JP3663958B2 - Vehicle alternator - Google Patents

Vehicle alternator Download PDF

Info

Publication number
JP3663958B2
JP3663958B2 JP05805799A JP5805799A JP3663958B2 JP 3663958 B2 JP3663958 B2 JP 3663958B2 JP 05805799 A JP05805799 A JP 05805799A JP 5805799 A JP5805799 A JP 5805799A JP 3663958 B2 JP3663958 B2 JP 3663958B2
Authority
JP
Japan
Prior art keywords
claw
permanent magnet
pop
shaped magnetic
vehicle alternator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05805799A
Other languages
Japanese (ja)
Other versions
JPH11318064A (en
Inventor
宏至 金澤
和雄 田原
義明 本田
雅美 高野
正裕 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP05805799A priority Critical patent/JP3663958B2/en
Publication of JPH11318064A publication Critical patent/JPH11318064A/en
Application granted granted Critical
Publication of JP3663958B2 publication Critical patent/JP3663958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両用交流発電機に係り、特に、自動車用発電装置として用いるに好適な車両用交流発電機に関する。
【0002】
【従来の技術】
一般に車両用交流発電機は、回転子と固定子から構成されている。回転子は、先端部分に複数個の爪部を形成した一対の対向配置された爪形磁極と、爪形磁極を磁化させる界磁巻線とから構成されている。また、固定子は、回転子と所定の間隔を隔てて配置されるとともに、回転子の爪形磁極の磁化により交流電圧を発生させる。
【0003】
かかる構成の車両用交流発電機においては、回転子が回転して界磁巻線に直流電流が流れることにより一対の爪形磁極にN極及びS極が発生する。N極の爪形磁極の爪部から出た磁束は固定子の固定子鉄心を通りS極の爪形磁極の爪部に戻る磁気回路を形成する。
【0004】
このとき、磁気回路の磁束が固定子の固定子巻線を差交することで固定子巻線に交流の誘起電圧が発生する。
【0005】
このような車両用交流発電機においては、固定子巻線を差交する磁束量が発電電流に影響する。そこで、従来の車両用交流発電機においては、爪形磁極の爪部間に永久磁石を配置して界磁巻線が作る磁束を増磁することにより、固定子巻線を差交する磁束量を増やすようにしている。
【0006】
さらに、従来の車両用交流発電機においては、例えば、特開平4−251553 号公報に記載されているように、爪形磁極の爪部間に配置した永久磁石が、回転子の回転によって遠心力で飛び出さないようにするため、爪形磁極の最外周部に非磁性体の飛び出し防止部材(非磁性体保護カバー)を配置するようにしている。
【0007】
しかしながら、特開平4−251553 号公報に記載されているものでは、非磁性体保護カバーにより永久磁石の飛び出しは防止できるが、複数個の永久磁石は、それぞれ、直接、爪磁極間に配置する必要があるため、作業性が悪いものである。それに対して、例えば、特開平3−265450 号公報に記載されているように、爪形磁極の爪部間に永久磁石を配置するとともに、永久磁石の外周面にのみ非磁性体の保護カバーを配置したものが知られている。この保護カバーは、永久磁石の飛び出し防止と、永久磁石の保持を兼用するものである。
【0008】
また、特開平7−15929号公報には、ブラシレス車両用交流発電機の爪磁極そのものをオーステナイト系ステンレス鋼を用いて熱処理により極間部分を非磁性体処理するものが開示されている。
【0009】
【発明が解決しようとする課題】
しかしながら、特開平3−265450 号公報に記載の車両用交流発電機にあっては、永久磁石の飛び出し防止部材を永久磁石の保持部材と兼用するために、永久磁石の外周部であって爪形磁極の内周側に飛び出し防止部材を配置する必要があるため、永久磁石の大きさが制約され、小さくなる。従って、永久磁石を配置したことによる磁束の増磁作用が小さくなり、発電効率の向上がさほど望めないという問題があった。
【0010】
また、特開平7−15929号公報に記載の技術においては、爪磁極そのものをオーステナイト系ステンレス鋼で作成するために、漏れ磁束を小さくするためにはこのオーステナイト系ステンレス鋼の厚みは5mm程度は必要となるため、使用するレーザーの出力に大きいものが要求され設備が大きくなる。また、薄い板を用いた場合には爪磁極間の漏れ磁束が増大する問題点がある。また、車両用交流発電機として、寒冷地に放置された場合非磁性部が磁性体に戻る可能性がある。
【0011】
本発明の目的は、爪形磁極の爪部間に配置される永久磁石の飛び出し防止部材を設けた構成においても、永久磁石を爪形磁極の爪部間に配置する作業性が向上するとともに、発電効率の向上した車両用交流発電機を提供することにある。
【0012】
本発明の第2の目的は、爪形磁極の爪部間に配置される永久磁石を予め永久磁石保持部材により一体化した磁石モジュールとし爪形磁極の爪部間に一体化して組み込んだもので、発電電流を増大させて発電効率を向上させることができる車両用交流発電機を提供することにある。
【0013】
【課題を解決するための手段】
本発明は次の車両用交流発電機を特徴とする。すなわち回転子と、該回転子に対して所定の間隔を隔てて配置された固定子とを有し、前記回転子は、対向配置された一対の爪形磁極と、該爪形磁極を磁化させるための界磁巻線を備えており、前記爪形磁極のそれぞれは複数の爪部を備えており、前記爪形磁極の前記複数の爪部は、前記爪形磁極の隣り合う前記爪部間の内周側の距離が外周側の距離も大きくなるように形成されており、前記爪形磁極の隣り合う複数の前記爪部間には、前記界磁巻線の作る磁束を増磁するための永久磁石が配置されており、前記爪形磁極の前記爪部及び前記永久磁石の外周側には、前記永久磁石の飛び出しを防止するための永久磁石飛び出し防止部材が配置されており、前記複数の永久磁石は永久磁石保持部材によって内周側から保持されており、前記永久磁石保持部材は、板状部材が円筒状に曲げられたものであって、板状部材上において、板状部材上に載置された前記複数の永久磁石のそれぞれの幅方向及び長手方向を保持するための爪部を備えており、前記永久磁石保持部材の前記永久磁石の幅方向を保持するための前記爪部は、前記爪形磁極の隣り合う複数の前記爪部間に前記永久磁石が配置された際、前記爪形磁極の前記爪部と前記永久磁石との間に形成される隙間に配置される車両用交流発電機。
【0014】
かかる構成により、永久磁石は、永久磁石保持部材により保持される構成となるため、回転子の組立時の作業性が向上するとともに、永久磁石は、内周側から永久磁石保持部材によって保持されて爪形磁極の爪部間に配置されるため、永久磁石の大きさを大きくすることができ、発電効率を向上し得るものとなる。
【0015】
上記において、好ましくは、上記飛び出し防止部材は、非磁性体によって構成するようにしたものである。
【0016】
上記において、好ましくは、上記飛び出し防止部材の厚さは、上記回転子と上記回転子の間のギャップ長の1/2以下としたものである。
【0017】
かかる構成により、磁気的ギャップ長の増大を防止し得るものとなる。
【0018】
上記において、好ましくは、上記飛び出し防止部材は、磁性体によって構成されているとともに、上記永久磁石の外周側の位置に穴部を有するものである。
【0019】
かかる構成により、飛び出し防止部材を磁性体により構成することにより、磁気的なギャップ長と機械的なギャップ長を等しくして、磁気抵抗の増大を防止するとともに、永久磁石の外周側において磁性体の飛び出し防止部材の幅が狭くなり、磁気飽和しやすくなり、漏れ磁束を低減することにより、固定子巻線に差交する磁束量を増加して、発電効率が向上し得る。
【0020】
上記において、好ましくは、上記飛び出し防止部材は、上記爪形磁極の爪部に形成された段差部の低段部に配置されるとともに、飛び出し防止部材の厚さを上記段差部の段差に等しくするようにしたものである。
【0021】
かかる構成により、飛び出し防止部材の表面と爪磁極の表面が面一となり、回転子の機械的強度が上がるとともに、回転子の風損を低減し得るものとなる。
【0022】
また上記において好ましくは、飛び出し防止部材が位置合わせ用爪部を有することである。
【0023】
かかる構成で位置合わせ用爪部が爪形磁極と噛み合うように配置されることにより、爪形磁極の極間に対する飛び出し防止部材の位置合わせが可能となる。
【0024】
【発明の実施の形態】
本発明の第1の実施形態による車両用交流発電機の構成を図1〜図8を用いて説明する。
【0025】
図1は、車両用交流発電機の全体構成を示す断面図である。
【0026】
本実施形態による車両用交流発電機は、ブラケット1を備えており、このブラケット1は、プーリ側エンドブラケット1F及び反プーリ側エンドブラケット1Bから構成されている。ブラケット1の中央部には、シャフト41がベアリング42F,42Bを介して支持されている。シャフト41の一方の端部にはプーリ43が取り付けられ、他方の端部にはスリップリング10が取り付けられている。プーリ43は、図示しないベルトを介してエンジンの出力軸と接続され、エンジンの回転数に比例して回転する。スリップリング10には、ブラシ11が摺動可能に取り付けられ、ブラシ11から後述する界磁巻線4に電力を供給する。また、シャフト41の中央部には回転子(ロータ)2が取り付けられている。回転子2は、シャフト41に固定されたヨーク17と、ヨーク17の外周に巻回された界磁巻線4と、ヨーク17と界磁巻線4を挟み込むようにして設けられた一対の爪形磁極3N,3Sと、爪形磁極3N,3Sの爪部の間に配置された永久磁石5とから構成されている。界磁巻線4にスリップリング10からの直流電流を流すことによって爪形磁極3N,3Sを磁化させる。
【0027】
ここで、永久磁石5は、図2以降を用いて後述するように、永久磁石保持部材62により固定されている。また、爪形磁極3N,3S及び永久磁石5の表面には永久磁石5の飛び出しを防止するための飛び出し防止部材61が配置されている。また、永久磁石5としては、固体磁石を用いている。固体磁石を用いることにより、磁性粉末を樹脂により固めた磁石に比べて、爪形磁極の磁化力及びエネルギー積が大きくなり、爪形磁極の爪部から固定子に向かう磁束が増加し、発電電流が大きくなり、発電効率が向上する。
【0028】
プーリ側エンドブラケット1Fと反プーリ側エンドブラケット1Bの間には、固定子7が取り付けられている。固定子7は、回転子2と僅かな間隔(機械的ギヤップ)を隔てて配置されている。この機械的ギャップは、機械的特性の関係から必要となる予め決められた間隔であり、一般的には0.4mm 程度である。固定子7は、凹凸状の固定子鉄心8を有し、この固定子鉄心8の凹部には固定子巻線9が3相に巻かれており、エンジンの駆動によって爪形磁極3N,3Sが回転して磁化されると、固定子巻線9に3相の誘起電圧が発生する。
【0029】
反プーリ側エンドブラケット1Bの内部には、整流回路12及び電圧調整器13が配置されている。整流回路12は、図示しないバッテリーのプラス電極に接続されるB端子14及びバッテリーのマイナス端子に接続されるアース端子15を有し、固定子巻線9で発生した交流の誘起電圧を整流し直流電圧に変換する。
【0030】
電圧調整器13は、バッテリーを充電するために整流回路12で整流した直流電圧が約14.3V 程度の一定電圧に保たれるよう、界磁巻線電流を制御する。以上のように構成した車両用交流発電機において、エンジンの駆動によってプーリ43が回転すると、シャフト41はスリップリング10及び回転子2と一緒に回転し、ブラシ11からの直流電流が回転子2内部の界磁巻線4に通電され、界磁巻線4は爪形磁極3N,3Sのそれぞれの磁極にN極及びS極を構成するように動作する。界磁巻線4による磁束は、N極の爪形磁極3Nの爪部から出たものが、固定子鉄心8を通りS極の爪形磁極3Sの爪部に戻る磁気回路を形成する。このとき、補助励磁用の永久磁石5の磁束は界磁巻線4が作る磁束に対して並列になるように配置され、N極からS極に入って界磁巻線4が作る磁束を増磁する作用を持っており、結果として磁気回路の磁束量が増える。この磁気回路の磁束が固定子巻線9を差交することにより、固定子巻線9に3相の誘起電圧が発生する。この3相の誘起電圧は整流回路12で直流電圧に変換され、整流された直流電圧は電圧調整器13で調整され、約14.3V 程度の一定電圧に保たれる。次に、図2を用いて、本実施形態による車両用交流発電機に用いる永久磁石保持部材の構成について説明するとともに、図3〜図5を用いて、本実施形態による永久磁石保持部材を用いた永久磁石の保持状態について説明する。
【0031】
図2は、本発明の一実施形態による車両用交流発電機に用いる永久磁石保持部材の構成を示す平面図であり、図3は、本実施形態による永久磁石保持部材を用いた永久磁石の保持状態を説明する平面図であり、図4は、図3のA−A′断面図であり、図5は、本発明の一実施形態による車両用交流発電機に用いる永久磁石保持部材の構成を示す側面図である。
【0032】
最初に、図2に示すように、本実施形態において用いる永久磁石保持部材62は、非磁性体の薄板をプレス加工により、図示する形状に製作している。永久磁石保持部材62は、その長手方向の内側に形成された爪部62mと、幅方向の外側に形成された爪部62nを備えている。本実施形態においては、永久磁石保持部材62は、12個の永久磁石を保持するものであるため、24個の爪部62mと、24個の爪部62nを備えている。
【0033】
非磁性体の薄板は、厚みが0.1mm〜1.0mm程度のもので材質にはステンレス板や非磁性体バネ鋼,リン青銅等を用いる。ここで、バネ鋼を利用する理由は、金属の持つ弾力性により爪部で永久磁石の保持が容易になるためで、作業性に優れるメリットがある。
【0034】
次に、図3及び図4は、永久磁石保持部材62により、永久磁石5a,…,5hを保持した状態を示している。例えば、永久磁石5eは、永久磁石保持部材62の上に載置された上で、2個の爪部62m及び2個の爪部62nを折曲げることによって、永久磁石5eを挟み込んで保持される。永久磁石5は、直方体の形状をしており、爪部62mは、永久磁石5の幅方向を保持し、爪部62nは、永久磁石5の長手方向を保持する。
【0035】
次に、図5に示すように、永久磁石5a,…,5lを保持した永久磁石保持部材62は、円筒形状に曲げられる。図中に示すP点が接続ポイントであり、溶接により固定してある。詳細な説明は省略するが、ロータ爪磁極の極数を12極とすれば、図5に示した永久磁石5a,…,5lを保持した永久磁石保持部材62は、12角形の円柱となる。また、ロータ2との組付けは、図5に示した状態で、爪磁極間に永久磁石保持部材62に配置された永久磁石の凸部が一致するように組み立てる。
【0036】
ここで、回転子2の組立工程について、図1を参照して、説明する。
【0037】
最初、シャフト41に対して、爪形磁極3Nが取り付けられる。さらに、ヨーク17と界磁巻線4が一体的に組み立てられたものが、シャフト41に組み込まれる。さらに、図5に示した円柱状に加工された永久磁石5を保持した永久磁石保持部材62が、シャフト41に取り付けられる。このとき、永久磁石5が爪形磁極3Nの爪部間に配置されるように取り付けられる。さらに、爪形磁極3Sが、シャフト41に取り付けられる。このとき、永久磁石5が、爪形磁極3Sの爪部間に配置されるように取り付けられる。
【0038】
以上のようにして、複数の永久磁石5は予め永久磁石保持部材62によって保持されているため、回転子の爪形磁極の爪部間への取り付けが容易となり、作業性が向上するものとなる。
【0039】
次に、図6及び図7を用いて、爪形磁極の爪部間に配置された永久磁石の状態について説明するとともに、図6及び図8を用いて、爪形磁極の外周に配置される永久磁石飛び出し防止部材の構成について説明する。
【0040】
図6は、本発明の一実施形態による車両用交流発電機に用いる永久磁石防止部材を用いた永久磁石の取り付け状態を示す斜視図であり、図7は、図6のB−B′拡大断面図であり、図8は、本発明の一実施形態による車両用交流発電機に用いる永久磁石飛び出し防止部材の構成を示す斜視図である。
【0041】
図6に示すように、一対の対向配置された爪形磁極3N,3Sのの先端部分には、複数個の爪部33N,33S(両方を総称して爪部33とする)が形成されている。爪形磁極3の爪部33は、図に示すように、外周側端部に軸方向に対して1つの低段部分20a及び高段部分20bを持つ段が付けられた構造となっている。
【0042】
爪形磁極3Nの爪部33Nと爪形磁極3Sの爪部33Sには、補助励磁用の永久磁石5が爪形磁極3N,3Sの作る極性に対して同極が接するように配置されている。永久磁石5は、焼結磁石やボンド磁石のような個体磁石であり、永久磁石保持部材62によって固定されている。
【0043】
ここで、図7に示すように、爪形磁極の爪部33N,33Sの断面形状は、外周側で幅が広く、内周側で幅が狭い台形となっている。隣合う爪形磁極の爪部33N,33Sの外周側の距離L1は、本実施形態においては、8mmであり、内周側の距離L2は、本実施形態においては、10mmである。また、永久磁石保持部材62は、0.1mm 厚さのものを用いている。永久磁石保持部材62は、永久磁石5を回転子の内周側から保持しているため、爪部62mは、爪形磁極の爪部33N,33Sと永久磁石5との間の隙間に配置されることになる。従って、永久磁石5の大きさは、隣合う爪形磁極の爪部33N,33Sの外周側の距離L1に等しい大形の磁石を使用することができるため、永久磁石を配置したことによる磁束の増磁作用が大きくなり、発電効率が向上するものである。
【0044】
さらに、図6に示すように、永久磁石5の外面側及び爪形磁極3の爪部33の外周面には、永久磁石5の飛び出しを防止する円筒状の非磁性体からなる飛び出し防止部材61が配置されている。このように飛び出し防止部材61を一体型の円筒状のものとし、焼嵌,圧入等の手段により爪形磁極3に簡単に取り付けることができ、回転子2が製作しやすくなる。また、高速回転時に起きる爪形磁極3の起き上がりも防止することができる。
【0045】
また、図6に示すように、飛び出し防止部材61は、爪部33の段差(高段部20bと低段部20aの段差)とほぼ同じ寸法の厚みを持ち、爪部33の低段部分20aに飛び出し防止部材61の外面と爪部33の高段部分20bの外周面がほぼ面一になるように取り付けられ、飛び出し防止部材6の端部と爪部33の高段部分20bの間の溶接部21で溶接により固定される。
【0046】
また、爪部33に段を付けて爪部33の低段部分20aに飛ぴ出し防止部材61を配置することで、飛び出し防止部材61と爪形磁極3とを強固に固定でき、回転子2の機械的強度が上がる。
【0047】
さらに、飛び出し防止部材61の外面と爪部33の高段部分20bの外周面がほぼ面一になるようにすることで、回転子2の外周面に凹凸がなくなり、回転子2の回転時に発生する風損を低減できる。
【0048】
また、図8に示すように、非磁性体の飛び出し防止部材61の厚さTは、磁気的なギャツブ長が増大しないように、ギャップ長の1/2以下の薄い非磁性体カバーを用いている。本実施例においては、ロータとステータのギャップ長は0.35mmであり、使用した非磁性体の飛び出し防止部材61の材質はステンレス鋼で、厚みは0.1mmである。よって磁気的なギャップ長は0.45mmとなる。これくらいの厚みだと発電電流に及ぼす影響は非常に少なく何ら問題はない。ただし、ギャップ長の1/2以上にしてしまうと特性の低下は避けられなくなる。
【0049】
また、飛び出し防止部材61の軸方向の長さは、使用する永久磁石の前方向長さよりも多少長めに設定するのが望ましい。即ち、図1に示したように、固定子7の固定子鉄心8の幅と、回転子2に配置される永久磁石5の軸方向の長さはほぼ等しくしている。そこで、飛び出し防止部材61の軸方向の長さは、使用する永久磁石の前方向長さよりも多少長めにすることにより、漏れ磁束が少なくなるようにしている。
【0050】
以上説明したように、本実施形態においては、永久磁石保持部材を用いて永久磁石を内側から保持するようにしており、また、爪形磁極の爪部と永久磁石の外周側に飛び出し防止部材61を配置するようにしている。従って、永久磁石は永久磁石保持部材により保持された後で、回転子への取り付けが行われるため、永久磁石の取り付けの作業性が向上する。
【0051】
また、永久磁石保持部材は、内周側から永久磁石を保持し、飛び出し防止部材は外周側に配置するため、爪形磁極の爪部間に配置される永久磁石を大形化することができるため、発電効率を向上することができる。
【0052】
さらに、爪形磁極の爪部には、段差を設け、この段差と同じ厚みの飛び出し防止部材をこの段差部に配置するようにしているので、回転子の回転時の風損を低減することができる。
【0053】
次に、図9を用いて、本発明の第2の実施形態による車両用交流発電機について説明する。
【0054】
図9は、本発明の第2の実施形態による車両用交流発電機の要部の斜視図である。なお、本実施形態による車両用交流発電機の全体構成は、図1に示したものと同様であり、永久磁石保持部材による永久磁石の保持構造は、図2〜図5に示したものと同様である。
【0055】
本実施形態においては、爪形磁極3N′,3S′の爪部33N′,33S′が、図6に示した実施形態とは異なっており、図6に示したような段差(高段部と低段部の段差)は設けられていないものである。従って、非磁性体の薄板からなる飛び出し防止部材61は、直接、爪形磁極3N′,3S′の爪部33N′,33S′の外周部に配置してある。飛び出し防止部材61は、溶接部21において、爪部33N′,33S′と固定されている。
【0056】
以上説明したように、本実施形態においては、永久磁石保持部材を用いて永久磁石を内側から保持するようにしており、また、爪形磁極の爪部と永久磁石の外周側に飛び出し防止部材61を配置するようにしている。従って、永久磁石は永久磁石保持部材により保持された後で、回転子への取り付けが行われるため、永久磁石の取り付けの作業性が向上する。
【0057】
また、永久磁石保持部材は、内周側から永久磁石を保持し、飛び出し防止部材は外周側に配置するため、爪形磁極の爪部間に配置される永久磁石を大形化することができるため、発電効率を向上することができる。
【0058】
次に、図10及び図11を用いて、本発明の第3の実施形態による車両用交流発電機について説明する。
【0059】
図10は、本発明の第3の実施形態による車両用交流発電機の要部の斜視図であり、図11は、図10に示した飛び出し防止部材の斜視図である。なお、本実施形態による車両用交流発電機の全体構成は、図1に示したものと同様であり、永久磁石保持部材による永久磁石の保持構造は、図2〜図5に示したものと同様である。
【0060】
本実施形態においては、飛び出し防止部材61′の材料としては、磁性体を用いている。飛び出し防止部材61′は、爪形磁極に重なり合う部分61Zの幅L3は、使用する永久磁石の長さより多少長めになっており、爪形磁極とほぼ同様な形状をしている。また、爪形磁極に重ならない部分、つまり、爪磁極間に配置される部分では、中心部に穴部61Yを設け、重なり合う部分61Zとの間を接続部61Xにより接続している。接続部61Xの磁性体の幅L4を狭めることにより、漏れ磁束の低減を図っている。飛び出し防止部材の材料に磁性体を用いることにより、回転子と固定子の間の磁気的なギャップ長は、機械的なギャップ長に一致し、回転子と固定子の間の磁気抵抗の増大を防止することができる。また、固定子側からみると、回転子の外表面が殆ど磁性体となるため、磁束が固定子側から回転子側に向かうときに発生するギャップ間の磁束脈動が減少し、磁気的な振動が減少し、騒音が低減する。
【0061】
また、図6において説明したように、爪形磁極3N,3Sの爪部33N,33Sの表面に高段部20bと低段部20aを設け、爪形磁極3N,3Sと飛び出し防止部材61′との密着性を良くしている。このように飛び出し防止部材61′を磁性体とする場合には、爪形磁極間に位置される部分(永久磁石の外表面部分)は磁性体の幅L4を狭めて、漏れ磁束を低減するようにしている。また、飛び出し防止部材61′と爪形磁極3N,3Sとは、溶接部21において溶接固定されている。
【0062】
なお、図11に示す例では、爪磁極間に配置される穴部61Yが1個の場合について説明したが、図12に示すように、複数個の穴部61Y′を設けるようにしてもよいものである。
【0063】
今まで説明してきた飛び出し防止部材61,61′は、予め円筒形状を成すものをロータの爪磁極表面に焼嵌めし、その後に、爪形磁極3と飛び出し防止部材61とを溶接により固定する。また、爪磁極間に配置される永久磁石5は、永久磁石保持部材62に仮止めされているため、永久磁石5と永久磁石保持部材62と爪形磁極3はワニスによって接着され一体化される。
【0064】
即ち、本実施形態においても、飛び出し防止部材61′を爪部33の低段部分20aに飛び出し防止部材61′の外面と爪部33の高段部分20bの外周面がほぼ面一になるように配置したので、回転子2と固定子7の間の磁気的ギャップは機械的ギャップに一致し、回転子2と固定子7の間の磁気抵抗が増大することはないものである。このとき、飛び出し防止部材61′は磁性体の薄板で構成されるために、永久磁石5の磁束の一部は図10に点線で示した様に、飛び出し防止部材61′内を通って短絡し、飛び出し防止部材61′の幅の狭い部分は直ぐに磁気飽和する。また、この飛び出し防止部材61で漏れている磁束量は永久磁石5の全磁束の内のわずかな量で済み、界磁巻線4が作る磁束を増磁するという永久磁石5を設けた効果を損なうことはないものである。ちなみに、本実施形態のものを従来のような爪形磁極の爪部間で永久磁石の外面に磁性体の保持部材を配置したものと比較すると、従来のものに比べて5A程度発電電流を向上できる。
【0065】
また、固定子7側から見ると回転子2の外周面はほとんど磁性体となるので、回転子2と固定子7の間の磁気抵抗はほぼ一定となり、磁気回路の磁束が固定子7から回転子2に向かうときに発生する回転子2と固定子7の間の磁束脈動が減少し、これにより磁気的な振動が減少して騒音が低減できる。
【0066】
以上のように構成した本実施形態によれば、飛び出し防止部材の材質を磁性体とし、極間を狭めた構成としたので、発電電流を増大して発電効率を向上させることができる。
【0067】
また、回転子と固定子の間の磁気的な振動を少なくして騒音の低減を図ることができる。
【0068】
さらに、飛び出し防止部材と爪形磁極との溶接部が腐食することはなく、回転子の耐久性を向上させることができる。
【0069】
また、飛び出し防止部材をリング状のものとしたので、回転子が制作しやすくなるとともに、高速回転時に起きる爪形磁極の起き上がりを防止することができる。
【0070】
また、飛び出し防止部材を爪部の低段部分に飛び出し防止部材の外面と爪部の高段部分の外周面がほぼ面一になるように配置したので、飛び出し防止部材と爪形磁極とを強固に固定することができるとともに、回転子の風損を低減することができる。
【0071】
次に、本発明の第4の実施形態である飛び出し防止部材について説明する。図13,図14はロータ2の爪形磁極3について説明したものであり、飛び出し防止部材61の材質に磁性体と非磁性体の性質を持つ金属カバーを用いた場合である。
【0072】
金属カバーの材料としては、複合磁性材料を用いる。例えばマルテンサイト系ステンレス鋼(SUS420J2,SUS403など)、好ましくは13Cr系ステンレス鋼 (組成は例えばC…0.5〜0.6重量%,Si…0.35重量%,Mn…0.6〜0.8重量%,P…0.03重量%以下,S…0.02重量%以下,Cr…12.5〜13.5重量%、残りFe)が挙げられる。また、フェライト系ステンレス鋼を用いても良い。具体的には日立金属(株)製13Cr−Fe(C…0.69重量%,Si…0.3重量%,Mn…0.7重量%,P…0.021重量%,S…0.002重量%,Cr…13.1重量%)合金を用いることができる。
【0073】
爪形磁極3は、図13に示すように、一対の対向配置された爪形磁極3N, 3Sからなり、この爪形磁極3N,3Sの先端部分に複数個の爪部33N,33S(両方を総称して爪部33とする)が形成されている。爪形磁極3の爪部33は、図に示すように、外周側端部に軸方向に対して1つの低段部分20a及び高段部分20bを持つ段が付けられた構造となっている。
【0074】
爪形磁極3Nの爪部33Nと爪形磁極3Sの爪部33Sには、図13に示すように、補助励磁用の永久磁石5が爪形磁極3N,3Sの作る極性に対して同極が接するように配置されている。永久磁石5は、焼結磁石やボンド磁石のような個体磁石であり先に述べた永久磁石保持部材62によって一体化されている。
【0075】
永久磁石5の外面側及び爪形磁極3の爪部33の外周面には、図14に示すように永久磁石5の飛び出しを防止する円筒状の飛び出し防止部材61が配置されている。このように飛び出し防止部材61を一体型の円筒状のものとし、焼嵌,圧入等の手段により爪形磁極3に簡単に取り付けることができ、回転子2が製作しやすくなる。また、高速回転時に起きる爪形磁極3の起き上がりを防止できる作用もある。
【0076】
また、飛び出し防止部材61は図13,図14に示すように、爪部33の段差とほぼ同じ寸法の厚みを持ち、爪部33の低段部分20aに飛び出し防止部材61の外面と爪部33の高段部分20bの外周面がほぼ面一になるように取り付けられ、飛び出し防止部材6の端部と爪部33の高段部分20bの間の溶接部21で溶接により固定される。また、爪部33に段を付けて爪部33の低段部分20aに飛び出し防止部材61を配置することで、飛び出し防止部材61と爪形磁極3とを強固に固定でき、回転子2の機械的強度が上がる。さらに、飛び出し防止部材61の外面と爪部33の高段部分20bの外周面がほぼ面一になるようにすることで、回転子2の外周面に凹凸がなくなり、回転子2の回転時に発生する風損を低減できる。
【0077】
本発明では磁気的なギャップ長が増大しないように、爪形磁極の表面に配置される部分は磁性体,爪形磁極間に配置される部分は非磁性体となるように前記飛び出し防止部材を配置することで爪磁極間の漏れ磁束を低減することができる。本実施例においてロータとステータのギャップ長は0.35mm で使用した 13Cr−Fe合金の厚みは0.5mm である。よって、図13,図14の例では低段部分20aは高段部分20bに比べて0.5mm 低くなっている。また、飛び出し防止部材61の軸方向の長さは、使用する永久磁石の軸方向長さよりも多少長めに設定するのが望ましい。
【0078】
次に、磁性部分と非磁性部分の作成方法について説明する。先に述べた日立金属(株)製13Cr−Fe合金は、熱を加えることにより磁性体の性質が非磁性体の性質を示すようになる金属である。このとき加える熱としては、金属の温度が1200〜1300℃で1分間加えるか、1500℃で金属面を溶かすことで短時間に磁性部分を非磁性体に変化させることができる。
【0079】
具体的には13Cr−Feからなる磁性の性質を持つ合金を爪磁極間に配置される場所のみプラズマ,レーザー,電子ビームを用いた溶接機により局部的に温度を1500度程度に上げて金属を溶解して非磁性体の性質となるようにしたものである。また、このとき用いるプラズマ,レーザー,電子ビームは爪磁極間の幅に合わせたものが望ましいが、ビーム径が細い場合には数本に分けても良い。また溶接部の酸化を防止するためにアルゴンガス等の不活性ガス中で行うことは言うまでもない。
【0080】
上記説明は、13Cr−Fe合金を用いて磁性部と非磁性部を持つ飛び出し防止部材について説明したが、飛び出し防止部材61を、磁性体で構成される磁性部61aと非磁性体で構成される非磁性部61bを規則正しく配列し、それぞれの継ぎ目を溶接により一体化的に製作しても同様な効果を得ることができる。またこのとき漏れ磁束が発生しやすい爪磁極間には非磁性部61bを配置して漏れ磁束を低減し、ギャップ長を大きくしたくない場所では磁性部61aを配置する。よって、ギャップ長が大きくなることなく良好な発電性能を得ることができる。
【0081】
次に、図15,図16を用いて第7の実施形態について説明する。
【0082】
図15,図16は前記13Cr−Fe合金リングの厚みが0.1mm〜1mm 程度のものをロータ2の外周面の軸方向に積層して爪磁極間に相当する部分をアルゴン,レーザー,電子ビーム等を用いて局部的に金属を溶かして非磁性部としたものを示したものである。このとき前記合金は、爪形磁極の最外周部に焼嵌,圧入等により配置している。積層の効果は言うまでもなく渦電流による損失を低減するものであるため、例えば13Cr−Fe合金を細長く作成しワイヤー状にして、爪形磁極の外周面に巻き付けても良い。この場合も、爪磁極間に配置される部分は上記溶接機を用いて熱処理をすることで同様な効果を得ることができる。
【0083】
次に、第6の実施形態について図17,図18を用いて説明する。図17,図18の図中、図13,図14と同符号は同じものを示す。図17,図18と図13,図14の違いは飛び出し防止部材61の爪形磁極間に相当する部分に穴部61yを設けたものである。
【0084】
また、図17,図18に示したように爪形磁極間に穴部を設けたような構成を用いる場合には、穴部61Yでない渡りの部分である接続部61Xのみを熱処理により非磁性化すればよい。また、これらの実施例においても同様の効果を得ることができる。
【0085】
次に、第7の実施形態について図19,図20を用いて説明する。図19,図20の図中、図13,図14と同符号は同じものを示す。図19,図20と図13,図14の違いは、飛び出し防止部材61の一部として位置合わせ用爪部70を設けたことである。この位置合わせ用爪部70は爪形磁極3N,3Sと噛み合うように配置されることにより、爪形磁極3N,3Sの極間に対する飛び出し防止部材61の位置合わせが可能となる。さらには、飛び出し防止部材61が回転子2の周方向にずれてしまうのを防止する。
【0086】
この位置合わせ用部材70は、図のようにすべての爪形磁極3N,3Sの間に設けなくてもよく、少なくとも1つ存在すれば同様の機能を達成できる。
【0087】
第4,第5,第6、および第7の実施形態では爪形磁極の爪部に段を付けて飛び出し防止部材61を爪形磁極の爪部の外周面に取り付けたが、段差を設けなくても得られる効果はほぼ同等である。
【0088】
なお段差を設けない場合、第7の実施形態においては、位置合わせ用爪部70を回転子2の内側に曲げることにより、飛び出し防止部材61が軸方向にずれないという効果がある。
【0089】
【発明の効果】
爪形磁極の爪部間に配置される永久磁石を予め永久磁石保持部材により内周側から保持して一体成形した磁石モジュールを爪形磁極の爪部間に組み込むようにしているため、回転子の組立時の作業性が向上する。
【0090】
また、爪形磁極の爪部間に配置される永久磁石を予め永久磁石保持部材により一体成形した磁石モジュールを爪形磁極の爪部間に組み込み、爪形磁極の爪部間に配置される永久磁石を固体磁石とすることにより、発電電流が大きくなり発電効率が向上する。
【0091】
また、爪形磁極の爪部間に配置される永久磁石の飛び出し防止用の飛び出し防止部材を設けたものでは、飛び出し防止部材を永久磁石の外面側及び爪形磁極の爪部間に配置し、かつ飛び出し防止部材の材質を非磁性体又は磁性体、もしくは非磁性体と磁性体が混在する複合体としたので、永久磁石を大形化することができ、発電電流が大きくなり発電効率が向上する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態をなす車両用交流発電機の全体構成の断面図を示す。
【図2】図1の永久磁石保持部材の平面図を示す。
【図3】図2の永久磁石保持部材を用いた永久磁石の保持状態を説明する平面図を示す。
【図4】図3のA−A′断面図を示す。
【図5】図2の永久磁石保持部材の側面図を示す。
【図6】図2の永久磁石防止部材を用いた永久磁石の取り付け状態斜視図を示す。
【図7】図6のB−B′拡大断面図を示す。
【図8】図6の永久磁石飛び出し防止部材の斜視図を示す。
【図9】本発明の第2の実施形態による車両用交流発電機の要部の斜視図を示す。
【図10】本発明の第3の実施形態による車両用交流発電機の要部の斜視図を示す。
【図11】図10の飛び出し防止部材の斜視図を示す。
【図12】図10の飛び出し防止部材の別例の斜視図を示す。
【図13】本発明の第4の実施形態による爪形磁極の爪部の斜視図である。
【図14】図13の部分断面図を示す。
【図15】本発明の第5の実施形態による爪形磁極の爪部の斜視図を示す。
【図16】図15の部分断面図を示す。
【図17】本発明の第6の実施形態による爪形磁極の爪部の斜視図を示す。
【図18】図17の部分断面図を示す。
【図19】本発明の第7の実施形態による爪形磁極の爪部の斜視図を示す。
【図20】図19の部分断面図を示す。
【符号の説明】
2…回転子、3,3N,3S…爪形磁極、4…界磁巻線、5…永久磁石、7…固定子、8…固定子鉄心、9…固定子巻線、17…ヨーク、20a…低段部分、20b…高段部分、21…溶接部、61…飛び出し防止部材、61X…接続部、61Y…穴部、62…永久磁石保持部材、62m,62n…爪部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicular AC generator, and more particularly to a vehicular AC generator suitable for use as an automobile power generator.
[0002]
[Prior art]
In general, an AC generator for a vehicle includes a rotor and a stator. The rotor includes a pair of opposed claw-shaped magnetic poles having a plurality of claw portions formed at the tip portion, and a field winding that magnetizes the claw-shaped magnetic poles. The stator is arranged at a predetermined distance from the rotor, and generates an alternating voltage by the magnetization of the claw-shaped magnetic poles of the rotor.
[0003]
In the vehicular AC generator configured as described above, the rotor rotates and a direct current flows through the field winding, thereby generating N and S poles in the pair of claw-shaped magnetic poles. The magnetic flux generated from the claw portion of the N-pole claw-shaped magnetic pole forms a magnetic circuit that passes through the stator iron core of the stator and returns to the claw portion of the S-pole claw-shaped magnetic pole.
[0004]
At this time, an alternating induced voltage is generated in the stator winding by the magnetic flux of the magnetic circuit crossing the stator winding of the stator.
[0005]
In such a vehicular AC generator, the amount of magnetic flux that crosses the stator winding affects the generated current. Therefore, in a conventional vehicle AC generator, a permanent magnet is arranged between the claws of the claw-shaped magnetic poles to increase the magnetic flux created by the field winding, thereby allowing the amount of magnetic flux to cross the stator windings. Try to increase.
[0006]
Further, in the conventional vehicle alternator, for example, as described in Japanese Patent Application Laid-Open No. 4-251553, the permanent magnets arranged between the claw portions of the claw-shaped magnetic poles are subjected to centrifugal force by the rotation of the rotor. Therefore, a non-magnetic jump-out preventing member (non-magnetic protective cover) is disposed on the outermost peripheral portion of the claw-shaped magnetic pole.
[0007]
However, in the one described in JP-A-4-251553, the permanent magnet can be prevented from jumping out by the non-magnetic protective cover, but each of the plurality of permanent magnets must be disposed directly between the claw poles. Therefore, workability is poor. On the other hand, for example, as described in JP-A-3-265450, a permanent magnet is disposed between the claw portions of the claw-shaped magnetic pole, and a nonmagnetic protective cover is provided only on the outer peripheral surface of the permanent magnet. The arrangement is known. This protective cover serves both to prevent the permanent magnet from popping out and to hold the permanent magnet.
[0008]
Japanese Patent Application Laid-Open No. 7-15929 discloses that a claw magnetic pole itself of an AC generator for a brushless vehicle is austenitic stainless steel and is subjected to a non-magnetic material treatment by heat treatment.
[0009]
[Problems to be solved by the invention]
However, in the vehicle AC generator described in Japanese Patent Laid-Open No. 3-265450, in order to use the permanent magnet jump-out preventing member also as the permanent magnet holding member, the outer peripheral portion of the permanent magnet is claw-shaped. Since it is necessary to arrange a pop-out preventing member on the inner peripheral side of the magnetic pole, the size of the permanent magnet is restricted and becomes smaller. Accordingly, there is a problem that the magnetic flux increasing action due to the arrangement of the permanent magnets is reduced, and the improvement in power generation efficiency cannot be expected so much.
[0010]
In the technique described in Japanese Patent Application Laid-Open No. 7-15929, the pawl magnetic pole itself is made of austenitic stainless steel, and the thickness of the austenitic stainless steel is required to be about 5 mm in order to reduce the leakage flux. Therefore, a large output is required for the laser to be used, and the equipment becomes large. Further, when a thin plate is used, there is a problem that the leakage magnetic flux between the claw magnetic poles increases. In addition, when the AC generator for a vehicle is left in a cold region, the nonmagnetic portion may return to the magnetic body.
[0011]
The object of the present invention is to improve the workability of arranging the permanent magnet between the claw portions of the claw-shaped magnetic pole, even in the configuration provided with the permanent magnet jump-out preventing member disposed between the claw portions of the claw-shaped magnetic pole, The object is to provide an automotive alternator with improved power generation efficiency.
[0012]
A second object of the present invention is a magnet module in which permanent magnets arranged between the claw portions of the claw-shaped magnetic pole are previously integrated by a permanent magnet holding member, and are integrated and integrated between the claw portions of the claw-shaped magnetic pole. Another object of the present invention is to provide a vehicular AC generator capable of increasing power generation current and improving power generation efficiency.
[0013]
[Means for Solving the Problems]
  The present invention is characterized by the following AC generator for vehicles. That is, it has a rotor and a stator arranged at a predetermined interval with respect to the rotor, and the rotor magnetizes the pair of claw-shaped magnetic poles arranged opposite to each other and the claw-shaped magnetic poles. Each of the claw-shaped magnetic poles includes a plurality of claw portions, and the plurality of claw portions of the claw-shaped magnetic poles are located between the claw portions adjacent to the claw-shaped magnetic poles. In order to increase the magnetic flux generated by the field winding between the claw portions adjacent to each other, the claw-shaped magnetic poles are formed so that the distance on the inner circumference side is larger than the distance on the outer circumference side. Permanent magnet pop-out preventing members for preventing the permanent magnet from popping out are disposed on the claw portion of the claw-shaped magnetic pole and the outer peripheral side of the permanent magnet. The permanent magnet is held from the inner peripheral side by a permanent magnet holding member. The stone holding member is a plate-like member bent into a cylindrical shape, and holds the width direction and the longitudinal direction of each of the plurality of permanent magnets placed on the plate-like member on the plate-like member. A claw portion for holding the permanent magnet in the width direction of the permanent magnet of the permanent magnet holding member, wherein the permanent magnet is interposed between the claw portions adjacent to the claw-shaped magnetic pole. An AC generator for a vehicle arranged in a gap formed between the claw portion of the claw-shaped magnetic pole and the permanent magnet when arranged.
[0014]
With this configuration, since the permanent magnet is held by the permanent magnet holding member, the workability at the time of assembling the rotor is improved, and the permanent magnet is held by the permanent magnet holding member from the inner peripheral side. Since it is arrange | positioned between the nail | claw parts of a nail | claw-shaped magnetic pole, the magnitude | size of a permanent magnet can be enlarged and power generation efficiency can be improved.
[0015]
In the above, preferably, the pop-out prevention member is made of a non-magnetic material.
[0016]
In the above, preferably, the thickness of the pop-out prevention member is set to ½ or less of the gap length between the rotor and the rotor.
[0017]
With this configuration, an increase in the magnetic gap length can be prevented.
[0018]
In the above, preferably, the pop-out preventing member is made of a magnetic material and has a hole at a position on the outer peripheral side of the permanent magnet.
[0019]
With this configuration, the pop-out prevention member is made of a magnetic material, so that the magnetic gap length is equal to the mechanical gap length to prevent an increase in magnetic resistance. By reducing the width of the pop-out prevention member, the magnetic saturation easily occurs, and reducing the leakage magnetic flux, the amount of magnetic flux crossing the stator winding can be increased, and the power generation efficiency can be improved.
[0020]
In the above, preferably, the pop-out prevention member is disposed at a lower step portion of the step portion formed on the claw portion of the claw-shaped magnetic pole, and the thickness of the pop-out prevention member is equal to the step portion of the step portion. It is what I did.
[0021]
With this configuration, the surface of the pop-out preventing member and the surface of the claw magnetic pole are flush with each other, the mechanical strength of the rotor is increased, and the windage loss of the rotor can be reduced.
[0022]
In the above, preferably, the pop-out preventing member has an alignment claw portion.
[0023]
With such a configuration, the positioning claw portion is disposed so as to mesh with the claw-shaped magnetic pole, whereby the pop-out preventing member can be positioned with respect to the gap between the claw-shaped magnetic poles.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
A configuration of an automotive alternator according to a first embodiment of the present invention will be described with reference to FIGS.
[0025]
FIG. 1 is a cross-sectional view showing the overall configuration of an automotive alternator.
[0026]
The vehicle alternator according to the present embodiment includes a bracket 1, and the bracket 1 includes a pulley-side end bracket 1F and an anti-pulley-side end bracket 1B. A shaft 41 is supported at the center of the bracket 1 via bearings 42F and 42B. A pulley 43 is attached to one end of the shaft 41, and a slip ring 10 is attached to the other end. The pulley 43 is connected to the output shaft of the engine via a belt (not shown), and rotates in proportion to the engine speed. A brush 11 is slidably attached to the slip ring 10, and power is supplied from the brush 11 to a field winding 4 described later. A rotor (rotor) 2 is attached to the center of the shaft 41. The rotor 2 includes a yoke 17 fixed to the shaft 41, a field winding 4 wound around the outer periphery of the yoke 17, and a pair of claws provided so as to sandwich the yoke 17 and the field winding 4. The magnetic poles 3N and 3S are composed of permanent magnets 5 disposed between the claw portions of the claw-shaped magnetic poles 3N and 3S. By applying a direct current from the slip ring 10 to the field winding 4, the claw-shaped magnetic poles 3N and 3S are magnetized.
[0027]
Here, the permanent magnet 5 is fixed by a permanent magnet holding member 62 as described later with reference to FIG. Further, a protrusion preventing member 61 for preventing the permanent magnet 5 from protruding is disposed on the surfaces of the claw-shaped magnetic poles 3N, 3S and the permanent magnet 5. The permanent magnet 5 is a solid magnet. By using a solid magnet, the magnetizing force and energy product of the claw-shaped magnetic pole are increased, and the magnetic flux from the claw-shaped magnetic pole claw to the stator is increased compared to a magnet in which magnetic powder is solidified with resin. The power generation efficiency is improved.
[0028]
A stator 7 is attached between the pulley-side end bracket 1F and the non-pulley-side end bracket 1B. The stator 7 is arranged at a slight distance (mechanical gap) from the rotor 2. This mechanical gap is a predetermined interval required from the relationship of mechanical characteristics, and is generally about 0.4 mm. The stator 7 has a concavo-convex stator core 8, and a stator winding 9 is wound in three phases in the recess of the stator core 8, and the claw-shaped magnetic poles 3N and 3S are driven by the engine. When rotated and magnetized, a three-phase induced voltage is generated in the stator winding 9.
[0029]
A rectifier circuit 12 and a voltage regulator 13 are disposed inside the non-pulley side end bracket 1B. The rectifier circuit 12 has a B terminal 14 connected to a positive electrode of a battery (not shown) and a ground terminal 15 connected to a negative terminal of the battery, and rectifies an AC induced voltage generated in the stator winding 9 to generate a direct current. Convert to voltage.
[0030]
The voltage regulator 13 controls the field winding current so that the DC voltage rectified by the rectifier circuit 12 for charging the battery is maintained at a constant voltage of about 14.3V. In the vehicular AC generator configured as described above, when the pulley 43 is rotated by driving the engine, the shaft 41 rotates together with the slip ring 10 and the rotor 2, and the DC current from the brush 11 is generated inside the rotor 2. The field winding 4 is energized, and the field winding 4 operates to form an N pole and an S pole on each of the claw-shaped magnetic poles 3N and 3S. The magnetic flux generated by the field winding 4 forms a magnetic circuit in which the magnetic flux emitted from the claw portion of the N-pole claw-shaped magnetic pole 3N passes through the stator core 8 and returns to the claw portion of the S-pole claw-shaped magnetic pole 3S. At this time, the magnetic flux of the permanent magnet 5 for auxiliary excitation is arranged in parallel with the magnetic flux generated by the field winding 4, and enters the S pole from the N pole to increase the magnetic flux generated by the field winding 4. As a result, the amount of magnetic flux in the magnetic circuit increases. When the magnetic flux of this magnetic circuit crosses the stator winding 9, a three-phase induced voltage is generated in the stator winding 9. The three-phase induced voltage is converted into a DC voltage by the rectifier circuit 12, and the rectified DC voltage is adjusted by the voltage regulator 13 and maintained at a constant voltage of about 14.3V. Next, the configuration of the permanent magnet holding member used for the vehicle alternator according to the present embodiment will be described with reference to FIG. 2, and the permanent magnet holding member according to the present embodiment will be used with reference to FIGS. 3 to 5. The holding state of the permanent magnet will be described.
[0031]
FIG. 2 is a plan view showing a configuration of a permanent magnet holding member used in an automotive alternator according to an embodiment of the present invention, and FIG. 3 shows a permanent magnet holding using the permanent magnet holding member according to the present embodiment. FIG. 4 is a cross-sectional view taken along the line AA ′ of FIG. 3, and FIG. 5 is a configuration of a permanent magnet holding member used in the vehicle AC generator according to the embodiment of the present invention. FIG.
[0032]
First, as shown in FIG. 2, the permanent magnet holding member 62 used in this embodiment is manufactured by pressing a non-magnetic thin plate into a shape shown in the drawing. The permanent magnet holding member 62 includes a claw portion 62m formed on the inner side in the longitudinal direction and a claw portion 62n formed on the outer side in the width direction. In the present embodiment, since the permanent magnet holding member 62 holds 12 permanent magnets, the permanent magnet holding member 62 includes 24 claw portions 62m and 24 claw portions 62n.
[0033]
The non-magnetic thin plate has a thickness of about 0.1 mm to 1.0 mm, and the material is stainless steel plate, non-magnetic spring steel, phosphor bronze or the like. Here, the reason for using spring steel is that the permanent magnet can be easily held by the claw due to the elasticity of the metal, and there is an advantage that the workability is excellent.
[0034]
Next, FIGS. 3 and 4 show a state in which the permanent magnets 5a,..., 5h are held by the permanent magnet holding member 62. FIG. For example, the permanent magnet 5e is placed on the permanent magnet holding member 62 and then held by sandwiching the permanent magnet 5e by bending the two claw portions 62m and the two claw portions 62n. . The permanent magnet 5 has a rectangular parallelepiped shape, the claw portion 62 m holds the width direction of the permanent magnet 5, and the claw portion 62 n holds the longitudinal direction of the permanent magnet 5.
[0035]
Next, as shown in FIG. 5, the permanent magnet holding member 62 holding the permanent magnets 5a,..., 5l is bent into a cylindrical shape. P point shown in the figure is a connection point, which is fixed by welding. Although detailed description is omitted, if the number of poles of the rotor claw magnetic pole is 12, the permanent magnet holding member 62 holding the permanent magnets 5a,..., 5l shown in FIG. Further, the assembly with the rotor 2 is performed in the state shown in FIG. 5 so that the convex portions of the permanent magnets arranged on the permanent magnet holding member 62 coincide between the claw magnetic poles.
[0036]
Here, the assembly process of the rotor 2 will be described with reference to FIG.
[0037]
First, the claw-shaped magnetic pole 3N is attached to the shaft 41. Furthermore, the yoke 17 and the field winding 4 are integrally assembled into the shaft 41. Further, a permanent magnet holding member 62 holding the permanent magnet 5 processed into the columnar shape shown in FIG. At this time, the permanent magnet 5 is attached so as to be disposed between the claw portions of the claw-shaped magnetic pole 3N. Further, the claw-shaped magnetic pole 3 </ b> S is attached to the shaft 41. At this time, the permanent magnet 5 is attached so as to be disposed between the claw portions of the claw-shaped magnetic pole 3S.
[0038]
As described above, since the plurality of permanent magnets 5 are held in advance by the permanent magnet holding member 62, it is easy to attach the claw-shaped magnetic poles of the rotor between the claw portions, and workability is improved. .
[0039]
Next, the state of the permanent magnet disposed between the claw portions of the claw-shaped magnetic pole will be described with reference to FIGS. 6 and 7, and disposed on the outer periphery of the claw-shaped magnetic pole with reference to FIGS. 6 and 8. The configuration of the permanent magnet pop-out preventing member will be described.
[0040]
FIG. 6 is a perspective view showing a mounting state of a permanent magnet using a permanent magnet preventing member used in the vehicle alternator according to the embodiment of the present invention, and FIG. 7 is an enlarged cross-sectional view taken along line BB ′ of FIG. FIG. 8 is a perspective view showing a configuration of a permanent magnet pop-out preventing member used in the vehicle alternator according to the embodiment of the present invention.
[0041]
As shown in FIG. 6, a plurality of claw portions 33N and 33S (both are collectively referred to as claw portions 33) are formed at the tip portions of the pair of opposed claw-shaped magnetic poles 3N and 3S. Yes. As shown in the drawing, the claw portion 33 of the claw-shaped magnetic pole 3 has a structure in which a step having one low step portion 20a and one high step portion 20b is attached to the outer peripheral side end portion in the axial direction.
[0042]
The claw portion 33N of the claw-shaped magnetic pole 3N and the claw portion 33S of the claw-shaped magnetic pole 3S are arranged so that the permanent magnet 5 for auxiliary excitation is in contact with the polarity formed by the claw-shaped magnetic poles 3N, 3S. . The permanent magnet 5 is a solid magnet such as a sintered magnet or a bonded magnet, and is fixed by a permanent magnet holding member 62.
[0043]
Here, as shown in FIG. 7, the cross-sectional shapes of the claw portions 33N and 33S of the claw-shaped magnetic pole are trapezoids that are wide on the outer peripheral side and narrow on the inner peripheral side. The distance L1 on the outer peripheral side of the claw portions 33N and 33S of adjacent claw-shaped magnetic poles is 8 mm in the present embodiment, and the distance L2 on the inner peripheral side is 10 mm in the present embodiment. The permanent magnet holding member 62 has a thickness of 0.1 mm. Since the permanent magnet holding member 62 holds the permanent magnet 5 from the inner peripheral side of the rotor, the claw portion 62m is disposed in the gap between the claw portions 33N and 33S of the claw-shaped magnetic pole and the permanent magnet 5. Will be. Accordingly, since the permanent magnet 5 can be a large magnet having a size equal to the distance L1 on the outer peripheral side of the claw portions 33N and 33S of the adjacent claw-shaped magnetic poles, the magnetic flux generated by arranging the permanent magnet 5 can be reduced. This increases the magnetizing action and improves the power generation efficiency.
[0044]
Further, as shown in FIG. 6, a pop-out preventing member 61 made of a cylindrical non-magnetic material that prevents the permanent magnet 5 from popping out on the outer surface side of the permanent magnet 5 and the outer peripheral surface of the claw portion 33 of the claw-shaped magnetic pole 3. Is arranged. In this way, the pop-out prevention member 61 is formed into an integral cylindrical shape, and can be easily attached to the claw-shaped magnetic pole 3 by means of shrink fitting, press fitting, etc., and the rotor 2 can be easily manufactured. Further, it is possible to prevent the claw-shaped magnetic pole 3 from rising up at the time of high-speed rotation.
[0045]
Further, as shown in FIG. 6, the pop-out preventing member 61 has a thickness of almost the same dimension as the step of the claw portion 33 (the step of the high step portion 20b and the low step portion 20a), and the low step portion 20a of the claw portion 33. Are attached so that the outer surface of the pop-out preventing member 61 and the outer peripheral surface of the high-step portion 20b of the claw portion 33 are substantially flush with each other, and welding between the end portion of the pop-out prevention member 6 and the high-step portion 20b of the claw portion 33 is performed. The part 21 is fixed by welding.
[0046]
Further, by providing a step on the claw portion 33 and disposing the protrusion prevention member 61 on the lower step portion 20a of the claw portion 33, the protrusion prevention member 61 and the claw-shaped magnetic pole 3 can be firmly fixed, and the rotor 2 Increases mechanical strength.
[0047]
Further, by making the outer surface of the pop-out prevention member 61 and the outer peripheral surface of the high step portion 20b of the claw portion 33 substantially flush with each other, the outer peripheral surface of the rotor 2 is free from irregularities and is generated when the rotor 2 rotates. Windage loss can be reduced.
[0048]
Further, as shown in FIG. 8, the thickness T of the non-magnetic jump-out preventing member 61 is a thin non-magnetic cover that is ½ or less of the gap length so that the magnetic gap length does not increase. Yes. In this embodiment, the gap length between the rotor and the stator is 0.35 mm, and the used non-magnetic pop-out prevention member 61 is made of stainless steel and has a thickness of 0.1 mm. Therefore, the magnetic gap length is 0.45 mm. At this thickness, the effect on the generated current is very small and there is no problem. However, if the gap length is ½ or more, deterioration of the characteristics is inevitable.
[0049]
Further, it is desirable that the axial length of the pop-out preventing member 61 is set slightly longer than the front length of the permanent magnet to be used. That is, as shown in FIG. 1, the width of the stator core 8 of the stator 7 and the length of the permanent magnet 5 arranged in the rotor 2 in the axial direction are substantially equal. Therefore, the leakage prevention magnetic flux is reduced by setting the length in the axial direction of the pop-out preventing member 61 to be slightly longer than the length in the front direction of the permanent magnet to be used.
[0050]
As described above, in the present embodiment, the permanent magnet is held from the inside using the permanent magnet holding member, and the protrusion preventing member 61 is formed on the claw portion of the claw-shaped magnetic pole and the outer peripheral side of the permanent magnet. Is trying to arrange. Therefore, since the permanent magnet is held by the permanent magnet holding member and then attached to the rotor, the workability of attaching the permanent magnet is improved.
[0051]
Further, since the permanent magnet holding member holds the permanent magnet from the inner peripheral side and the pop-out prevention member is arranged on the outer peripheral side, the permanent magnet arranged between the claw portions of the claw-shaped magnetic pole can be enlarged. Therefore, power generation efficiency can be improved.
[0052]
Further, since the claw portion of the claw-shaped magnetic pole is provided with a step, and a protrusion prevention member having the same thickness as this step is arranged at this step portion, it is possible to reduce the windage loss when the rotor rotates. it can.
[0053]
Next, a vehicle alternator according to a second embodiment of the present invention will be described with reference to FIG.
[0054]
FIG. 9 is a perspective view of a main part of an automotive alternator according to the second embodiment of the present invention. The overall configuration of the vehicle alternator according to the present embodiment is the same as that shown in FIG. 1, and the permanent magnet holding structure by the permanent magnet holding member is the same as that shown in FIGS. It is.
[0055]
In the present embodiment, the claw portions 33N ′ and 33S ′ of the claw-shaped magnetic poles 3N ′ and 3S ′ are different from the embodiment shown in FIG. The step of the low step portion is not provided. Therefore, the pop-out preventing member 61 made of a non-magnetic thin plate is directly disposed on the outer periphery of the claw portions 33N ′ and 33S ′ of the claw-shaped magnetic poles 3N ′ and 3S ′. The pop-out preventing member 61 is fixed to the claw portions 33N ′ and 33S ′ in the welded portion 21.
[0056]
As described above, in the present embodiment, the permanent magnet is held from the inside using the permanent magnet holding member, and the protrusion preventing member 61 is formed on the claw portion of the claw-shaped magnetic pole and the outer peripheral side of the permanent magnet. Is trying to arrange. Accordingly, since the permanent magnet is attached to the rotor after being held by the permanent magnet holding member, the workability of attaching the permanent magnet is improved.
[0057]
Further, since the permanent magnet holding member holds the permanent magnet from the inner peripheral side and the pop-out prevention member is arranged on the outer peripheral side, the permanent magnet arranged between the claw portions of the claw-shaped magnetic pole can be enlarged. Therefore, power generation efficiency can be improved.
[0058]
Next, an automotive alternator according to a third embodiment of the present invention will be described with reference to FIGS.
[0059]
FIG. 10 is a perspective view of a main part of a vehicle AC generator according to the third embodiment of the present invention, and FIG. 11 is a perspective view of the pop-out preventing member shown in FIG. The overall configuration of the vehicle alternator according to the present embodiment is the same as that shown in FIG. 1, and the permanent magnet holding structure by the permanent magnet holding member is the same as that shown in FIGS. It is.
[0060]
In the present embodiment, a magnetic material is used as the material of the pop-out preventing member 61 ′. In the pop-out preventing member 61 ', the width L3 of the portion 61Z overlapping the claw-shaped magnetic pole is slightly longer than the length of the permanent magnet used, and has substantially the same shape as the claw-shaped magnetic pole. Further, in a portion that does not overlap with the claw-shaped magnetic pole, that is, a portion that is disposed between the claw magnetic poles, a hole 61Y is provided in the central portion, and the overlapping portion 61Z is connected by the connecting portion 61X. The leakage magnetic flux is reduced by narrowing the width L4 of the magnetic body of the connecting portion 61X. By using a magnetic material as the material for the pop-out prevention member, the magnetic gap length between the rotor and the stator matches the mechanical gap length, and the magnetic resistance between the rotor and the stator is increased. Can be prevented. Also, when viewed from the stator side, the outer surface of the rotor is almost magnetic, so the magnetic flux pulsation between the gaps that occurs when the magnetic flux goes from the stator side to the rotor side is reduced, and magnetic vibration Is reduced and noise is reduced.
[0061]
Further, as described in FIG. 6, the claw-shaped magnetic poles 3N, 3S are provided with the high step portion 20b and the low step portion 20a on the surface of the claw portions 33N, 33S, and the claw-shaped magnetic poles 3N, 3S and the pop-out preventing member 61 ' The adhesion is improved. When the pop-out preventing member 61 'is made of a magnetic material in this way, the portion located between the claw-shaped magnetic poles (the outer surface portion of the permanent magnet) narrows the magnetic material width L4 so as to reduce the leakage magnetic flux. I have to. Further, the pop-out preventing member 61 ′ and the claw-shaped magnetic poles 3 </ b> N and 3 </ b> S are welded and fixed at the welded portion 21.
[0062]
In the example shown in FIG. 11, the case where there is one hole 61 </ b> Y disposed between the claw magnetic poles has been described. However, as shown in FIG. 12, a plurality of holes 61 </ b> Y ′ may be provided. Is.
[0063]
The pop-out preventing members 61 and 61 'described so far are preliminarily shrink-fitted into the claw magnetic pole surface of the rotor, and then the claw-shaped magnetic pole 3 and the pop-out preventing member 61 are fixed by welding. Since the permanent magnet 5 disposed between the claw magnetic poles is temporarily fixed to the permanent magnet holding member 62, the permanent magnet 5, the permanent magnet holding member 62, and the claw-shaped magnetic pole 3 are bonded and integrated by a varnish. .
[0064]
That is, also in this embodiment, the pop-out preventing member 61 ′ is placed on the lower step portion 20 a of the claw portion 33 so that the outer surface of the pop-out prevention member 61 ′ and the outer peripheral surface of the high step portion 20 b of the claw portion 33 are substantially flush. As a result, the magnetic gap between the rotor 2 and the stator 7 coincides with the mechanical gap, and the magnetic resistance between the rotor 2 and the stator 7 does not increase. At this time, since the pop-out preventing member 61 'is composed of a thin magnetic plate, a part of the magnetic flux of the permanent magnet 5 is short-circuited through the pop-out preventing member 61' as shown by a dotted line in FIG. The narrow portion of the pop-out prevention member 61 'is immediately magnetically saturated. The amount of magnetic flux leaking from the pop-out prevention member 61 is only a small amount of the total magnetic flux of the permanent magnet 5, and the effect of providing the permanent magnet 5 to increase the magnetic flux produced by the field winding 4 is provided. There is no loss. Incidentally, compared with the conventional one in which the magnetic material holding member is arranged on the outer surface of the permanent magnet between the claws of the claw-shaped magnetic pole as in the conventional case, the generated current is improved by about 5 A compared to the conventional one. it can.
[0065]
Further, since the outer peripheral surface of the rotor 2 is almost magnetic when viewed from the stator 7 side, the magnetic resistance between the rotor 2 and the stator 7 is substantially constant, and the magnetic flux of the magnetic circuit rotates from the stator 7. Magnetic flux pulsation between the rotor 2 and the stator 7 generated when moving toward the child 2 is reduced, thereby reducing magnetic vibration and reducing noise.
[0066]
According to the present embodiment configured as described above, since the material of the pop-out prevention member is made of a magnetic material and the gap between the electrodes is narrowed, the generated current can be increased and the power generation efficiency can be improved.
[0067]
Further, noise can be reduced by reducing magnetic vibration between the rotor and the stator.
[0068]
Furthermore, the welded portion between the pop-out preventing member and the claw-shaped magnetic pole is not corroded, and the durability of the rotor can be improved.
[0069]
In addition, since the pop-out preventing member has a ring shape, it is easy to manufacture the rotor, and it is possible to prevent the claw-shaped magnetic pole from being raised during high-speed rotation.
[0070]
In addition, the pop-out prevention member is arranged in the lower step part of the claw part so that the outer surface of the pop-out prevention member and the outer peripheral surface of the high step part of the claw part are almost flush with each other, so that the pop-out prevention member and the claw-shaped magnetic pole are firmly And the windage loss of the rotor can be reduced.
[0071]
Next, a pop-out preventing member according to a fourth embodiment of the present invention will be described. FIGS. 13 and 14 illustrate the claw-shaped magnetic pole 3 of the rotor 2, and shows a case where a metal cover having properties of a magnetic body and a non-magnetic body is used as the material of the pop-out prevention member 61.
[0072]
A composite magnetic material is used as the material of the metal cover. For example, martensitic stainless steel (SUS420J2, SUS403, etc.), preferably 13Cr stainless steel (composition is, for example, C ... 0.5-0.6% by weight, Si ... 0.35% by weight, Mn ... 0.6-0 0.8 wt%, P ... 0.03 wt% or less, S ... 0.02 wt% or less, Cr ... 12.5 to 13.5 wt%, and remaining Fe). Further, ferritic stainless steel may be used. Specifically, 13Cr-Fe (C ... 0.69% by weight, Si ... 0.3% by weight, Mn ... 0.7% by weight, P ... 0.021% by weight, S ... 0.0% by Hitachi Metals, Ltd. 002 wt%, Cr ... 13.1 wt%) alloys can be used.
[0073]
As shown in FIG. 13, the claw-shaped magnetic pole 3 is composed of a pair of opposed claw-shaped magnetic poles 3N and 3S, and a plurality of claw portions 33N and 33S (both of the claw-shaped magnetic poles 3N and 3S) Collectively referred to as a claw portion 33). As shown in the drawing, the claw portion 33 of the claw-shaped magnetic pole 3 has a structure in which a step having one low step portion 20a and one high step portion 20b is attached to the outer peripheral side end portion in the axial direction.
[0074]
As shown in FIG. 13, the claw portion 33N of the claw-shaped magnetic pole 3N and the claw portion 33S of the claw-shaped magnetic pole 3S have the same polarity with respect to the polarity formed by the claw-shaped magnetic poles 3N and 3S by the permanent magnet 5 for auxiliary excitation. It is arranged to touch. The permanent magnet 5 is a solid magnet such as a sintered magnet or a bonded magnet, and is integrated by the permanent magnet holding member 62 described above.
[0075]
On the outer surface side of the permanent magnet 5 and the outer peripheral surface of the claw portion 33 of the claw-shaped magnetic pole 3, a cylindrical pop-out preventing member 61 for preventing the permanent magnet 5 from popping is disposed as shown in FIG. In this way, the pop-out prevention member 61 is formed into an integral cylindrical shape, and can be easily attached to the claw-shaped magnetic pole 3 by means of shrink fitting, press fitting, etc., and the rotor 2 can be easily manufactured. In addition, the claw-shaped magnetic pole 3 can be prevented from rising during high-speed rotation.
[0076]
Further, as shown in FIGS. 13 and 14, the pop-out preventing member 61 has substantially the same thickness as the step of the claw portion 33, and the outer surface of the pop-out preventing member 61 and the claw portion 33 are formed on the lower step portion 20 a of the claw portion 33. The outer peripheral surface of the high step portion 20b is attached so as to be substantially flush with each other, and is fixed by welding at the welded portion 21 between the end portion of the pop-out prevention member 6 and the high step portion 20b of the claw portion 33. Further, by providing a step on the claw portion 33 and arranging the pop-out preventing member 61 on the lower step portion 20a of the claw portion 33, the pop-out preventing member 61 and the claw-shaped magnetic pole 3 can be firmly fixed. Increases your strength. Further, by making the outer surface of the pop-out prevention member 61 and the outer peripheral surface of the high step portion 20b of the claw portion 33 substantially flush with each other, the outer peripheral surface of the rotor 2 is free from irregularities and is generated when the rotor 2 rotates. Windage loss can be reduced.
[0077]
In the present invention, in order not to increase the magnetic gap length, the protrusion preventing member is provided so that the portion disposed on the surface of the claw-shaped magnetic pole is a magnetic material and the portion disposed between the claw-shaped magnetic poles is a non-magnetic material. By disposing, the leakage magnetic flux between the claw magnetic poles can be reduced. In this embodiment, the gap length between the rotor and the stator is 0.35 mm, and the thickness of the 13Cr—Fe alloy used is 0.5 mm. Therefore, in the examples of FIGS. 13 and 14, the low step portion 20a is 0.5 mm lower than the high step portion 20b. Further, it is desirable that the axial length of the pop-out preventing member 61 is set to be slightly longer than the axial length of the permanent magnet to be used.
[0078]
Next, a method for creating a magnetic part and a nonmagnetic part will be described. The 13Cr-Fe alloy manufactured by Hitachi Metals, Ltd. described above is a metal whose properties of a magnetic material show properties of a non-magnetic material by applying heat. As the heat applied at this time, the magnetic portion can be changed to a non-magnetic material in a short time by applying the metal at a temperature of 1200 to 1300 ° C. for 1 minute or by melting the metal surface at 1500 ° C.
[0079]
Specifically, an alloy made of 13Cr—Fe having magnetic properties is raised only to a place where it is placed between the claw magnetic poles by using a welding machine using plasma, laser, and electron beam to locally raise the temperature to about 1500 ° C. It is dissolved so as to have a non-magnetic property. Further, the plasma, laser, and electron beam used at this time are preferably matched to the width between the claw magnetic poles, but may be divided into several when the beam diameter is thin. Needless to say, it is performed in an inert gas such as argon gas in order to prevent oxidation of the weld.
[0080]
In the above description, the pop-out preventing member having a magnetic part and a non-magnetic part using a 13Cr—Fe alloy has been described. However, the pop-out preventing member 61 is composed of a magnetic part 61a made of a magnetic material and a non-magnetic material. Even if the nonmagnetic portions 61b are regularly arranged and the joints are integrally manufactured by welding, the same effect can be obtained. Further, at this time, the nonmagnetic portion 61b is disposed between the claw magnetic poles where leakage magnetic flux is likely to be generated to reduce the leakage magnetic flux, and the magnetic portion 61a is disposed in a place where it is not desired to increase the gap length. Therefore, good power generation performance can be obtained without increasing the gap length.
[0081]
Next, a seventh embodiment will be described with reference to FIGS.
[0082]
15 and 16 show that the 13Cr-Fe alloy ring having a thickness of about 0.1 mm to 1 mm is laminated in the axial direction of the outer peripheral surface of the rotor 2, and the portion corresponding to the gap between the claw poles is argon, laser, electron beam. The metal is melted locally by using, for example, a non-magnetic part. At this time, the alloy is arranged on the outermost peripheral portion of the claw-shaped magnetic pole by shrink fitting, press fitting or the like. Needless to say, the effect of the lamination is to reduce loss due to eddy currents. For example, a 13Cr—Fe alloy may be formed into a long and wire shape and wound around the outer peripheral surface of the claw-shaped magnetic pole. Also in this case, the same effect can be obtained by heat-treating the portion disposed between the claw magnetic poles using the above-described welding machine.
[0083]
Next, a sixth embodiment will be described with reference to FIGS. 17 and 18, the same reference numerals as those in FIGS. 13 and 14 denote the same components. The difference between FIGS. 17 and 18 and FIGS. 13 and 14 is that a hole 61 y is provided in a portion corresponding to between the claw-shaped magnetic poles of the pop-out prevention member 61.
[0084]
In addition, when using a configuration in which holes are provided between the claw-shaped magnetic poles as shown in FIGS. 17 and 18, only the connecting portion 61X, which is not the hole 61Y, is made nonmagnetic by heat treatment. do it. Moreover, the same effect can be acquired also in these Examples.
[0085]
Next, a seventh embodiment will be described with reference to FIGS. 19 and 20, the same reference numerals as those in FIGS. 13 and 14 denote the same components. The difference between FIGS. 19 and 20 and FIGS. 13 and 14 is that a claw portion 70 for alignment is provided as a part of the pop-out prevention member 61. The positioning claw portion 70 is disposed so as to mesh with the claw-shaped magnetic poles 3N, 3S, thereby enabling the protrusion preventing member 61 to be positioned with respect to the gap between the claw-shaped magnetic poles 3N, 3S. Furthermore, the pop-out prevention member 61 is prevented from shifting in the circumferential direction of the rotor 2.
[0086]
The alignment member 70 does not have to be provided between all the claw-shaped magnetic poles 3N and 3S as shown in the figure, and the same function can be achieved if at least one exists.
[0087]
In the fourth, fifth, sixth, and seventh embodiments, the claw portion of the claw-shaped magnetic pole is stepped and the pop-out prevention member 61 is attached to the outer peripheral surface of the claw-shaped magnetic pole, but no step is provided. However, the obtained effect is almost the same.
[0088]
When no step is provided, the seventh embodiment has an effect that the protrusion preventing member 61 is not displaced in the axial direction by bending the alignment claw portion 70 to the inside of the rotor 2.
[0089]
【The invention's effect】
Since the permanent magnet arranged between the claw portions of the claw-shaped magnetic pole is previously held by the permanent magnet holding member from the inner peripheral side and integrally molded, the magnet module is incorporated between the claw-shaped magnetic pole claw portions. Workability at the time of assembling is improved.
[0090]
Further, a permanent magnet arranged between the claws of the claw-shaped magnetic pole is built in between the claws of the claw-shaped magnetic pole by incorporating a magnet module in which permanent magnets arranged between the claws of the claw-shaped magnetic pole are previously molded integrally with a permanent magnet holding member. By making the magnet a solid magnet, the generated current is increased and the power generation efficiency is improved.
[0091]
In addition, in the thing provided with a pop-out preventing member for preventing the pop-out of the permanent magnet disposed between the claw portions of the claw-shaped magnetic pole, the pop-out preventive member is disposed between the outer surface side of the permanent magnet and the claw-shaped magnetic pole claw portion, In addition, since the material of the pop-out prevention member is a non-magnetic material or a magnetic material, or a composite material in which a non-magnetic material and a magnetic material are mixed, the permanent magnet can be increased in size, generating current is increased and generating efficiency is improved. To do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of the overall configuration of an automotive alternator according to a first embodiment of the present invention.
2 is a plan view of the permanent magnet holding member of FIG. 1. FIG.
FIG. 3 is a plan view for explaining a permanent magnet holding state using the permanent magnet holding member of FIG. 2;
4 is a cross-sectional view taken along the line AA ′ of FIG.
FIG. 5 shows a side view of the permanent magnet holding member of FIG. 2;
6 is a perspective view of a permanent magnet attached state using the permanent magnet preventing member of FIG. 2; FIG.
7 is an enlarged cross-sectional view taken along the line BB ′ of FIG.
8 shows a perspective view of the permanent magnet pop-out preventing member of FIG. 6. FIG.
FIG. 9 is a perspective view of a main part of an automotive alternator according to a second embodiment of the present invention.
FIG. 10 is a perspective view of a main part of an automotive alternator according to a third embodiment of the present invention.
11 is a perspective view of the pop-out preventing member of FIG.
12 is a perspective view of another example of the pop-out preventing member of FIG.
FIG. 13 is a perspective view of a claw portion of a claw-shaped magnetic pole according to a fourth embodiment of the present invention.
14 shows a partial cross-sectional view of FIG.
FIG. 15 is a perspective view of a claw portion of a claw-shaped magnetic pole according to a fifth embodiment of the present invention.
16 shows a partial cross-sectional view of FIG.
FIG. 17 is a perspective view of a claw portion of a claw-shaped magnetic pole according to a sixth embodiment of the present invention.
FIG. 18 shows a partial cross-sectional view of FIG.
FIG. 19 is a perspective view of a claw portion of a claw-shaped magnetic pole according to a seventh embodiment of the present invention.
20 shows a partial cross-sectional view of FIG.
[Explanation of symbols]
2 ... rotor, 3, 3N, 3S ... claw-shaped magnetic pole, 4 ... field winding, 5 ... permanent magnet, 7 ... stator, 8 ... stator core, 9 ... stator winding, 17 ... yoke, 20a ... Low stage part, 20b ... High stage part, 21 ... Welded part, 61 ... Jump-out prevention member, 61X ... Connection part, 61Y ... Hole part, 62 ... Permanent magnet holding member, 62m, 62n ... Claw part.

Claims (12)

回転子と、
該回転子に対して所定の間隔を隔てて配置された固定子とを有し、
前記回転子は、
対向配置された一対の爪形磁極と、
該爪形磁極を磁化させるための界磁巻線を備えており、
前記爪形磁極のそれぞれは複数の爪部を備えており、
前記爪形磁極の前記複数の爪部は、前記爪形磁極の隣り合う前記爪部間の内周側の距離が外周側の距離も大きくなるように形成されており、
前記爪形磁極の隣り合う複数の前記爪部間には、前記界磁巻線の作る磁束を増磁するための永久磁石が配置されており、
前記爪形磁極の前記爪部及び前記永久磁石の外周側には、前記永久磁石の飛び出しを防止するための永久磁石飛び出し防止部材が配置されており、
前記複数の永久磁石は永久磁石保持部材によって内周側から保持されており、
前記永久磁石保持部材は、
板状部材が円筒状に曲げられたものであって、
板状部材上において、板状部材上に載置された前記複数の永久磁石のそれぞれの幅方向及び長手方向を保持するための爪部を備えており、
前記永久磁石保持部材の前記永久磁石の幅方向を保持するための前記爪部は、前記爪形磁極の隣り合う複数の前記爪部間に前記永久磁石が配置された際、前記爪形磁極の前記爪部と前記永久磁石との間に形成される隙間に配置される
ことを特徴とする車両用交流発電機。
A rotor,
A stator disposed at a predetermined interval with respect to the rotor,
The rotor is
A pair of claw-shaped magnetic poles arranged opposite to each other;
A field winding for magnetizing the claw-shaped magnetic pole;
Each of the claw-shaped magnetic poles includes a plurality of claw portions,
The plurality of claw portions of the claw-shaped magnetic pole are formed such that the distance on the inner peripheral side between the claw portions adjacent to the claw-shaped magnetic pole also increases the distance on the outer peripheral side,
A permanent magnet for increasing the magnetic flux formed by the field winding is disposed between the claw portions adjacent to the claw-shaped magnetic pole,
A permanent magnet pop-out prevention member for preventing the permanent magnet from popping out is disposed on the outer peripheral side of the claw portion and the permanent magnet of the claw-shaped magnetic pole,
The plurality of permanent magnets are held from the inner peripheral side by a permanent magnet holding member,
The permanent magnet holding member is
The plate-like member is bent into a cylindrical shape,
On the plate member, the claw portion for holding the width direction and the longitudinal direction of each of the plurality of permanent magnets placed on the plate member,
The claw portion for holding the permanent magnet in the width direction of the permanent magnet holding member is configured such that when the permanent magnet is disposed between the plurality of claw portions adjacent to the claw-shaped magnetic pole, An AC generator for a vehicle, which is disposed in a gap formed between the claw portion and the permanent magnet.
請求項1記載の車両用交流発電機において、
前記飛び出し防止部材は非磁性体によって構成されている
ことを特徴とする車両用交流発電機。
In the vehicle alternator according to claim 1,
The pop-out preventing member is made of a nonmagnetic material.
A vehicle alternator characterized by the above .
請求項2記載の車両用交流発電機において、
前記飛び出し防止部材の厚さは、前記回転子と前記固定子との間のギャップ長の1/2以下である
ことを特徴とする車両用交流発電機。
In the vehicle alternator according to claim 2,
The thickness of the pop-out prevention member is ½ or less of the gap length between the rotor and the stator.
A vehicle alternator characterized by the above .
請求項1記載の車両用交流発電機において、
前記飛び出し防止部材は磁性体によって構成されており
前記永久磁石の外周側に位置する前記飛び出し防止部材部分には穴部が形成されている
ことを特徴とする車両用交流発電機。
In the vehicle alternator according to claim 1,
The pop-out preventing member is constituted by a magnetic material element,
A hole is formed in the pop-out prevention member portion located on the outer peripheral side of the permanent magnet .
A vehicle alternator characterized by the above .
請求項1に記載の車両用交流発電機において、
前記爪形磁極の前記爪部の外周面には段差部が形成されており、
前記段差部の低段部には前記飛び出し防止部材が配置されており、
前記飛び出し防止部材の厚さは前記段差部の段差に等しい
ことを特徴とする車両用交流発電機。
In the vehicle alternator according to claim 1,
A step portion is formed on the outer peripheral surface of the claw portion of the claw-shaped magnetic pole,
The pop-out prevention member is arranged at the lower step portion of the step portion,
The AC generator for vehicles, wherein the thickness of the pop-out prevention member is equal to the step of the step portion.
請求項1に記載の車両用交流発電機において、
前記飛び出し防止部材は前記爪形磁極の前記爪部に溶接されており、
前記永久磁石保持部材,前記永久磁石及び前記爪形磁極はワニスによって一体固定されている
ことを特徴とする車両用交流発電機。
In the vehicle alternator according to claim 1,
The pop-out prevention member is welded to the claw portion of the claw-shaped magnetic pole,
The AC generator for a vehicle, wherein the permanent magnet holding member, the permanent magnet, and the claw-shaped magnetic pole are integrally fixed by a varnish.
請求項1に記載の車両用交流発電機において、
前記爪形磁極の前記爪部の外周側に位置する部分が磁性部で形成され、
前記永久磁石の外周側に位置する部分が非磁性部で形成されている
ことを特徴とする車両用交流発電機。
In the vehicle alternator according to claim 1,
A portion located on the outer peripheral side of the claw part of the claw-shaped magnetic pole is formed of a magnetic part,
An AC generator for vehicles, wherein a portion located on the outer peripheral side of the permanent magnet is formed of a non-magnetic portion.
請求項7に記載の車両用交流発電機において、
前記飛び出し防止部材は、磁性体金属と非磁性体金属を溶接により接続して一体製造したリングである
ことを特徴とする車両用交流発電機。
In the vehicle alternator according to claim 7 ,
The pop-out prevention member is a ring integrally manufactured by connecting a magnetic metal and a non-magnetic metal by welding.
A vehicle alternator characterized by the above .
請求項7に記載の車両用交流発電機において、
前記飛び出し防止部材、複合性磁性材料から成る磁性体を局部的に加熱処理して前記非磁性部を形成したものである
ことを特徴とする車両用交流発電機。
In the vehicle alternator according to claim 7 ,
The pop-out prevention member is formed by locally heat-treating a magnetic body made of a composite magnetic material to form the non-magnetic portion.
A vehicle alternator characterized by the above .
請求項7に記載の車両用交流発電機において、
前記飛び出し防止部材は
複合性磁性材料のリングを軸方向に複数個積み重ねて構成したものであって
前記永久磁石の外周側に位置する部分を熱処理によって非磁性体処理したものである
ことを特徴とする車両用交流発電機。
In the vehicle alternator according to claim 7 ,
The pop-out preventing member,
It is constructed by stacking multiple rings of composite magnetic material in the axial direction,
It is obtained by processing a non-magnetic material I by the heat treatment of the portion located on the outer peripheral side of the permanent magnet
A vehicle alternator characterized by the above .
請求項7に記載の車両用交流発電機において、
前記飛び出し防止部材は
複合性磁性材料のワイヤーを前記爪形磁極最外周面にリング状に巻き付けて構成したものであって
前記永久磁石の外周側に位置する部分を熱処理によって非磁性体処理したものである
ことを特徴とする車両用交流発電機。
In the vehicle alternator according to claim 7 ,
The pop-out preventing member,
The wire composite of magnetic material to said claw poles outermost surface be those constructed by winding in a ring shape,
It is obtained by processing a non-magnetic material I by the heat treatment of the portion located on the outer peripheral side of the permanent magnet
A vehicle alternator characterized by the above .
請求項7に記載の車両用交流発電機において、
前記飛び出し防止部材は、前記爪形磁極の極間に対して位置合わせが可能な位置合わせ用爪部を有する
ことを特徴とする車両用交流発電機。
In the vehicle alternator according to claim 7,
The vehicle alternator according to claim 1, wherein the pop-out preventing member has a positioning claw portion that can be positioned with respect to a gap between the claw-shaped magnetic poles.
JP05805799A 1998-03-05 1999-03-05 Vehicle alternator Expired - Fee Related JP3663958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05805799A JP3663958B2 (en) 1998-03-05 1999-03-05 Vehicle alternator

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP10-53326 1998-03-05
JP5332698 1998-03-05
JP5471098 1998-03-06
JP10-54710 1998-03-06
JP05805799A JP3663958B2 (en) 1998-03-05 1999-03-05 Vehicle alternator

Publications (2)

Publication Number Publication Date
JPH11318064A JPH11318064A (en) 1999-11-16
JP3663958B2 true JP3663958B2 (en) 2005-06-22

Family

ID=27294912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05805799A Expired - Fee Related JP3663958B2 (en) 1998-03-05 1999-03-05 Vehicle alternator

Country Status (1)

Country Link
JP (1) JP3663958B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3740375B2 (en) * 2001-02-27 2006-02-01 株式会社日立製作所 AC generator for vehicles
JP3830779B2 (en) * 2001-06-27 2006-10-11 株式会社日立製作所 AC generator for vehicles
JP3743431B2 (en) * 2002-04-26 2006-02-08 株式会社日立製作所 Vehicle alternator and its rotor
JP4291235B2 (en) 2004-08-20 2009-07-08 株式会社日立製作所 Vehicle power supply
JP4654970B2 (en) * 2006-05-15 2011-03-23 株式会社デンソー AC generator for vehicles
JP4735980B2 (en) * 2006-08-23 2011-07-27 株式会社デンソー AC generator for vehicle and method for manufacturing the same
JP4605275B2 (en) * 2008-08-29 2011-01-05 株式会社デンソー AC generator for vehicles
JP4697292B2 (en) * 2008-12-05 2011-06-08 株式会社デンソー Rotating electrical machine rotor
EP2182613B1 (en) 2008-10-31 2018-02-28 Denso Corporation Rotor for electric rotary machine
JP6711148B2 (en) * 2016-06-03 2020-06-17 株式会社デンソー Rotating machine rotor
JP6641601B2 (en) * 2016-07-04 2020-02-05 株式会社デンソー Rotor for rotating electric machine
JP2018046691A (en) 2016-09-15 2018-03-22 株式会社デンソー Rotary electric machine
JP6772707B2 (en) * 2016-09-15 2020-10-21 株式会社デンソー Rotating machine

Also Published As

Publication number Publication date
JPH11318064A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
US10790734B2 (en) Rotating electric machine
US6104118A (en) Alternating current generator for use in vehicle
JP2946604B2 (en) AC generator
US6849983B2 (en) Rotary machine having bypath magnetic path blocking magnetic barrier
US7268450B2 (en) Permanent magnet type generator
JP3663958B2 (en) Vehicle alternator
JPH0998556A (en) Ac generator for vehicle
JP5279691B2 (en) Rotating electric machine
EP1283581A2 (en) Rotor for permanent magnet motor
JP2006191788A (en) Stator structure for electric machine, and manufacturing method therefor, and dc motor
US6972504B1 (en) Permanent magnet machine and method with reluctance poles for high strength undiffused brushless operation
US6922000B2 (en) Rotary electric machine
WO2011067962A1 (en) Vehicular rotating electric machine
JP3819386B2 (en) Magnet generator
JP2008125243A (en) Rotary electric machine
US10848041B2 (en) Rotating electric machine
JP3704881B2 (en) Synchronous rotating machine with permanent magnet and driving method thereof
JP4675647B2 (en) Stator, core for rotating machine and rotating machine
JP4066219B2 (en) Synchronous machine with stationary field coil magnet
JP4211200B2 (en) Synchronous machine with magnet
JP2009124862A (en) Rotary electric machine and method for manufacturing rotor applied to the same
JP3829888B2 (en) Synchronous rotating machine with permanent magnet
WO2020080479A1 (en) Coil device
JP4323941B2 (en) Exciter, field machine, and synchronous machine using the same
JP6641600B2 (en) Rotating electric machine rotor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees