形分で0〜20重量%と、フェノール樹脂を固形分で1〜20重量%とを含有し、かつ含水無機化合物/炭酸塩が固形分重量比で50/50より含水無機化合物過多側で、しかも前記フェノール樹脂以外の合成ゴム等の合成高分子を含有しない湿式抄造による不燃シ−トであって、熱成形前の該不燃シートの機械的強度及び熱成形後の機械的強度発現にも優れ、かつ高度の不燃性及び成形性を確保する前記不燃シート中に含有するフェノール樹脂として、キュラストメ−タによる175℃での硬化速度が0.4〜1.2kg/分なる硬化特性を有するフェノール樹脂を用いるものである。
【0010】
本発明に係る不燃成形体は、含水無機化合物を固形分で60〜95重量%と、セルロ−ス繊維を固形分で2〜30重量%と、無機繊維を固形分で0〜20重量%と、フェノール樹脂を固形分で1〜20重量%とを含有し、かつ該フェノール樹脂以外の合成ゴム等の合成高分子を含有しない湿式抄造による不燃シ−トを熱成形してなる不燃成形体であって、熱成形前の該不燃シートの機械的強度及び熱成形後の機械的強度発現にも優れ、かつ高度の不燃性及び成形性を確保する前記不燃シート中に含有するフェノール樹脂として、キュラストメ−タによる175℃での硬化速度が0.4〜1.2kg/分なる硬化特性を有するフェノール樹脂を用いるものである。
【0011】
また、本発明に係る不燃成形体は、含水無機化合物と炭酸塩を固形分で合計60〜95重量%と、セルロ−ス繊維を固形分で2〜30重量%と、無機繊維を固形分で0〜20重量%と、フェノール樹脂を固形分で1〜20重量%とを含有し、かつ含水無機化合物/炭酸塩が固形分重量比で50/50より含水無機化合物過多側で、しかも前記フェノール樹脂以外の合成ゴム等の合成高分子を含有しない湿式抄造による不燃シ−トを熱成形してなる不燃成形体であって、熱成形前の該不燃シートの機械的強度及び熱成形後の機械的強度発現にも優れ、かつ高度の不燃性及び成形性を確保する前記不燃シート中に含有するフェノール樹脂として、キュラストメ−タによる175℃での硬化速度が0.4〜1.2kg/分なる硬化特性を有するフェノール樹脂を用いるものである。
【0012】
上記した含水無機化合物としては、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、二水和石こう及びアルミン酸化カルシウム等を挙げることができる。これらの化合物は何れも分子内に結晶水を持ち化学的に類似した構造を有する。また、含水無機化合物は、その種類によって分解温度及び吸熱量に幾分差があるが、高温加熱時に分解して吸熱作用により不燃化効果を示すという点では全く共通している。従って、基本的に前記した含水無機化合物のいずれを用いてもよいが入手価格等の経済性をも考慮すると水酸化アルミニウムが最適である。
【0013】
本発明で使用する炭酸塩としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、炭酸ストロンチウム、炭酸ベリリウム、炭酸亜鉛等の中から少なくとも1種類を選択して使用する。これらの炭酸塩はその種類により、分解温度等に幾分差があるが、高温加熱時に分解して吸熱作用により難燃効果を示すという点では全く共通している。従って、基本的に前記した炭酸塩のいずれを用いてもよいが、価格の面から炭酸カルシウムが最適である。なお、炭酸塩配合によるもう1つの重要な効果として本発明者が特開平5−112659号公報で指摘したところの発煙量低減効果を挙げることが出来る。
【0014】
本発明に係る不燃シ−トまたは不燃成形体中の含水無機化合物あるいは含水無機化合物と炭酸塩の合計の含有率範囲は固形分で60〜95重量%である。その含有率が60重量%未満では十分な不燃性が得られない。反対に、95重量%を超えた場合は含水無機化合物あるいは含水無機化合物と炭酸塩の合計量の過多により十分な機械的強度あるいは成形性が得られず不適である。また、含水無機化合物/炭酸塩の含有重量比率は固形分で50/50よりも含水無機化合物過多側としなければならない。50/50よりも含水無機化合物過少側とした場合、不燃性が低下することがあり不適である。
【0015】
上記したセルロ−ス繊維としては、針葉樹系あるいは広葉樹系の化学パルプ、機械パルプ、セミケミカルパルプ等の木材パルプあるいは木綿パルプ、麻パルプ、各種古紙などの中から選ばれる1種類あるいは2種類以上を併用して使用すればよい。木材パルプは供給量および品質が安定しており価格も比較的安価であることから最も使いやすいセルロ−ス繊維原料である。木綿パルプ及び麻パルプは供給量が不安定であり価格も高価であるが、本発明におけるような含水無機化合物あるいは含水無機化合物と炭酸塩を多量に含有する不燃シ−トまたは不燃成形体においては、必要に応じて該木綿パルプあるいは麻パルプを使用することによりシ−トまたは成形体の機械的強度の低下を最小限にとどめることができる。
【0016】
本発明の不燃シ−トまたは不燃成形体のセルロ−ス繊維の含有率範囲は固形分で2〜30重量%である。その含有率が2重量%未満ではセルロ−ス繊維の過少により十分な抄紙性あるいは機械的強度が得られず、また30重量%を超えた場合は有機物質の過多により十分な不燃性を得ることができない。本発明で使用するフェノール樹脂は、キュラストメ−タによる175℃での硬化速度が0.4〜1.2kg/分なる硬化特性を有するものとしなければならない。フェノール樹脂の全量が、前記硬化速度0.4kg/分未満のものの場合、熱成形前のシ−トの機械的強度が不十分となる。また、フェノール樹脂の全量が前記硬化速度1.2kg/分超のものの場合、熱成形後の強度が不十分となる。
【0017】
上記したフェノ−ル樹脂は加熱処理に伴う流動硬化作用により不燃性素材に各種成形賦形効果もしくは諸強度の発現効果または含水無機化合物あるいは炭酸塩の脱落防止効果等を与える。従って、前記したフェノ−ル樹脂は使用するフェノ−ル樹脂の硬化温度が併用する含水無機化合物あるいは炭酸塩の分解温度よりも低くなるようにすべきである。
【0018】
本発明の不燃シ−トまたは不燃成形体中のフェノ−ル樹脂の含有率範囲は固形分で1〜20重量%である。その含有率が1重量%未満では十分な機械的強度あるいは成形性が得られず、また20重量%を超えた場合は有機物質の過多により十分な不燃性を得ることができない。使用するフェノ−ル樹脂の全量に占める前記硬化特性を有するフェノ−ル樹脂の割合は固形分で30重量%以上とするのが好ましい。30重量%未満では熱成形前の強度及び熱成形後の強度のどちらか一方あるいは両方が不十分となることがある。
【0019】
上記した無機繊維は必ずしも用いなくてよいが、JIS A1321の表面試験での亀裂の発生を回避するには、無機繊維を含有せしめるのが好ましい。この場合、ガラス繊維、ロックウ−ル繊維、セラミック繊維、炭素繊維などの中から少なくとも1種類を選択して使用する。
本発明の不燃シ−トまたは不燃成形体中の無機繊維の含有率範囲は固形分で0〜20重量%である。20重量%を超えると十分な抄紙性が得られない。
【0020】
本発明に係る不燃シ−トまたは不燃成形体は、上記配合のもとに含水無機化合物あるいは含水無機化合物と炭酸塩/セルロ−ス繊維/フェノ−ル樹脂もしくは含水無機化合物あるいは含水無機化合物と炭酸塩/セルロ−ス繊維/無機繊維/フェノ−ル樹脂という構成であり、その製造方法としては湿式抄造法が好適である。以下において、製造方法にも言及しながらさらに詳述する。
【0021】
本発明に係る不燃シ−トまたは不燃成形体は含水無機化合物または炭酸塩の歩留を向上させるための各種歩留向上剤あるいは必要に応じて着色のための合成染料などを含有していてもよい。また、用途によっては機械的強度もしくは後加工適性の改善等を図るべく乾燥または湿潤紙力増強剤、サイズ剤、耐水化剤、撥水剤等を含有せしめるべきことは言うまでもない。
【0022】
本発明の不燃シ−トまたは不燃成形体にフェノ−ル樹脂を含有せしめる方法としては、フェノ−ル樹脂の液状物、繊維状物あるいは粒状物等を原料中に内添したり、紙層形成後に塗布または含浸するなどすればよい。含水無機化合物または炭酸塩を含有せしめる方法としては、含水無機化合物または炭酸塩を含有する塗料を基材に塗布あるいは含浸せしめるなどの方法も考えられるが、所定の含浸量を確保し、あるいは厚さ方向での品質の均一化を図るためには、原料スラリ−中に含水無機化合物または炭酸塩を粉体状あるいはスラリ−状にて内添する方法が最も好ましい。この場合、含水無機化合物、炭酸塩、セルロ−ス繊維、無機繊維及びフェノ−ル樹脂の添加方法及び添加順序などは任意であり、必要に応じて叩解処理等を施してもよい。
【0023】
こうして得た原料スラリ−を用いて本発明に係る不燃シ−トまたは不燃成形体を製造するには、通常の抄造法及び熱成形法によればよい。すなわち抄造については長網、円網あるいは傾斜網等の抄造網上に前記スラリ−を供給し、濾過、脱水した後、圧搾、乾燥すればよい。また、必要により各種コンビネ−ション網や多槽円網及び各種ラミネ−タ−などにより紙層を2層以上重ね合わせてもよい。熱成形については、従来慣用の熱圧プレス成形、高周波加熱成形などを単独であるいは2種以上組み合わせて適用すればよい。
【0024】
さらに、用途によっては、得られた不燃シ−トまたは不燃成形体に各種塗料の吹付けもしくは塗布あるいは印刷等の表面処理を施したり、化粧紙、レザ−、合成樹脂膜等を貼り合わせるなどして該不燃シ−トまたは不燃成形体の付加価値を一段と高めることができることは言うまでもない。
【0025】
本発明の不燃シ−トまたは不燃成形体は、含水無機化合物または含水無機化合物と炭酸塩を含有するだけで優れた不燃性を発揮するが、従来慣用の難燃剤の使用を妨げるものではない。併用可能な難燃剤としては、有機リン化合物、含リン含窒素有機化合物、スルファミン酸グアニジン等のスルファミン酸塩、無機リン酸塩、含ハロゲン化合物及びアンチモン系化合物等の公知の難燃剤を挙げることができる。また、該難燃剤の使用方法としては、原料スラリ−中に内添せしめるか抄造工程中もしくは抄造後または成形後に塗布または含浸せしめる等の方法が挙げられる。ただし、この場合、含水無機化合物または含水無機化合物と炭酸塩の含有率等を考慮して難燃剤の含有量を定めるべきことは当然である。
【0026】
【作用】
本発明の重要なことは、特定の硬化特性を有するフェノ−ル樹脂を用いることにより、含水無機化合物あるいは含水無機化合物と炭酸塩を多量に含有し、フェノ−ル樹脂の含有率の少ない湿式抄造シ−トにおいて、熱成形前及び熱成形後の両方で優れた機械的強度が得られる点にある。以下、後述する実施例での実験結果に基づき説明する。
【0027】
前述したように、含水無機化合物あるいは含水無機化合物と炭酸塩/セルロ−ス繊維/フェノ−ル樹脂もしくは含水無機化合物あるいは含水無機化合物と炭酸塩/セルロ−ス繊維/無機繊維/フェノ−ル樹脂からなる湿式抄造による不燃シ−トまたは不燃成形体において、高度の不燃性を確保するには、有機物質であるセルロ−ス繊維の含有量を減ずるとともに同じく有機物質であるフェノ−ル樹脂の含有量もできるだけ減少せしめる必要がある。
【0028】
しかして、一般に熱成形前の強度は熱成形後の強度に比べかなり弱いため、あまりにフェノ−ル樹脂の含有量を減ずると熱成形後の強度は何とか確保できても、熱成形前の強度が弱すぎて運搬あるいは成形型への挿入等の際にシ−トが破断したり崩れるなどの支障を来しやすくなる。たとえば、後述する比較例1及び比較例4を参照。これらの実験例では、熱成形前の強度がきわめて弱く、シ−トが折れやすいため、所定サイズのシ−トを一人で持ち運ぶことが困難であった。
【0029】
このような場合、合成ゴムなどを配合して熱成形前のシ−ト強度を、ある程度強化せしめることが考えられるが、反面、不燃性は大きく低下する。たとえば、後述する比較例3を参照。比較例1と比較し、SBR系ラテックスを配合した比較例3では熱成形前の裂断長及び曲げ強度が共に約2.5倍に向上しているが、反面、発煙量は12〜24倍にも増大し不燃性が大きく低下している。
【0030】
先に言及したように、湿式抄造工程の乾燥工程においてシ−ト中に含有せしめたフェノ−ル樹脂を溶融せしめてシ−ト強度の向上を図る技術が開示されている。しかし、比較例1及び比較例4で使用したフェノ−ルの融点は74℃、湿式抄造段階での乾燥温度は110℃あるいは110〜120℃であり、乾燥温度よりもフェノ−ル樹脂の融点が十分に低いにもかかわらず熱成形前(湿式抄造での乾燥後)の強度はきわめて弱い。すなわち、本発明に係るような含水無機化合物あるいは含水無機化合物と炭酸塩を多量に含有し、フェノ−ル樹脂の含有率の少ない場合は、たとえ湿式抄造工程における乾燥温度より低い融点を有するフェノ−ル樹脂を用いても抄造シ−トの強度向上効果はきわめて不十分であると判断されるのである。
【0031】
そこで、本発明者は、含水無機化合物あるいは含水無機化合物と炭酸塩を多量に含有し、フェノ−ル樹脂の含有率の少ない湿式抄造シ−トにおいて、熱成形前及び熱成形後の両方で優れた機械的強度を得るべく、多数次の実験を行ったところ、特定の硬化特性を有する熱硬化特性を用いることによりかかる目的を達成できることを見出した。すなわち、キュラストメ−タによる175℃での硬化速度(以下において、この意味で単に硬化速度と言うことがある。)が0.4〜1.2kg/分なる硬化特性を有する熱硬化特性を有するフェノ−ル樹脂がかかる目的に適うことを見出したのである。
【0032】
さらに詳細に説明する。後述する比較例1及び比較例4で用いたフェノ−ル樹脂の硬化速度は0.21kg/分であるが、後述するようにフェノ−ル樹脂の硬化速度を0.53kg/分(実施例2)、0.71kg/分(実施例1及び実施例11)及び0.92(実施例3)とした場合、対応する比較例1あるいは比較例4に比べ熱成形前の諸強度が裂断長で2.1〜2.9倍、曲げ強度で2.5〜3.1倍に大きく向上し、同時に熱成形後の諸強度も裂断長で1.6〜2.2倍、曲げ強度で1.4〜1.6倍とかなり向上している。また、比較例4では強度が弱すぎて折れやすく所定サイズのシ−トを一人で持ち運ぶことが困難であったのに対し、実施例11では一人で支障なく持ち運ぶことができる。一方、フェノ−ル樹脂の硬化速度を1.40(比較例2)とした場合、熱成形前の諸強度の向上効果はある程度発揮されるものの、熱成形後の最終強度が弱すぎて実用上十分な強度を有する成形体を得ることができなかった。なお、実施例1、2、3、11及び比較例1、2、4に係る不燃シ−トの組成はほとんど同一であり、不燃性もほとんど差はなかった。
【0033】
すなわち、含水無機化合物あるいは含水無機化合物と炭酸塩を多量に含有し、フェノ−ル樹脂の含有率の少ない湿式抄造シ−トにおいては、使用するフェノ−ル樹脂の硬化速度を0.4〜1.2kg/分の範囲に特定することによりはじめて、熱成形前及び熱成形後の両方で優れた機械的強度を有し、かつ高度の不燃性を兼ね備えた不燃シ−トまたは不燃成形体を得ることができる。
【0034】
硬化速度が0.4〜1.2kg/分なるフェノ−ル樹脂を用いた場合に、かかる好結果の得られる作用・機構の詳細は未だ不明であるが、湿式抄造での乾燥工程及びその後の熱成形によりシ−トが受ける熱履歴が、硬化速度が0.4〜1.2kg/分なるフェノ−ル樹脂に対しては、該フェノ−ル樹脂の架橋・硬化反応にきわめて好都合に作用するものと推定される。
【0035】
湿式抄造での乾燥工程は一般に温度80〜130℃程度で圧力はかからない。一方、フェノ−ル樹脂の熱成形条件は一般に温度130〜250℃程度で圧力は数〜数百kg/cm2 である。
【0036】
フェノ−ル樹脂の硬化速度が0.4kg/分未満の場合、乾燥工程では、フェノ−ル樹脂の架橋が発生しにくいため、熱成形前の強度が極めて弱いものと考えられる。反対に、硬化速度が1.2kg/分を超えた場合、乾燥工程で架橋が進行するとともに、何らかの影響でその後の熱成形時に発現すべきフェノ−ル樹脂の硬化反応性が疎外され、熱成形による十分な硬化が不可能になるために熱成形による強度発現性が低下してしまうものと考えられる。
【0037】
これに対し、硬化速度が本発明で特定する0.4〜1.2kg/分の範囲の場合、乾燥工程で適度にフェノ−ル樹脂の架橋が進行し、熱成形前のシ−ト強度が確保され、その後熱成形することにより該フェノ−ル樹脂の架橋が十分に進行し硬化が完結するものと考えられる。すなわち、硬化速度が0.4〜1.2kg/分のとき、フェノ−ル樹脂の架橋・硬化作用が乾燥工程と熱成形の各段階において好都合にかつ遺憾なく発揮され、結果的に熱成形前と熱成形後の両方で優れた強度が達成されるものと推定される。
【0038】
実施例次に本発明を以下の実施例に基づいてさらに具体的に説明する。本実施例中の各項目の測定は次の方法によった。
( )厚さ及び密度;JIS P−8118による。
( )発煙性(発煙係数);JIS A−1321の表面試験による。
( )不燃性1;JIS A−1322による。
( )不燃性2;JIS A−1321の表面試験による。
( )裂断長;JIS A−8113による。
( )曲げ強度;JIS A−5907による。
また、フェノ−ル樹脂のキュラストメ−タによる175℃での硬化速度は硬化曲線上の最大応力の10%に達した点(応力F10(kg)、時間T10(分))と最大応力の90%に達した点(応力F90(kg)、時間T90(分))とを結んだ直線の傾き、すなわち、(F90−F10)/(T90−T10)kg/分で与えられる。
【0039】
実施例1
市販の針葉樹系未晒硫酸塩パルプとガラス繊維(繊維径3μmである。以下同じ)を離解機にて離解して得たセルロ−ス繊維とガラス繊維の混合分散液の所定量を取り、これに水酸化アルミニウム粉体(平均粒径5.7μmである。以下同じ)、炭酸カルシウム粉体(平均粒径1.5μmである。以下同じ)及びキュラストメ−タによる175℃での硬化速度が0.71kg/分であるフェノ−ル樹脂(以下、フェノ−ル樹脂aと略称する。)を添加し、撹拌機にて十分に分散混合後、角型テスト抄紙機にて抄造し、圧搾後、110℃の熱風乾燥機で乾燥しシ−トAを得た。
シ−トAについて、各成分の含有率を表1に示すとともに、厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。次に、シ−トAを熱プレスにて加熱処理(温度175℃、圧力5kg/cm2 、時間3分)した後の厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0040】
実施例2
実施例1において、フェノ−ル樹脂aに代えて、キュラストメ−タによる175℃での硬化速度が0.53kg/分であるフェノ−ル樹脂(以下、フェノ−ル樹脂bと略称する。)を用いた以外は実施例1と同様にしてシ−トBを得た。
シ−トBについて各成分の含有率を表1に示すとともに、厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。次にシ−トBを実施例1と同様にして熱プレスにて加熱処理した後の厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0041】
実施例3
実施例1において、フェノ−ル樹脂aに代えて、キュラストメ−タによる175℃での硬化速度が0.92kg/分であるフェノ−ル樹脂(以下、フェノ−ル樹脂cと略称する。)を用いた以外は実施例1と同様にしてシ−トCを得た。
シ−トCについて、各成分の含有率を表1に示すとともに、厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。
次にシ−トCを実施例1と同様にして熱プレスにて加熱処理した後の厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0042】
比較例1
実施例1において、フェノ−ル樹脂aに代えて、キュラストメ−タによる175℃での硬化速度が0.21kg/分で融点が74℃であるフェノ−ル樹脂(以下、フェノ−ル樹脂dと略称する。)を用いた以外は実施例1と同様にしてシ−トDを得た。
シ−トDについて各成分の含有率を表1に示すとともに、厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。次にシ−トDを実施例1と同様にして熱プレスにて加熱処理した後の厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0043】
比較例2
実施例1において、フェノ−ル樹脂aに代えて、キュラストメ−タによる175℃での硬化速度が1.40kg/分であるフェノ−ル樹脂(以下、フェノ−ル樹脂eと略称する。)を用いた以外は実施例1と同様にしてシ−トEを得た。
シ−トEについて、各成分の含有率を表1に示すとともに、厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。
次にシ−トEを実施例1と同様にして熱プレスにて加熱処理した後の厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0044】
比較例3
比較例1において、市販のSBR系ラテックスを配合した以外は実施例1と同様にしてシ−トFを得た。
シ−トFについて、各成分の含有率を表1に示すとともに、厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。
次にシ−トFを比較例1と同様にして熱プレスにて加熱処理した後の厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0045】
実施例4
実施例1において、ガラス繊維に代えてロックウ−ル繊維(繊維長7mmである。以下同じ。)を用いた以外は実施例1と同様にしてシ−トGを得た。
シ−トGについて、各成分の含有率を表1に示すとともに、厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。
次にシ−トGを実施例1と同様にして熱プレスにて加熱処理した後の厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0046】
実施例5
実施例1において、フェノ−ル樹脂aとフェノ−ル樹脂dをフェノ−ル樹脂a/フェノ−ル樹脂b=3/2なる固形分重量比率で配合した以外は実施例1と同様にしてシ−トHを得た。
シ−トHについて、各成分の含有率を表1に示すとともに、厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。
次にシ−トHを実施例1と同様にして熱プレスにて加熱処理した後の厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0047】
実施例6
実施例5において、ガラス繊維に代えてロックウ−ル繊維を用いた以外は実施例5と同様にしてシ−トIを得た。
シ−トIについて、各成分の含有率を表1に示すとともに、厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。
次にシ−トIを実施例1と同様にして熱プレスにて加熱処理した後の厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0048】
実施例7
実施例1において、フェノ−ル樹脂aとフェノ−ル樹脂bをフェノ−ル樹脂a/フェノ−ル樹脂b=1/1なる固形分重量比率で配合した以外は実施例1と同様にしてシ−トJを得た。
シ−トJについて、各成分の含有率を表1に示すとともに、厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。
次にシ−トJを実施例1と同様にして熱プレスにて加熱処理した後の厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0049】
実施例8
実施例1において、水酸化アルミニウム粉体に変えて水酸化マグネシウム粉体(平均粒径10μmである。以下同じ)を用いた以外は実施例1と同様にしてシ−トKを得た。
シ−トKについて、各成分の含有率を表1に示すとともに、厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。
次にシ−トKを実施例1と同様にして熱プレスにて加熱処理した後の厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0050】
実施例9
実施例1において、炭酸カルシウム粉体を添加しない以外は実施例1と同様にしてシ−トLを得た。
シ−トLについて、各成分の含有率を表1に示すとともに、厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。
次にシ−トLを実施例1と同様にして熱プレスにて加熱処理した後の厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0051】
実施例10
実施例1において、ガラス繊維を配合しない以外は実施例1と同様にしてシ−トMを得た。
シ−トMについて、各成分の含有率を表1に示すとともに、厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。
次にシ−トMを実施例1と同様にして熱プレスにて加熱処理した後の厚さ、密度、裂断長、曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0052】
実施例11
市販の針葉樹系末晒硫酸塩パルプとガラス繊維をパルパ−にて離解し、これに水酸化アルミニウム粉体、炭酸カルシウム粉体及びフェノ−ル樹脂aを添加し十分に分散混合後、長網/ワインドアップロ−ル構成の巻取板紙抄紙機にてシ−ト層を30層積層させて抄造し圧搾、110〜120℃の熱風で乾燥し、大きさが930mm(繊維配向方向)×2440mmのシ−トNを得た。
シ−トNについて、各成分の含有率を表1に示すとともに、厚さ、密度、繊維配向方向の裂断長、繊維配向方向の曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。シ−トNは一人で支障なく持ち運ぶことができた。
次にシ−トNを熱プレスにて加熱処理(温度175℃、圧力10kg/cm2 、時間10分)した後の厚さ、密度、繊維配向方向の裂断長、繊維配向方向の曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0053】
比較例4
実施例11において、フェノ−ル樹脂aに代えてフェノ−ル樹脂dを用いた以外は実施例11と同様にして大きさが930mm(繊維配向方向)×2440mmのシ−トOを得た。
シ−トOについて、各成分の含有率を表1に示すとともに、厚さ、密度、繊維配向方向の裂断長、繊維配向方向の曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に示した。シ−トOは強度が弱すぎるため折れやすく一人で持ち運ぶことは困難であった。二人で持ち運ぶことは何とか可能であったが、この場合にもシ−トに折れ等を生じやすく作業性はかなり悪い。
次にシ−トOを実施例11と同様にして熱プレスにて加熱処理した後の厚さ、密度、繊維配向方向の裂断長、繊維配向方向の曲げ強度、発煙係数及び不燃性をそれぞれ測定し、その結果を表1に併せて示した。
【0054】
【表1】

Figure 0003664192
【0055】
実施例12
実施例1で得た熱プレス前のシ−トAを用いて金型による2枚積層による積層成形(金型温度200℃、圧力20kg/cm2 、時間10分)を行い、2層が強固に接着した良好な一体成形体を得た。得られた成形体(ただし、厚さは9.0mm)の形状を図1に示す。
【0056】
実施例13
実施例7で得た熱プレス前のシ−トJを用いて実施例12と同様にして金型による積層成形を行い、2層が強固に接着した良好な一体成形体を得た。得られた成形体(ただし、厚さは7.6mm)の形状を図2に示す。
【0057】
【発明の効果】
本発明の不燃性シ−トまたは不燃成形体は含水無機化合物あるいは含水無機化合物と炭酸塩/セルロ−ス繊維/フェノ−ル樹脂もしくは含水無機化合物あるいは含水無機化合物と炭酸塩/セルロ−ス繊維/無機繊維/フェノ−ル樹脂という構成で各成分を特定量含有し、かつ熱成形前の該不燃シートの機械的強度及び熱成形後の該不燃成形体の機械的強度発現にも優れ、かつ高度の不燃性及び成形性を確保する前記不燃シ−ト及び不燃成形体中に含有するフェノ−ル樹脂として、キュラストメ−タによる175℃での硬化速度が0.4〜1.2kg/分なる硬化特性を有するフェノ−ル樹脂を用いたので、高度の不燃性及び成形性を有し、かつ熱成形前及び熱成形後の両方で優れた機械的強度を有する不燃シ−トまたは不燃成形体が得られる。
より具体的には、比較例1及び比較例4で使用したフェノ−ルの融点は74℃、湿式抄造段階での乾燥温度は110℃あるいは110〜120℃であり、乾燥温度よりもフェノ−ル樹脂の融点が十分に低いにもかかわらず熱成形前(湿式抄造での乾燥後)の強度はきわめて弱い。すなわち、本発明に係るような含水無機化合物あるいは含水無機化合物と炭酸塩を多量に含有し、フェノ−ル樹脂の含有率の少ない場合は、たとえ湿式抄造工程における乾燥温度より低い融点を有するフェノ−ル樹脂を用いても抄造シ−トの強度向上効果はきわめて不十分であると判断される。さらに、比較例1及び比較例4で用いたフェノ−ル樹脂の硬化速度は0.21kg/分であるが、フェノ−ル樹脂の硬化速度を0.53kg/分(実施例2)、0.71kg/分(実施例1及び実施例11)及び0.92kg/分(実施例3)とした場合、対応する比較例1あるいは比較例4に比べ熱成形前の諸強度が裂断長で2.1〜2.9倍、曲げ強度で2.5〜3.1倍に大きく向上し、同時に熱成形後の諸強度も裂断長で1.6〜2.2倍、曲げ強度で1.4〜1.6倍とかなり向上している。また、比較例4では強度が弱すぎて折れやすく所定サイズのシ−トを一人で持ち運ぶことが困難であったのに対し、実施例11では一人で支障なく持ち運ぶことができる。一方、フェノ−ル樹脂の硬化速度を1.40kg/分(比較例2)とした場合、熱成形前の諸強度の向上効果はある程度発揮されるものの、熱成形後の最終強度が弱すぎて実用上十分な強度を有する成形体を得ることができなかった。なお、実施例1、2、3、11及び比較例1、2、4に係る不燃シ−トの組成はほとんど同一であり、不燃性もほとんど差はなかった。
すなわち、含水無機化合物あるいは含水無機化合物と炭酸塩を多量に含有し、
フェノ−ル樹脂の含有率の少ない湿式抄造シ−トにおいては、使用するフェノ−ル樹脂の硬化速度を0.4〜1.2kg/分の範囲に特定することによりはじめて、熱成形前及び熱成形後の両方で優れた機械的強度を有し、かつ高度の不燃性を兼ね備えた不燃シ−トまたは不燃成形体を得ることができる。
【0058】
従って、できる限り高度の不燃性を確保すべく、含有せしめるフェノ−ル樹脂の量をごく少量にとどめた場合も、熱成形前のシ−トが堅牢であり、所定サイズのシ−トを一人で支障なく持ち運んだり成形型に挿入することが可能であるとともに、熱成形により優れた機械的強度を具備する不燃成形体が得られる。
【0059】
また、本発明の不燃シ−トに熱成形等を施すことにより、2層以上のシ−トを強固に固着一体化することができるばかりか、わん曲形状、L字形状等の各種形状をした、高度の不燃性を有し、かつ機械的強度に優れた不燃成形体を容易に得ることができる。
【図面の簡単な説明】
【図1】 本発明より得られた2層構造のわん曲形状を示す不燃成形体の斜視図である。
【図2】 本発明より得られた2層構造のL字形状を示す不燃成形体の斜視図である。
【符号の説明】
1.成形体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-combustible sheet or a non-combustible molded article, and more particularly to a non-combustible sheet or a non-combustible molded article having a high degree of non-combustibility and excellent mechanical strength or moldability.
[0002]
[Prior art]
Conventionally, a base material containing a large amount of aluminum hydroxide powder has been used as a non-combustible base material for imparting non-combustibility to various building materials in order to prevent fires in buildings. The base material containing a large amount of the aluminum hydroxide powder is made nonflammable by dehydration endothermic reaction of aluminum hydroxide at 200 to 300 ° C.
[0003]
[Problems to be solved by the invention]
However, a substrate containing a large amount of a water-containing inorganic compound such as aluminum hydroxide generally has a drawback that its strength is extremely weak. In order to increase the strength of the noncombustible substrate, a method of incorporating a synthetic polymer such as a thermosetting resin, a thermoplastic resin, or a synthetic rubber can be considered, but the synthetic polymer is included in the noncombustible substrate. When it contains, nonflammability performance falls rapidly with the increase in the content rate.
Therefore, in order to maintain a high degree of incombustibility, the content of the synthetic polymer that can be contained in the incombustible base material is limited to a very small amount. The strength of the material was very inadequate.
[0004]
In view of this, the present inventor quickly increased the amount of synthetic polymer that can be contained in JP-A-5-112659 due to the effect of reducing the amount of smoke generated by using a water-containing inorganic compound and a carbonate in a specific blending ratio range. It has just been proposed that the strength of such a noncombustible substrate can be improved.
With this technology, for example, a thermosetting resin and a synthetic rubber are used in combination while ensuring a relatively high nonflammability. The sheet strength before thermoforming is given by the synthetic rubber, and the final strength after thermoforming is thermosetting. It has become possible to ensure the strength by developing the strength of the resin.
[0005]
However, there is a stronger demand for improvement in nonflammability and strength in such fields, and a decrease in strength is inevitable if the amount of the synthetic polymer is reduced in order to ensure a higher level of nonflammability. In such a case, both the strength before thermoforming and the strength after thermoforming are reduced, but the strength before thermoforming is relatively weak. In particular, if the blending ratio of synthetic rubber, etc., which has a low contribution to the final strength after moldability and thermoforming, is reduced or not blended at all, the strength before thermoforming will be drastically reduced, and transportation or molding When inserted into a mold, the sheet is liable to be broken or broken.
Therefore, when a non-combustible sheet obtained by wet papermaking is thermoformed to obtain a non-combustible molded article, it is necessary to make the strength of the sheet before thermoforming as strong as possible as well as the final strength after thermoforming.
[0006]
Japanese Patent Application Laid-Open No. 6-272190 discloses a technique for improving strength by melting a thermosetting resin in the drying process of a wet papermaking process by using a thermosetting resin having a melting point of 60 to 100 ° C. Has been. However, according to the experiments of the present inventor, when the water-containing inorganic compound or the water-containing inorganic compound and carbonate are contained in a large amount and the content of the thermosetting resin is small, the melting point lower than the drying temperature in the wet papermaking process is required. Even if the thermosetting resin is used, the strength improvement effect of the papermaking sheet is extremely insufficient.
[0007]
The present inventor has repeated intensive trial and error, and in the case of a sheet containing a large amount of a water-containing inorganic compound or a water-containing inorganic compound and a carbonate, by using a thermosetting resin having specific curing characteristics, In addition to the thermosetting resin, for example, synthetic rubber or the like is not added to improve the sheet strength before thermoforming, but the sheet before thermoforming can be obtained only by using the thermosetting resin having the specific curing characteristics described above. -It has been found that the strength can be sufficiently increased and the strength development after thermoforming is excellent, that is, it can have both high incombustibility and formability and the required strength before and after thermoforming. The present invention has been completed.
[0008]
[Means for Solving the Problems]
The non-combustible sheet according to the present invention comprises a water-containing inorganic compound in a solid content of 60 to 95% by weight, a cellulose fiber in a solid content of 2 to 30% by weight, and an inorganic fiber in a solid content of 0 to 20% by weight.Phenolic resin1 to 20% by weight in solid content, and thePhenolic resinNon-combustible sheet by wet papermaking that does not contain any synthetic polymer other than synthetic rubber, and is excellent in the mechanical strength of the non-combustible sheet before thermoforming and the mechanical strength after thermoforming, Contained in the incombustible sheet to ensure incombustibility and formabilityPhenolic resinAs a curing property, the curing rate at 175 ° C. by a curast meter is 0.4 to 1.2 kg / min.Phenolic resinIs used.
[0009]
  In addition, the non-combustible sheet according to the present invention has a total of 60 to 95% by weight of the water-containing inorganic compound and carbonate in solid content, 2 to 30% by weight of the cellulose fiber in solid content, and 0% of the inorganic fiber in solid content. ~ 20% by weight,Phenolic resin1 to 20% by weight in solid content, and the water-containing inorganic compound / carbonate is on the excess side of the water-containing inorganic compound from the solid content weight ratio of 50/50, andPhenolic resinNon-combustible sheet by wet papermaking that does not contain any synthetic polymer other than synthetic rubber, and is excellent in the mechanical strength of the non-combustible sheet before thermoforming and the mechanical strength after thermoforming, Contained in the incombustible sheet to ensure incombustibility and formabilityPhenolic resinAs a curing property, the curing rate at 175 ° C. by a curast meter is 0.4 to 1.2 kg / min.Phenolic resinIs used.
[0010]
The incombustible molded article according to the present invention comprises a water-containing inorganic compound in a solid content of 60 to 95% by weight, a cellulose fiber in a solid content of 2 to 30% by weight, and an inorganic fiber in a solid content of 0 to 20% by weight. ,Phenolic resin1 to 20% by weight in solid content, and thePhenolic resinA non-combustible molded body obtained by thermoforming a non-combustible sheet by wet papermaking that does not contain a synthetic polymer such as synthetic rubber, and the mechanical strength of the non-combustible sheet before thermoforming and the mechanical strength after thermoforming Contained in the non-combustible sheet that is excellent in strength development and ensures high non-combustibility and moldability.Phenolic resinAs a curing property, the curing rate at 175 ° C. by a curast meter is 0.4 to 1.2 kg / min.Phenolic resinIs used.
[0011]
In addition, the incombustible molded article according to the present invention comprises a water-containing inorganic compound and a carbonate in a total solid content of 60 to 95% by weight, a cellulose fiber in a solid content of 2 to 30% by weight, and an inorganic fiber in a solid content. 0-20% by weight,Phenolic resin1 to 20% by weight in solid content, and the water-containing inorganic compound / carbonate is on the excess side of the water-containing inorganic compound from the solid content weight ratio of 50/50, andPhenolic resinA non-combustible molded body obtained by thermoforming a non-combustible sheet by wet papermaking that does not contain a synthetic polymer such as synthetic rubber, and the mechanical strength of the non-combustible sheet before thermoforming and the mechanical strength after thermoforming Contained in the non-combustible sheet that is excellent in strength development and ensures high non-combustibility and moldability.Phenolic resinAs a curing property, the curing rate at 175 ° C. by a curast meter is 0.4 to 1.2 kg / min.Phenolic resinIs used.
[0012]
Examples of the above-mentioned water-containing inorganic compound include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, dihydrate gypsum and calcium aluminate. These compounds all have crystal water in the molecule and have a chemically similar structure. In addition, the hydrous inorganic compounds have some differences in decomposition temperature and endothermic amount depending on the type, but they are quite common in that they decompose upon high temperature heating and exhibit an incombustible effect due to endothermic action. Therefore, basically any of the water-containing inorganic compounds described above may be used, but aluminum hydroxide is most suitable in consideration of economics such as an acquisition price.
[0013]
As the carbonate used in the present invention, at least one selected from calcium carbonate, magnesium carbonate, barium carbonate, strontium carbonate, beryllium carbonate, zinc carbonate and the like is used. These carbonates have some differences in decomposition temperature and the like depending on their types, but they are quite common in that they decompose upon high temperature heating and exhibit a flame retardant effect due to endothermic action. Therefore, basically, any of the carbonates described above may be used, but calcium carbonate is optimal from the viewpoint of cost. In addition, the smoke generation amount reducing effect that the present inventor pointed out in Japanese Patent Application Laid-Open No. 5-112659 can be given as another important effect by the carbonate compounding.
[0014]
The total content range of the water-containing inorganic compound or the water-containing inorganic compound and the carbonate in the incombustible sheet or the incombustible molded article according to the present invention is 60 to 95% by weight in solid content. If the content is less than 60% by weight, sufficient nonflammability cannot be obtained. On the other hand, if it exceeds 95% by weight, it is not suitable because sufficient mechanical strength or moldability cannot be obtained due to the excessive amount of the water-containing inorganic compound or the water-containing inorganic compound and the carbonate. Moreover, the content weight ratio of the water-containing inorganic compound / carbonate must be on the side containing more water-containing inorganic compound than 50/50 in terms of solid content. If the water-containing inorganic compound is less than 50/50, the nonflammability may be lowered, which is unsuitable.
[0015]
As the cellulose fiber described above, one or more kinds selected from wood pulp such as softwood or hardwood chemical pulp, mechanical pulp, semi-chemical pulp, cotton pulp, hemp pulp, various waste paper, etc. Use in combination. Wood pulp is the most easy-to-use cellulose fiber material because of its stable supply and quality and relatively low price. Cotton pulp and hemp pulp are unstable in supply and expensive in price, but in a non-combustible sheet or non-combustible molded article containing a large amount of a water-containing inorganic compound or a water-containing inorganic compound and carbonate as in the present invention. If necessary, the use of the cotton pulp or hemp pulp can minimize the decrease in the mechanical strength of the sheet or molded product.
[0016]
  The content range of the cellulose fiber of the incombustible sheet or incombustible molded article of the present invention isSolid content2 to 30% by weight. If the content is less than 2% by weight, sufficient paper-making properties or mechanical strength cannot be obtained due to the lack of cellulose fiber, and if it exceeds 30% by weight, sufficient nonflammability can be obtained due to excess of organic substances. I can't. Used in the present inventionPhenolic resin is a curast meterIt must have a curing property such that the curing rate at 175 ° C. is 0.4 to 1.2 kg / min.Phenolic resinIf the total amount is less than 0.4 kg / min, the mechanical strength of the sheet before thermoforming becomes insufficient. Also,Phenolic resinIn the case where the total amount of is more than 1.2 kg / min, the strength after thermoforming becomes insufficient.
[0017]
AbovePhenolic resin for heat treatmentWith the accompanying fluid hardening effect, non-combustible materials have various molding shaping effects, various strength effects, or moisture-containing inorganic compounds or carbonates that are prevented from falling off.give. Therefore,The phenol resin described above is the phenol resin used.So that the curing temperature is lower than the decomposition temperature of the water-containing inorganic compound or carbonate used togetherShould.
[0018]
In the incombustible sheet or incombustible molded article of the present inventionPhenolic resinThe content range of is 1 to 20% by weight in solid content. If the content is less than 1% by weight, sufficient mechanical strength or moldability cannot be obtained, and if it exceeds 20% by weight, sufficient nonflammability cannot be obtained due to excessive organic substances. usePhenolic resinHaving the above-mentioned curing characteristics in the total amountPhenolic resinIs preferably 30% by weight or more in terms of solid content. If it is less than 30% by weight, either one or both of the strength before thermoforming and the strength after thermoforming may be insufficient.
[0019]
The above-described inorganic fibers are not necessarily used, but in order to avoid the occurrence of cracks in the surface test of JIS A1321, it is preferable to include inorganic fibers. In this case, at least one selected from glass fiber, rock wool fiber, ceramic fiber, carbon fiber and the like is used.
The content range of the inorganic fiber in the incombustible sheet or incombustible molded article of the present invention is 0 to 20% by weight in terms of solid content. If it exceeds 20% by weight, sufficient paper-making properties cannot be obtained.
[0020]
The non-combustible sheet or non-combustible molded product according to the present invention comprises a water-containing inorganic compound or a water-containing inorganic compound and carbonate / cellulose fiber /Phenolic resinOr a water-containing inorganic compound or a water-containing inorganic compound and carbonate / cellulose fiber / inorganic fiber /Phenolic resinThe wet papermaking method is suitable as the manufacturing method. Further details will be described below with reference to the production method.
[0021]
The non-combustible sheet or non-combustible molded product according to the present invention is a various yield improver for improving the yield of the hydrous inorganic compound or carbonate, or as required.For coloringIt may contain synthetic dyes. In addition, it goes without saying that a dry or wet paper strength enhancer, a sizing agent, a water-proofing agent, a water-repellent agent and the like should be included in order to improve mechanical strength or suitability for post-processing depending on applications.
[0022]
In the incombustible sheet or incombustible molded article of the present inventionPhenolic resinAs a method of containing,Phenolic resinA liquid material, a fibrous material, or a granular material may be internally added to the raw material, or may be applied or impregnated after forming the paper layer. As a method of adding a water-containing inorganic compound or carbonate, a method of applying or impregnating a base material with a paint containing a water-containing inorganic compound or carbonate is also conceivable. In order to make the quality uniform in the direction, the method of internally adding a water-containing inorganic compound or carbonate in the form of powder or slurry in the raw material slurry is most preferable. In this case, a water-containing inorganic compound, carbonate, cellulose fiber, inorganic fiber andPhenolic resinThe addition method, the order of addition, and the like are arbitrary, and a beating process or the like may be performed as necessary.
[0023]
In order to produce the incombustible sheet or the incombustible molded article according to the present invention using the raw material slurry thus obtained, a normal papermaking method and a thermoforming method may be used. That is, for papermaking, the slurry may be supplied onto a papermaking net such as a long net, a circular net or an inclined net, filtered and dehydrated, and then compressed and dried. If necessary, two or more paper layers may be superposed by various combination nets, multi-tank circular nets, and various laminators. For thermoforming, conventional hot press molding, high-frequency thermoforming, etc. may be applied alone or in combination of two or more.
[0024]
Furthermore, depending on the application, the obtained incombustible sheet or incombustible molded product may be subjected to surface treatment such as spraying or application of various paints or printing, or a decorative paper, laser, synthetic resin film, etc. Needless to say, the added value of the incombustible sheet or incombustible molded article can be further increased.
[0025]
The incombustible sheet or incombustible molded article of the present invention exhibits excellent incombustibility only by containing a water-containing inorganic compound or a water-containing inorganic compound and a carbonate, but does not hinder the use of conventional flame retardants. Examples of flame retardants that can be used in combination include known flame retardants such as organic phosphorus compounds, phosphorus-containing nitrogen-containing organic compounds, sulfamates such as guanidine sulfamate, inorganic phosphates, halogen-containing compounds, and antimony compounds. it can. Examples of the method of using the flame retardant include a method in which the flame retardant is internally added to the raw material slurry, or is applied or impregnated during the paper making process, after the paper making, or after the forming. However, in this case, it is natural that the content of the flame retardant should be determined in consideration of the content of the water-containing inorganic compound or the water-containing inorganic compound and the carbonate.
[0026]
[Action]
The important thing of the present invention is that it has specific curing propertiesPhenolic resinContains a large amount of water-containing inorganic compound or water-containing inorganic compound and carbonate,Phenolic resinIn a wet papermaking sheet with a small content of, excellent mechanical strength can be obtained both before and after thermoforming. Hereinafter, description will be made based on experimental results in Examples described later.
[0027]
As described above, a water-containing inorganic compound or a water-containing inorganic compound and carbonate / cellulose fiber /Phenolic resinOr a water-containing inorganic compound or a water-containing inorganic compound and carbonate / cellulose fiber / inorganic fiber /Phenolic resinIn order to ensure a high degree of non-combustibility in a non-combustible sheet or non-combustible molded article made from wet papermaking, the content of cellulose fiber, which is an organic substance, is reduced and the organic substance is also an organic substance.Phenolic resinIt is necessary to reduce the content of as much as possible.
[0028]
In general, however, the strength before thermoforming is much weaker than that after thermoforming.Phenolic resinAlthough the strength after thermoforming can be managed to some extent by reducing the content of, the strength before thermoforming is too weak, causing problems such as breakage or collapse of the sheet during transportation or insertion into a mold. It becomes easy to come. For example, see Comparative Examples 1 and 4 described below. In these experimental examples, the strength before thermoforming was extremely weak and the sheet was easily broken, making it difficult to carry a sheet of a predetermined size alone.
[0029]
In such a case, it is conceivable to increase the sheet strength before thermoforming to some extent by blending synthetic rubber or the like, but on the other hand, nonflammability is greatly reduced. For example, see Comparative Example 3 described later. Compared to Comparative Example 1, Comparative Example 3 containing SBR latex improved both the breaking length and bending strength before thermoforming to about 2.5 times, but the smoke generation amount was 12 to 24 times. The nonflammability is greatly reduced.
[0030]
As mentioned earlier, it was included in the sheet in the drying process of the wet papermaking process.Phenolic resinA technique for improving the sheet strength by melting the sheet is disclosed. However, it was used in Comparative Example 1 and Comparative Example 4.PhenolHas a melting point of 74 ° C., and the drying temperature in the wet papermaking stage is 110 ° C. or 110 to 120 ° C., which is higher than the drying temperature.Phenolic resinAlthough the melting point is sufficiently low, the strength before thermoforming (after drying in wet papermaking) is very weak. That is, it contains a large amount of a water-containing inorganic compound or water-containing inorganic compound and carbonate according to the present invention,Phenolic resinHas a melting point lower than the drying temperature in the wet papermaking process when the content ofPhenolic resinTherefore, it is judged that the effect of improving the strength of the papermaking sheet is extremely insufficient.
[0031]
Therefore, the present inventor contains a large amount of a water-containing inorganic compound or a water-containing inorganic compound and carbonate,Phenolic resinIn order to obtain excellent mechanical strength both before and after thermoforming in a wet papermaking sheet with a low content, a number of experiments were conducted. It has been found that this purpose can be achieved by use. That is, it has a thermosetting property having a curing property of 0.4 to 1.2 kg / min at 175 ° C. by a curast meter (hereinafter, sometimes simply referred to as a curing rate in this sense).Phenolic resinHas been found to be suitable for this purpose.
[0032]
Further details will be described. Used in Comparative Example 1 and Comparative Example 4 to be described laterPhenolic resinThe curing rate of 0.21 kg / min, as will be described laterPhenolic resinIn the case where the curing rate was 0.53 kg / min (Example 2), 0.71 kg / min (Examples 1 and 11) and 0.92 (Example 3), the corresponding Comparative Example 1 or Comparative Example Compared to 4, the strength before thermoforming is greatly improved by 2.1 to 2.9 times in break length and 2.5 to 3.1 times in bending strength. 1.6 to 2.2 times, and bending strength 1.4 to 1.6 times. In Comparative Example 4, the strength was too weak and it was easy to break, and it was difficult to carry a sheet of a predetermined size alone, whereas in Example 11, it was possible to carry it alone without any trouble. on the other hand,Phenolic resinWhen the curing rate of 1.40 (Comparative Example 2) is set, the effect of improving various strengths before thermoforming is exhibited to some extent, but the final strength after thermoforming is too weak and has a practically sufficient strength. I couldn't get a body. The compositions of the incombustible sheets according to Examples 1, 2, 3, and 11 and Comparative Examples 1, 2, and 4 were almost the same, and there was almost no difference in incombustibility.
[0033]
That is, it contains a large amount of water-containing inorganic compound or water-containing inorganic compound and carbonate,Phenolic resinUsed in wet papermaking sheets with low contentPhenolic resinOnly by specifying the curing rate of 0.4 to 1.2 kg / min, it has excellent mechanical strength both before and after thermoforming and has high incombustibility. A sheet or an incombustible molding can be obtained.
[0034]
Curing speed is 0.4-1.2kg / minPhenolic resinThe details of the action / mechanism with which such a successful result is obtained are still unclear, but the thermal history experienced by the sheet during the drying process in wet papermaking and the subsequent thermoforming is 0. 4 ~ 1.2kg / minPhenolic resinAgainstPhenolic resinIt is presumed to act very favorably on the crosslinking and curing reaction.
[0035]
The drying process in wet papermaking is generally at a temperature of about 80 to 130 ° C. and no pressure is applied. on the other hand,Phenolic resinThe thermoforming conditions are generally about 130 to 250 ° C. and the pressure is several to several hundred kg / cm.2 It is.
[0036]
Phenolic resinWhen the curing rate of the ink is less than 0.4 kg / min, in the drying process,Phenolic resinIt is considered that the strength before thermoforming is extremely weak because it is difficult to cause cross-linking. On the contrary, when the curing rate exceeds 1.2 kg / min, the crosslinking proceeds in the drying process and should be manifested during the subsequent thermoforming due to some influence.Phenolic resinIt is considered that the strength development property by thermoforming is lowered because the curing reactivity of the resin is excluded and sufficient curing by thermoforming becomes impossible.
[0037]
On the other hand, when the curing rate is in the range of 0.4 to 1.2 kg / min specified in the present invention, the drying step is moderately performed.Phenolic resinCross-linking proceeds, the sheet strength before thermoforming is ensured, and then thermoformingPhenolic resinIt is considered that the crosslinking of the resin proceeds sufficiently to complete the curing. That is, when the curing rate is 0.4 to 1.2 kg / min,Phenolic resinIt is presumed that the cross-linking / curing action of the resin is exerted conveniently and regretfully in each stage of the drying process and thermoforming, and as a result, excellent strength is achieved both before and after thermoforming.
[0038]
EXAMPLES Next, the present invention will be described more specifically based on the following examples. Measurement of each item in this example was performed by the following method.
( 1 )Thickness and density; according to JIS P-8118.
( 2 )Smokeability (smoke coefficient): According to the surface test of JIS A-1321.
( 3 )Nonflammability 1; According to JIS A-1322.
( 4 )Nonflammability 2; According to surface test of JIS A-1321.
( 5 )Breaking length: According to JIS A-8113.
( 6 )Bending strength: According to JIS A-5907.
  Also,Phenolic resinThe rate of cure at 175 ° C. with a curastometer of 10% of the maximum stress on the cure curve (stress FTen(Kg), time TTen(Min)) and the point that reached 90% of the maximum stress (stress F90(Kg), time T90Slope of the line connecting (minutes)), that is, (F90-FTen) / (T90-TTen) Given in kg / min.
[0039]
Example 1
A predetermined amount of a mixed dispersion of cellulose fiber and glass fiber obtained by disaggregating commercially available softwood unbleached sulfate pulp and glass fiber (fiber diameter 3 μm; the same applies hereinafter) with a disaggregator, The curing rate at 175 ° C. with an aluminum hydroxide powder (average particle size of 5.7 μm; the same applies hereinafter), calcium carbonate powder (average particle size of 1.5 μm; the same applies hereinafter) and a curast meter is 0. 0.7 kg / min phenol resin (hereinafter abbreviated as phenol resin a) was added, and after sufficiently dispersed and mixed with a stirrer, paper was made with a square test paper machine, and after pressing, Sheet A was obtained by drying with a hot air dryer at 110 ° C.
Regarding the sheet A, the content of each component is shown in Table 1, and the thickness, density, breaking length, bending strength, smoke generation coefficient and incombustibility were measured, and the results are shown in Table 1. Next, the sheet A is heat-treated with a hot press (temperature: 175 ° C., pressure: 5 kg / cm2 , Time 3 minutes), thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability were measured, and the results are also shown in Table 1.
[0040]
Example 2
In Example 1, instead of phenol resin a, a phenol resin (hereinafter abbreviated as phenol resin b) having a curing rate at 175 ° C. of 0.53 kg / min by a curast meter is used. Sheet B was obtained in the same manner as in Example 1 except that it was used.
The content of each component for sheet B is shown in Table 1, and the thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability were measured, and the results are shown in Table 1. Next, the thickness, density, fracture length, bending strength, smoke generation coefficient and nonflammability after sheet B was heat-treated in the same manner as in Example 1 were measured, and the results are shown in Table 1. It was shown together.
[0041]
Example 3
In Example 1, instead of phenol resin a, a phenol resin (hereinafter abbreviated as phenol resin c) having a curing rate at 175 ° C. of 0.92 kg / min by a curast meter is used. A sheet C was obtained in the same manner as in Example 1 except that it was used.
Regarding the sheet C, the content of each component is shown in Table 1, and the thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability were measured, and the results are shown in Table 1.
Next, the thickness, density, tearing length, bending strength, smoke generation coefficient and nonflammability after heat treatment of the sheet C in the same manner as in Example 1 were measured, and the results are shown in Table 1. It was shown together.
[0042]
Comparative Example 1
In Example 1, instead of phenol resin a, a phenol resin having a curing rate at 175 ° C. of 0.21 kg / min and a melting point of 74 ° C. using a curast meter (hereinafter referred to as phenol resin d) Sheet D was obtained in the same manner as in Example 1 except that the abbreviation was used.
The content of each component for sheet D is shown in Table 1, and the thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability were measured, and the results are shown in Table 1. Next, the thickness, density, tearing length, bending strength, smoke generation coefficient and nonflammability after the sheet D was heat-treated in the same manner as in Example 1 were measured, and the results are shown in Table 1. It was shown together.
[0043]
Comparative Example 2
In Example 1, instead of phenol resin a, a phenol resin (hereinafter abbreviated as phenol resin e) having a curing rate at 175 ° C. of 1.40 kg / min by a curast meter is used. Sheet E was obtained in the same manner as in Example 1 except that it was used.
Regarding the sheet E, the content of each component is shown in Table 1, and the thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability were measured, and the results are shown in Table 1.
Next, the thickness, density, tearing length, bending strength, smoke generation coefficient and nonflammability after sheet E was heat-treated in the same manner as in Example 1 were measured, and the results are shown in Table 1. It was shown together.
[0044]
Comparative Example 3
In Comparative Example 1, Sheet F was obtained in the same manner as in Example 1 except that a commercially available SBR latex was blended.
Regarding the sheet F, the content of each component is shown in Table 1, and the thickness, density, breaking length, bending strength, smoke generation coefficient and incombustibility were measured, and the results are shown in Table 1.
Next, the thickness, density, tearing length, bending strength, smoke generation coefficient and nonflammability after heat treatment of the sheet F in the same manner as in Comparative Example 1 were measured, and the results are shown in Table 1. It was shown together.
[0045]
Example 4
In Example 1, sheet G was obtained in the same manner as in Example 1 except that rock wool fiber (fiber length: 7 mm; the same applies hereinafter) was used instead of glass fiber.
Regarding the sheet G, the content of each component is shown in Table 1, and the thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability were measured, and the results are shown in Table 1.
Next, the thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability after sheet G was heat-treated in the same manner as in Example 1 were measured, and the results are shown in Table 1. It was shown together.
[0046]
Example 5
In Example 1, phenol resin a and phenol resin d were blended in the same manner as in Example 1 except that phenol resin a / phenol resin b = 3/2 in a solid content weight ratio. -To H was obtained.
Regarding the sheet H, the content of each component is shown in Table 1, and the thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability were measured, and the results are shown in Table 1.
Next, the thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability after the sheet H was heat-treated in the same manner as in Example 1 were measured, and the results are shown in Table 1. It was shown together.
[0047]
Example 6
In Example 5, Sheet I was obtained in the same manner as in Example 5 except that rock wool fiber was used instead of glass fiber.
Regarding the sheet I, the content of each component is shown in Table 1, and the thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability were measured, and the results are shown in Table 1.
Next, the thickness, density, fracture length, bending strength, smoke generation coefficient and nonflammability after sheet I was heat-treated in the same manner as in Example 1 were measured, and the results are shown in Table 1. It was shown together.
[0048]
Example 7
In Example 1, phenol resin a and phenol resin b were mixed in the same manner as in Example 1 except that phenol resin a / phenol resin b = 1/1. -Obtained J.
Regarding the sheet J, the content of each component is shown in Table 1, and the thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability were measured, and the results are shown in Table 1.
Next, the thickness, density, fracture length, bending strength, smoke generation coefficient and nonflammability after sheet J was heat-treated in the same manner as in Example 1 were measured, and the results are shown in Table 1. It was shown together.
[0049]
Example 8
A sheet K was obtained in the same manner as in Example 1 except that magnesium hydroxide powder (average particle diameter of 10 μm; the same applies hereinafter) was used instead of aluminum hydroxide powder.
Regarding the sheet K, the content of each component is shown in Table 1, and the thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability were measured, and the results are shown in Table 1.
Next, the thickness, density, fracture length, bending strength, smoke generation coefficient and nonflammability after the sheet K was heat-treated in the same manner as in Example 1 were measured, and the results are shown in Table 1. It was shown together.
[0050]
Example 9
In Example 1, Sheet L was obtained in the same manner as in Example 1 except that calcium carbonate powder was not added.
Regarding the sheet L, the content of each component is shown in Table 1, and the thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability were measured, and the results are shown in Table 1.
Next, the thickness, density, fracture length, bending strength, smoke generation coefficient and nonflammability after the sheet L was heat-treated in the same manner as in Example 1 were measured, and the results are shown in Table 1. It was shown together.
[0051]
Example 10
In Example 1, Sheet M was obtained in the same manner as in Example 1 except that no glass fiber was blended.
Regarding the sheet M, the content of each component is shown in Table 1, and the thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability were measured, and the results are shown in Table 1.
Next, the thickness, density, breaking length, bending strength, smoke generation coefficient and nonflammability after the sheet M was heat-treated in the same manner as in Example 1 were measured, and the results are shown in Table 1. It was shown together.
[0052]
Example 11
A commercially available softwood-based bleached sulfate pulp and glass fiber were disaggregated with a pulper, and after adding aluminum hydroxide powder, calcium carbonate powder and phenolic resin a and thoroughly dispersing and mixing, 30 sheets of sheet layers are laminated on a wind-up roll paper machine with a wind up roll, and the sheet is squeezed and dried with hot air of 110 to 120 ° C. -To N was obtained.
About the sheet | seat N, while showing the content rate of each component in Table 1, thickness, the density, the breaking length of a fiber orientation direction, the bending strength of a fiber orientation direction, a smoke generation coefficient, and nonflammability were measured, respectively, and the result Is shown in Table 1. Sheet N was able to be carried alone without any problems.
Next, the sheet N is heated by a hot press (temperature: 175 ° C., pressure: 10 kg / cm2 , 10 minutes), the thickness, the density, the breaking length in the fiber orientation direction, the bending strength in the fiber orientation direction, the smoke generation coefficient, and the nonflammability were measured, and the results are also shown in Table 1.
[0053]
Comparative Example 4
In Example 11, a sheet O having a size of 930 mm (fiber orientation direction) × 2440 mm was obtained in the same manner as in Example 11 except that the phenol resin d was used instead of the phenol resin a.
About sheet | seat O, while showing the content rate of each component in Table 1, thickness, a density, the breaking length of a fiber orientation direction, the bending strength of a fiber orientation direction, a smoke generation coefficient, and nonflammability were measured, respectively, and the result Is shown in Table 1. Sheet O is too weak to be easily broken and difficult to carry alone. Although it was possible to carry it by two people, in this case as well, the sheet is likely to be broken and the workability is considerably poor.
Next, the thickness, density, fiber breaking direction breaking strength, fiber orientation direction bending strength, smoke generation coefficient, and nonflammability after heat treatment of sheet O in the same manner as in Example 11 were performed. The results are shown in Table 1.
[0054]
[Table 1]
Figure 0003664192
[0055]
Example 12
Lamination molding (mold temperature 200 ° C., pressure 20 kg / cm) by laminating two sheets with a mold using the sheet A before hot pressing obtained in Example 12 , Time 10 minutes) to obtain a good integral molded body in which the two layers were firmly bonded. The shape of the obtained molded body (thickness is 9.0 mm) is shown in FIG.
[0056]
Example 13
Using the sheet J before hot pressing obtained in Example 7, lamination molding using a mold was performed in the same manner as in Example 12 to obtain a good integrally molded body in which the two layers were firmly bonded. The shape of the obtained molded body (however, the thickness is 7.6 mm) is shown in FIG.
[0057]
【The invention's effect】
The non-combustible sheet or non-combustible molded product of the present invention comprises a water-containing inorganic compound or a water-containing inorganic compound and carbonate / cellulose fiber /Phenolic resinOr a water-containing inorganic compound or a water-containing inorganic compound and carbonate / cellulose fiber / inorganic fiber /Phenolic resinThe composition contains a specific amount of each component, and is excellent in the mechanical strength of the incombustible sheet before thermoforming and the mechanical strength expression of the incombustible molded body after thermoforming, and has high incombustibility and moldability. As the phenol resin contained in the incombustible sheet and the incombustible molded article to be secured, the curing rate at 175 ° C. by a curast meter is 0.4 to 1.2 kg / min.Phenolic resinTherefore, a non-combustible sheet or a non-combustible molded article having a high degree of incombustibility and moldability and having excellent mechanical strength both before and after thermoforming is obtained.
More specifically, the melting point of phenol used in Comparative Example 1 and Comparative Example 4 is 74 ° C., and the drying temperature in the wet papermaking stage is 110 ° C. or 110 to 120 ° C., which is higher than the drying temperature. Although the melting point of the resin is sufficiently low, the strength before thermoforming (after drying in wet papermaking) is very weak. That is, when the water-containing inorganic compound or the water-containing inorganic compound and carbonate according to the present invention are contained in a large amount and the phenol resin content is low, the phenol having a melting point lower than the drying temperature in the wet papermaking process. Even if a resin is used, it is judged that the effect of improving the strength of the papermaking sheet is extremely insufficient. Furthermore, although the hardening rate of the phenol resin used in Comparative Example 1 and Comparative Example 4 is 0.21 kg / min, the hardening rate of the phenol resin is 0.53 kg / min (Example 2), and 0. In the case of 71 kg / min (Examples 1 and 11) and 0.92 kg / min (Example 3), the strength before thermoforming is 2 in terms of the breaking length compared to the corresponding Comparative Example 1 or Comparative Example 4. .1 to 2.9 times, bending strength is greatly improved to 2.5 to 3.1 times, and at the same time, various strengths after thermoforming are 1.6 to 2.2 times in terms of breaking length and 1. 1 in bending strength. It is considerably improved to 4 to 1.6 times. In Comparative Example 4, the strength was too weak and it was easy to break and it was difficult to carry a sheet of a predetermined size alone, whereas in Example 11, it was possible to carry it alone without any trouble. On the other hand, when the curing rate of the phenol resin is 1.40 kg / min (Comparative Example 2), although the effects of improving various strengths before thermoforming are exhibited to some extent, the final strength after thermoforming is too weak. A molded product having a practically sufficient strength could not be obtained. The compositions of the incombustible sheets according to Examples 1, 2, 3, and 11 and Comparative Examples 1, 2, and 4 were almost the same, and there was almost no difference in incombustibility.
  That is, it contains a large amount of water-containing inorganic compound or water-containing inorganic compound and carbonate,
In wet papermaking sheets with a low content of phenolic resin, it is only possible to specify the curing rate of the phenolic resin to be used in the range of 0.4 to 1.2 kg / min. A non-combustible sheet or a non-combustible molded article having excellent mechanical strength both after molding and having a high degree of non-combustibility can be obtained.
[0058]
Therefore, in order to ensure the highest possible non-flammability, includePhenolic resinThe sheet before thermoforming is robust even when the amount of the sheet is kept to a very small amount. Thus, an incombustible molded article having excellent mechanical strength can be obtained.
[0059]
Also, by thermoforming the non-combustible sheet of the present invention, it is possible not only to firmly fix and integrate two or more sheets, but also to have various shapes such as a curved shape and an L-shape. Thus, it is possible to easily obtain a non-combustible molded article having a high degree of non-combustibility and excellent mechanical strength.
[Brief description of the drawings]
FIG. 1 is a perspective view of a non-combustible molded body showing a curved shape of a two-layer structure obtained from the present invention.
FIG. 2 is a perspective view of a non-combustible molded body having an L shape having a two-layer structure obtained from the present invention.
[Explanation of symbols]
1. Compact

Claims (12)

含水無機化合物を固形分で60〜95重量%と、セルロ−ス繊維を固形分で2〜30重量%と、無機繊維を固形分で0〜20重量%と、フェノール樹脂を固形分で1〜20重量%とを含有し、かつ該フェノール樹脂以外の合成ゴム等の合成高分子を含有しない湿式抄造による不燃シ−トであって、熱成形前の該不燃シートの機械的強度及び熱成形後の機械的強度発現にも優れ、かつ高度の不燃性及び成形性を確保する前記不燃シート中に含有するフェノール樹脂として、キュラストメ−タによる175℃での硬化速度が0.4〜1.2kg/分なる硬化特性を有するフェノール樹脂を用いることを特徴とする不燃シ−ト。 60 to 95% by weight of the water-containing inorganic compound, 2 to 30% by weight of the cellulose fiber, 0 to 20% by weight of the inorganic fiber, and 1 to 1% of the phenol resin by solids 20% by weight and a non-combustible sheet made by wet papermaking that does not contain a synthetic polymer other than the phenolic resin, such as synthetic rubber, and the mechanical strength of the non-combustible sheet before thermoforming and after thermoforming The phenolic resin contained in the non-combustible sheet that is excellent in the mechanical strength expression and ensures a high degree of non-combustibility and moldability, has a curing rate at 175 ° C. by a curast meter of 0.4 to 1.2 kg / A non-combustible sheet characterized by using a phenol resin having a sufficient curing property. 含水無機化合物と炭酸塩を固形分で合計60〜95重量%と、セルロ−ス繊維を固形分で2〜30重量%と、無機繊維を固形分で0〜20重量%と、フェノール樹脂を固形分で1〜20重量%とを含有し、かつ含水無機化合物/炭酸塩が固形分重量比で50/50より含水無機化合物過多側で、しかも前記フェノール樹脂以外の合成ゴム等の合成高分子を含有しない湿式抄造による不燃シ−トであって、熱成形前の該不燃シートの機械的強度及び熱成形後の機械的強度発現にも優れ、かつ高度の不燃性及び成形性を確保する前記不燃シート中に含有するフェノール樹脂として、キュラストメ−タによる175℃での硬化速度が0.4〜1.2kg/分なる硬化特性を有するフェノール樹脂を用いることを特徴とする不燃シ−ト。 A total of 60 to 95% by weight of water-containing inorganic compound and carbonate, 2 to 30% by weight of cellulose fiber, 0 to 20% by weight of solid inorganic fiber, solid phenol resin A synthetic polymer such as a synthetic rubber other than the phenolic resin, containing 1 to 20% by weight of the water, and the water-containing inorganic compound / carbonate is in excess of the water-containing inorganic compound from the solid content weight ratio of 50/50. A non-combustible sheet made by wet papermaking that does not contain the non-combustible sheet, which is excellent in the mechanical strength of the non-combustible sheet before thermoforming and the mechanical strength after thermoforming, and ensures high incombustibility and formability. A non-combustible sheet characterized by using a phenol resin having a curing characteristic of a curing rate of 0.4 to 1.2 kg / min at 175 ° C. by a curast meter as a phenol resin contained in a sheet. 含水無機化合物を固形分で60〜95重量%と、セルロ−ス繊維を固形分で2〜30重量%と、無機繊維を固形分で0〜20重量%と、フェノール樹脂を固形分で1〜20重量%とを含有し、かつ該フェノール樹脂以外の合成ゴム等の合成高分子を含有しない湿式抄造による不燃シ−トを熱成形してなる不燃成形体であって、熱成形前の該不燃シートの機械的強度及び熱成形後の機械的強度発現にも優れ、かつ高度の不燃性及び成形性を確保する前記不燃シート中に含有するフェノール樹脂として、キュラストメ−タによる175℃での硬化速度が0.4〜1.2kg/分なる硬化特性を有するフェノール樹脂を用いることを特徴とする不燃成形体。 60 to 95% by weight of the water-containing inorganic compound, 2 to 30% by weight of the cellulose fiber, 0 to 20% by weight of the inorganic fiber, and 1 to 1% of the phenol resin by solids A non-combustible molded article obtained by thermoforming a non-combustible sheet by wet papermaking containing 20% by weight and containing no synthetic polymer such as synthetic rubber other than the phenol resin, Curing rate at 175 ° C. by a curast meter as a phenol resin contained in the non-combustible sheet that is excellent in the mechanical strength of the sheet and the mechanical strength after thermoforming and ensures high incombustibility and formability. A non-combustible molded article using a phenol resin having a curing property of 0.4 to 1.2 kg / min. 含水無機化合物と炭酸塩を固形分で合計60〜95重量%と、セルロ−ス繊維を固形分で2〜30重量%と、無機繊維を固形分で0〜20重量%と、フェノール樹脂を固形分で1〜20重量%とを含有し、かつ含水無機化合物/炭酸塩が固形分重量比で50/50より含水無機化合物過多側で、しかも前記フェノール樹脂以外の合成ゴム等の合成高分子を含有しない湿式抄造による不燃シ−トを熱成形してなる不燃成形体であって、熱成形前の該不燃シートの機械的強度及び熱成形後の機械的強度発現にも優れ、かつ高度の不燃性及び成形性を確保する前記不燃シート中に含有するフェノール樹脂として、キュラストメ−タによる175℃での硬化速度が0.4〜1.2kg/分なる硬化特性を有するフェノール樹脂を用いることを特徴とする不燃成形体。 A total of 60 to 95% by weight of water-containing inorganic compound and carbonate, 2 to 30% by weight of cellulose fiber, 0 to 20% by weight of solid inorganic fiber, solid phenol resin A synthetic polymer such as a synthetic rubber other than the phenolic resin, containing 1 to 20% by weight of the water, and the water-containing inorganic compound / carbonate is in excess of the water-containing inorganic compound from the solid content weight ratio of 50/50. A non-combustible molded body obtained by thermoforming a non-combustible sheet made by wet papermaking, excellent in the mechanical strength of the non-combustible sheet before thermoforming and the mechanical strength after thermoforming, and highly incombustible. As the phenol resin contained in the non-combustible sheet to ensure the property and the moldability, a phenol resin having a curing property in which a curing rate at 175 ° C. by a curast meter is 0.4 to 1.2 kg / min is used. Toss Incombustible molded body. 炭酸塩は炭酸カルシウムである請求項2記載の不燃シ−ト。The incombustible sheet according to claim 2 , wherein the carbonate is calcium carbonate. 炭酸塩は炭酸カルシウムである請求項4記載の不燃成形体。The incombustible molded article according to claim 4 , wherein the carbonate is calcium carbonate. 含水無機化合物は水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、二水和石こう及びアルミン酸化カルシウムの中から選ばれた少なくとも1種類からなる請求項1、2または5記載の不燃シ−ト。6. The incombustible sheet according to claim 1, wherein the hydrous inorganic compound comprises at least one selected from aluminum hydroxide, magnesium hydroxide, calcium hydroxide, dihydrate gypsum and calcium aluminate. 含水無機化合物は水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、二水和石こう及びアルミン酸化カルシウムの中から選ばれた少なくとも1種類からなる請求項3、4または6記載の不燃成形体。The incombustible molded article according to claim 3, 4 or 6, wherein the hydrous inorganic compound comprises at least one selected from aluminum hydroxide, magnesium hydroxide, calcium hydroxide, dihydrate gypsum and calcium aluminate. フェノール樹脂の内、固形分で30重量%以上がキュラストメ−タによる175℃での硬化速度が0.4〜1.2kg/分なる硬化特性を有するものである請求項1、2、5または7記載の不燃シ−ト。Among phenolic resins, at least 30% by weight solids Kyurasutome - claims 1, 2, 5 or 7 cure rate at 175 ° C. according to data is one having a hardening property consisting 0.4~1.2Kg / min The incombustible sheet described. フェノール樹脂の内、固形分で30重量%以上がキュラストメ−タによる175℃での硬化速度が0.4〜1.2kg/分なる硬化特性を有するものである請求項3、4、6または8記載の不燃成形体。Among phenolic resins, at least 30% by weight solids Kyurasutome - claim cure rate at 175 ° C. according to data is one having a hardening property consisting 0.4~1.2Kg / min 3, 4, 6 or 8 The incombustible molded article. 無機繊維はガラス繊維、ロックウ−ル繊維及びセラミック繊維の中から選ばれた少なくとも1種類からなる請求項1、2、5、7または9記載の不燃シ−ト。 The incombustible sheet according to claim 1, 2, 5, 7, or 9, wherein the inorganic fiber comprises at least one selected from glass fiber, rock wool fiber, and ceramic fiber. 無機繊維はガラス繊維、ロックウ−ル繊維及びセラミック繊維の中から選ばれた少なくとも1種類からなる請求項3、4、6、8または10記載の不燃成形体。 The incombustible molded article according to claim 3, 4, 6, 8 or 10, wherein the inorganic fiber comprises at least one selected from glass fiber, rock wool fiber and ceramic fiber.
JP3315496A 1996-01-29 1996-01-29 Non-combustible sheet or non-combustible molded product Expired - Fee Related JP3664192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3315496A JP3664192B2 (en) 1996-01-29 1996-01-29 Non-combustible sheet or non-combustible molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3315496A JP3664192B2 (en) 1996-01-29 1996-01-29 Non-combustible sheet or non-combustible molded product

Publications (2)

Publication Number Publication Date
JPH09208718A JPH09208718A (en) 1997-08-12
JP3664192B2 true JP3664192B2 (en) 2005-06-22

Family

ID=12378664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3315496A Expired - Fee Related JP3664192B2 (en) 1996-01-29 1996-01-29 Non-combustible sheet or non-combustible molded product

Country Status (1)

Country Link
JP (1) JP3664192B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0986294A3 (en) 1998-09-04 2000-05-17 TDK Corporation Electric wave absorber
JP2003041758A (en) * 2001-07-31 2003-02-13 Hokuetsu Paper Mills Ltd Floor finishing base material

Also Published As

Publication number Publication date
JPH09208718A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
EP0006362B1 (en) Process for the production of non-combustible asbestos-free board products
KR101203393B1 (en) Sheet-like non-combustible molded body
JPS6312200B2 (en)
JP3528103B2 (en) Non-combustible sheet or non-combustible molded article and method for producing the same
JP2652083B2 (en) Method for producing flame-retardant paper or board or flame-retardant molded article
JP3664192B2 (en) Non-combustible sheet or non-combustible molded product
JP4866758B2 (en) Non-combustible sheet or non-combustible molded product
JP4310715B2 (en) Sheet-shaped incombustible molded body
JP4866822B2 (en) Non-combustible sheet or non-combustible molded article and method for producing them
JP5275602B2 (en) Non-combustible sheet or non-combustible molded product
JP4852290B2 (en) Sheet-type non-combustible molding for building materials
JP4587006B2 (en) Sheet-shaped incombustible molded body
JP4732940B2 (en) Non-combustible sheet or non-combustible molded product
JPH0778127B2 (en) Flame-retardant sheet or flame-retardant molded product
JP4110431B2 (en) Flame retardant paper
JPH0858027A (en) Non-combustible decorative architectural material and production thereof
JP3654308B2 (en) Incombustible molded body
JP4782301B2 (en) Sheet-like incombustible molded body and method for producing the same
JP4782291B2 (en) Sheet flame retardant molded article and method for producing the same
JP3062714B2 (en) Non-combustible laminates or laminates
JP4782308B2 (en) Sheet-like incombustible molded body and method for producing the same
JP2005240253A (en) Vulcanized fiber having good dimensional stability and method for producing the same
JP2002339296A (en) Sheet-like non-combustible decorative material
JP3680184B2 (en) Incombustible cosmetics
JP2551832B2 (en) Improved organic board and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees