JP3663798B2 - X-ray CT system - Google Patents

X-ray CT system Download PDF

Info

Publication number
JP3663798B2
JP3663798B2 JP01157497A JP1157497A JP3663798B2 JP 3663798 B2 JP3663798 B2 JP 3663798B2 JP 01157497 A JP01157497 A JP 01157497A JP 1157497 A JP1157497 A JP 1157497A JP 3663798 B2 JP3663798 B2 JP 3663798B2
Authority
JP
Japan
Prior art keywords
ray
rays
sensitivity
detection element
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01157497A
Other languages
Japanese (ja)
Other versions
JPH10201752A (en
Inventor
幹生 和田
淳一 大井
寛道 戸波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP01157497A priority Critical patent/JP3663798B2/en
Publication of JPH10201752A publication Critical patent/JPH10201752A/en
Application granted granted Critical
Publication of JP3663798B2 publication Critical patent/JP3663798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、X線を受けて発光する蛍光素子とこの蛍光素子の発光量を電気信号に変換する光電変換素子とを多数組み合わせたX線検出器を備えたX線CT装置に関する。
【0002】
【従来技術】
近年、X線CT装置に用いられるX線検出器として、従来のキセノンガスによる電離箱の方式に換わって、検出精度の向上を図るため、シンチレータ素子等を用いた固体X線検出器が広く用いられている。
【0003】
かかる固体X線検出器は、入射X線を光に変換するシンチレータ素子と、このシンチレータ素子で変換された光を検出し電気信号として出力するフォトダイオードとからなるX線検出素子をX線管を中心として円弧状に約500〜1000チャンネル程度配列した構成を備えたものである。
【0004】
【発明が解決しようとする課題】
しかしながら、シンチレータ素子等を用いたX線固体検出器では、図6に示されるように、X線を照射することにより検出素子の感度、特に蛍光素子の発光強度が低下するという特徴がある。
【0005】
かかる場合、X線検出器へのX線非照射の時間が長くかつX線照射の開始直後ほど感度低下の割合が大きくなり、さらに、各X線検出素子毎に感度バラツキも大きくなる。
【0006】
このため、シンチレータ素子等をX線検出器に用いたX線CT装置では、撮像に先立ちキャリブレーション等を行っても各検出素子の感度劣化によるバラツキを補正しきれず、撮像画像にアーティファクト等の虚像が生じるという問題があった。
【0007】
そこで、本発明はこれらの課題を解消するため、シンチレータ素子等をX線検出器に用いた場合であっても虚像などのない良好な画像が得られるX線CT装置の提供を目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は、X線発生部と、X線を受けて発光する蛍光素子とこの蛍光素子の発光量を電気信号に変換する光電変換素子とを多数組み合わせたX線検出器とを有するX線CT装置であって、被検体撮像に先立ち前記X線検出器に前記蛍光素子が放射線損傷を受け出力感度が安定するだけのX線を前記X線発生部から照射させる制御手段を備えたことを特徴とする。
【0009】
前記X線の照射量は、5000mAs以上であることを特徴とする
【0010】
【発明の実施の形態】
以下、本発明の一実施形態を図1〜図5に基づいて説明する。
【0011】
図1は発明の一実施形態であるX線CT装置の概略図であり、被検体3を挟み対向して、X線発生部1及びX線検出部2が配設されており、X線発生部1のX線管よりX線を被検体3に照射しながらX線管及びX線検出部2を一体的に回転させ、X線検出部2より略360゜或いは略180゜方向からの被検体3のX線透写データが取得される。
【0012】
X線発生部1は、主にX線管と高電圧源からなり、高電圧源は通常X線CT装置本体から離れた位置に設置される。
【0013】
X線検出部2は、入射X線を光に変換するシンチレータ素子と、このシンチレータ素子で変換された光を検出し電気信号として出力するフォトダイオードとからなるX線検出素子をX線発生部を中心として円弧状に約500〜1000チャンネル程度配列した構成を備え、各チャンネルから得られるデータに対して増幅等通常必要とされる処理を施した後、AD変換して、演算制御部4に送出する。
演算制御部4は、X線CT装置全体の動作制御を行うと共に、X線検出部2より送出された各チャンネル毎のデータに基づき被検体3の断層像を演算により求める。また、演算制御部4は、X線CT装置の立ち上げ時、或いは、長時間X線の照射がない場合に、前記各シンチレータ素子の感度が安定するだけのX線照射を行うようX線発生部1に対して与える。
【0014】
次に、本発明の作用を演算制御部4の動作を示す図2及び図3に示されるフローチャートに基づいて説明する。
【0015】
まず、装置稼動の指示(装置を使用する場合に行うため1日1回が通常である。)がなされると、演算制御部4は、X線CT装置全体を動作可能な状態にセットアップした後(S1)、撮像に先立ち、X線検出部2の各X線検出素子の感度が安定するだけの照射線量MのX線を照射するようX線発生部1に指示を与える。 ここで、感度が安定するだけのX線の照射線量Mは予め求められ演算制御部4に記憶されているが、照射線量Mを求める過程を図3に示したフローチャートに基づいて説明する。
【0016】
演算制御部4は、X線発生部1に対してX線の照射指示を行い(S11)、X線検出部2から得られるデータを各X線検出素子毎にモニタし、すべてのX線検出素子出力の変化率が所定値α(1に近い値)になるまでX線を照射する(S12)。図4は、2つのX線検出素子出力を照射当初の比を示す感度で表しているが、変化率が所定値α以下となる部分はX線検出素子の感度が一定となるところである。
【0017】
すべてのX線検出素子出力の変化率が所定値α以下となると、そのときの積算した照射線量Mを算出し記憶する(S13)。
【0018】
これにより、各X線検出素子の感度が一定となるまでに照射すべきX線の照射量が算出される。
【0019】
図2において、照射線量MのX線の照射が完了すると、各X線検出素子出力のキャリブレーションを行う(S3)。
【0020】
キャリブレーションは、図5に示されるように、既知の吸収量Zだけ吸収されたX線を照射し、所定のデータ処理(通常は、Y=−logX、X:X線検出素子出力)を施した出力Yと吸収量Zとの関係を示す予め求められた関数に対して、以下の補正を行う。
【0021】
Z=(Y1 /Y0 )×Y
なお、かかるキャリブレーションは各X線検出素子出力YとX線吸収量Zとの関係において各X線検出素子毎のばらつきを補正するためになされるものであるが、各X線検出素子毎の概略的な感度のバラツキは、上記ステップ2(S2)で示したX線の照射により修正されているため、精度の高いキャリブレーションの実行が可能となる。
【0022】
キャリブレーションが終了すると、被検体3の撮像モードに入り、通常の断層撮像がなされる(S4)。
【0023】
これにより、被検体3の撮像に先立ち、常に検出器感度を一定するだけのX線が各X線検出素子に照射されるので、被検体3の撮像は、常にX線検出素子感度が一定となる状態でなされる。このため、シンチレータ素子等をX線検出素子として有するX線CT装置において、アーティファクトの少ない良好な画像を得ることができる。
【0024】
また、X線CT装置稼動に際して、X線管を安定させるためのいわゆるエージングをも兼ねることができるため(いわゆるエージングの時間よりシンチレータ素子等を安定させる方が長期を有する)、従来に比べ撮像までにそれほど時間を要することもない。
【0025】
上述した実施の形態では、各X線検出素子の感度が一定となるX線照射量を予め求めたが、通常のX線検出素子、例えば、シンチレータ素子などを用いたものなどであれば、5000mAs程度X線を照射すれば感度が安定するため、撮像に先立って行うX線照射量を5000mAs程度或いはそれ以上の所定値に固定しても良い。
【0026】
また、上述した実施の形態では、装置稼働時にX線照射を行う例を示したが、X線が照射されないと、各X線検出素子感度が1付近に回復するため、X線が所定時間照射されない場合にも、被検体の撮像に際して行うよう構成しても良い。
なお、上述した実施の形態では、X線検出器をX線CT装置に搭載した状態で、X線を照射し、各検出素子感度の安定化を図ったが、X線CT装置への搭載に先立って、十分なX線をX線検出器に照射しておけば、各X線検出素子感度の回復が少なくなり、X線CT装置の稼動に先立って行うX線の照射時間も少なくなる。
【0027】
【発明の効果】
本発明によれば、被検体撮像に先立ち、常に検出器感度を一定するだけのX線が各検出素子に照射されるので、被検体の撮像は、常に検出素子感度が一定の状態でなされることとなり、シンチレータ素子等の蛍光素子としてX線検出素子とを有するX線CT装置において、アーティファクトの少ない良好な画像を得ることができる。
【0028】
また、本発明では、X線CT装置稼動に際して、X線管を安定させるためのいわゆるエージングをも兼ねることができるため、従来に比べ撮像までに長時間を要することもない。
【図面の簡単な説明】
【図1】本発明にかかるX線CT装置の概略図である。
【図2】本発明にかかる演算制御部の動作を示す図である。
【図3】 検出器の出力感度を一定とするだけのX線照射量を求めるための演算制御部の動作を示す図である。
【図4】 検出器のX照射量に対する感度変化を示す図である。
【図5】キャリブレーションの動作を示す図である。
【図6】検出器のX照射量に対する感度変化を示す図である。
【符号の説明】
1・・・・・・・・X線発生部
2・・・・・・・・X線検出部
3・・・・・・・・被検体
4・・・・・・・・演算制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray CT apparatus including an X-ray detector in which a large number of fluorescent elements that receive X-rays and emit light and photoelectric conversion elements that convert the light emission amount of the fluorescent elements into electric signals are combined.
[0002]
[Prior art]
In recent years, solid X-ray detectors using scintillator elements and the like have been widely used as X-ray detectors used in X-ray CT apparatuses in order to improve detection accuracy in place of conventional ionization chamber methods using xenon gas. It has been.
[0003]
Such a solid-state X-ray detector includes an X-ray tube that includes an X-ray detection element comprising a scintillator element that converts incident X-rays into light, and a photodiode that detects light converted by the scintillator element and outputs it as an electrical signal. It has a configuration in which about 500 to 1000 channels are arranged in a circular arc shape as the center.
[0004]
[Problems to be solved by the invention]
However, an X-ray solid state detector using a scintillator element or the like is characterized in that the sensitivity of the detection element, particularly the emission intensity of the fluorescent element, is reduced by irradiating the X-ray as shown in FIG.
[0005]
In such a case, the X-ray detector is not irradiated with X-rays for a long time, and the rate of decrease in sensitivity increases immediately after the start of X-ray irradiation, and the sensitivity variation also increases for each X-ray detection element.
[0006]
For this reason, in an X-ray CT apparatus using a scintillator element or the like as an X-ray detector, even if calibration or the like is performed prior to imaging, variations due to sensitivity deterioration of each detection element cannot be corrected, and a virtual image such as an artifact is added to the captured image. There was a problem that occurred.
[0007]
In order to solve these problems, an object of the present invention is to provide an X-ray CT apparatus capable of obtaining a good image without a virtual image even when a scintillator element or the like is used in an X-ray detector.
[0008]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention provides an X-ray generation unit, a fluorescent element that emits light by receiving X-rays, and a combination of a number of photoelectric conversion elements that convert the amount of light emitted from the fluorescent element into an electrical signal. An X-ray CT apparatus having a detector, wherein the X-ray detector is irradiated with X-rays from the X-ray generator so as to stabilize the output sensitivity due to radiation damage to the X-ray detector prior to subject imaging. Control means is provided.
[0009]
The amount of X-ray irradiation is 5000 mAs or more .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0011]
FIG. 1 is a schematic view of an X-ray CT apparatus according to an embodiment of the present invention. An X-ray generation unit 1 and an X-ray detection unit 2 are arranged to face a subject 3 and face each other. The X-ray tube and the X-ray detection unit 2 are rotated integrally while irradiating the subject 3 with X-rays from the X-ray tube of the unit 1, so that the X-ray detection unit 2 rotates the subject from about 360 ° or 180 °. X-ray transmission data of the specimen 3 is acquired.
[0012]
The X-ray generator 1 mainly includes an X-ray tube and a high voltage source, and the high voltage source is usually installed at a position away from the X-ray CT apparatus main body.
[0013]
The X-ray detection unit 2 includes an X-ray generation unit that converts an X-ray detection element including a scintillator element that converts incident X-rays into light, and a photodiode that detects light converted by the scintillator element and outputs it as an electrical signal. It has a configuration in which about 500 to 1000 channels are arranged in a circular arc shape as the center, and after normally performing processing such as amplification on the data obtained from each channel, it is AD converted and sent to the arithmetic control unit 4 To do.
The calculation control unit 4 controls the operation of the entire X-ray CT apparatus, and obtains a tomographic image of the subject 3 by calculation based on the data for each channel sent from the X-ray detection unit 2. In addition, the arithmetic control unit 4 generates X-rays so that the sensitivity of each scintillator element is stabilized when the X-ray CT apparatus is started up or when there is no X-ray irradiation for a long time. Part 1 is given.
[0014]
Next, the effect | action of this invention is demonstrated based on the flowchart shown by FIG.2 and FIG.3 which show the operation | movement of the calculation control part 4. FIG.
[0015]
First, when an instruction to operate the apparatus (usually once a day because it is used when using the apparatus) is given, the arithmetic control unit 4 sets up the entire X-ray CT apparatus in an operable state. (S1) Prior to imaging, the X-ray generation unit 1 is instructed to emit X-rays with an irradiation dose M sufficient to stabilize the sensitivity of each X-ray detection element of the X-ray detection unit 2. Here, the X-ray irradiation dose M sufficient to stabilize the sensitivity is obtained in advance and stored in the calculation control unit 4. The process of obtaining the irradiation dose M will be described based on the flowchart shown in FIG.
[0016]
The arithmetic control unit 4 instructs the X-ray generation unit 1 to irradiate X-rays (S11), monitors the data obtained from the X-ray detection unit 2 for each X-ray detection element, and detects all X-rays. X-rays are irradiated until the change rate of the element output reaches a predetermined value α (a value close to 1) (S12). FIG. 4 represents the outputs of the two X-ray detection elements with sensitivity indicating the ratio at the beginning of irradiation. The portion where the change rate is equal to or less than the predetermined value α is where the sensitivity of the X-ray detection element is constant.
[0017]
When the rate of change of all X-ray detection element outputs is equal to or less than the predetermined value α, the accumulated irradiation dose M at that time is calculated and stored (S13).
[0018]
Thereby, the irradiation amount of X-rays to be irradiated before the sensitivity of each X-ray detection element becomes constant is calculated.
[0019]
In FIG. 2, when the irradiation of the X-ray with the irradiation dose M is completed, the output of each X-ray detection element is calibrated (S3).
[0020]
As shown in FIG. 5, the calibration is performed by irradiating X-rays absorbed by a known absorption amount Z and performing predetermined data processing (usually Y = −logX, X: X-ray detection element output). The following correction is performed on a function obtained in advance showing the relationship between the output Y and the absorbed amount Z.
[0021]
Z = (Y1 / Y0) × Y
Such calibration is performed in order to correct variation for each X-ray detection element in the relationship between each X-ray detection element output Y and the X-ray absorption amount Z. Since the approximate variation in sensitivity is corrected by the X-ray irradiation shown in step 2 (S2) above, highly accurate calibration can be performed.
[0022]
When calibration is completed, the imaging mode of the subject 3 is entered, and normal tomographic imaging is performed (S4).
[0023]
As a result, prior to imaging the subject 3, X-rays that always have a constant detector sensitivity are irradiated to each X-ray detection element. Therefore, when imaging the subject 3, the X-ray detection element sensitivity is always constant. It is made in the state. For this reason, in an X-ray CT apparatus having a scintillator element or the like as an X-ray detection element, a good image with few artifacts can be obtained.
[0024]
In addition, when the X-ray CT apparatus is operated, it can also serve as so-called aging for stabilizing the X-ray tube (it is longer to stabilize the scintillator element etc. than the so-called aging time). It does not take much time.
[0025]
In the above-described embodiment, the X-ray irradiation dose at which the sensitivity of each X-ray detection element is constant is obtained in advance. However, if a normal X-ray detection element, for example, a scintillator element is used, 5000 mAs is used. Since the sensitivity is stabilized if X-rays are irradiated to the extent, the X-ray irradiation amount performed prior to imaging may be fixed to a predetermined value of about 5000 mAs or more.
[0026]
In the above-described embodiment, an example in which X-ray irradiation is performed when the apparatus is in operation has been described. However, when X-rays are not irradiated, the sensitivity of each X-ray detection element is restored to around 1, so that X-rays are irradiated for a predetermined time. Even when it is not performed, it may be configured to perform the imaging of the subject.
In the above-described embodiment, the X-ray detector is mounted on the X-ray CT apparatus and X-rays are irradiated to stabilize the sensitivity of each detection element. If the X-ray detector is irradiated with sufficient X-rays in advance, the recovery of the sensitivity of each X-ray detection element is reduced, and the X-ray irradiation time performed prior to the operation of the X-ray CT apparatus is also reduced.
[0027]
【The invention's effect】
According to the present invention, prior to imaging of the subject, X-rays that always have a constant detector sensitivity are irradiated to each detection element, so that imaging of the subject is always performed with the detection element sensitivity being constant. Thus, in an X-ray CT apparatus having an X-ray detection element as a fluorescent element such as a scintillator element, a good image with little artifact can be obtained.
[0028]
In the present invention, when the X-ray CT apparatus is operated, it can also serve as so-called aging for stabilizing the X-ray tube, so that it does not take a long time for imaging compared to the conventional case.
[Brief description of the drawings]
FIG. 1 is a schematic view of an X-ray CT apparatus according to the present invention.
FIG. 2 is a diagram illustrating an operation of an arithmetic control unit according to the present invention.
FIG. 3 is a diagram showing an operation of an arithmetic control unit for obtaining an X-ray irradiation amount that makes the output sensitivity of a detector constant.
FIG. 4 is a diagram showing a change in sensitivity with respect to an X irradiation amount of a detector.
FIG. 5 is a diagram illustrating a calibration operation.
FIG. 6 is a diagram showing a sensitivity change with respect to an X irradiation amount of a detector.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... X-ray generation part 2 ... X-ray detection part 3 ... Subject 4 ... Calculation control part

Claims (2)

X線発生部と、X線を受けて発光する蛍光素子とこの蛍光素子の発光量を電気信号に変換する光電変換素子とを多数組み合わせたX線検出器とを有するX線CT装置において、被検体撮像に先立ち前記X線検出器に前記蛍光素子が放射線損傷を受け出力感度が安定するだけのX線を前記X線発生部から照射させる制御手段を備えたことを特徴とするX線CT装置。In an X-ray CT apparatus comprising an X-ray generator, an X-ray detector that combines a fluorescent element that emits light upon receipt of X-rays, and a photoelectric conversion element that converts the amount of light emitted from the fluorescent element into an electrical signal. An X-ray CT apparatus comprising: control means for irradiating the X-ray detector from the X-ray generation unit with X-rays enough to stabilize output sensitivity due to radiation damage to the X-ray detector prior to specimen imaging . 前記X線の照射量は、5000mAs以上であることを特徴とする請求項1記載のX線CT装置。 The X-ray CT apparatus according to claim 1, wherein the X-ray dose is 5000 mAs or more.
JP01157497A 1997-01-24 1997-01-24 X-ray CT system Expired - Fee Related JP3663798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01157497A JP3663798B2 (en) 1997-01-24 1997-01-24 X-ray CT system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01157497A JP3663798B2 (en) 1997-01-24 1997-01-24 X-ray CT system

Publications (2)

Publication Number Publication Date
JPH10201752A JPH10201752A (en) 1998-08-04
JP3663798B2 true JP3663798B2 (en) 2005-06-22

Family

ID=11781695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01157497A Expired - Fee Related JP3663798B2 (en) 1997-01-24 1997-01-24 X-ray CT system

Country Status (1)

Country Link
JP (1) JP3663798B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7657001B2 (en) * 2005-11-09 2010-02-02 Koninklijke Philips Electronics N.V. Method for reducing 3D ghost artefacts in an x-ray detector

Also Published As

Publication number Publication date
JPH10201752A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
JP2008523872A (en) Pulsed X-ray for continuous detector correction
JP3092127B2 (en) X-ray CT system
US9633814B2 (en) X-ray CT apparatus
JP4152748B2 (en) Digital detector method for dual energy imaging.
US7466793B2 (en) Distinct incident energy spectra detection
US8265223B2 (en) Data acquisition
JP4547254B2 (en) Apparatus and method for reducing image artifacts
JP2018157939A (en) Radiographic imaging system, radiographic imaging method, and program
WO2005070296A1 (en) Radiographic device and radiographic method
JP3663798B2 (en) X-ray CT system
JP7211985B2 (en) Imaging control device, method of operating imaging control device, operating program for imaging control device, and radiation imaging device
US20140161221A1 (en) X-ray computed tomography apparatus
JP4814138B2 (en) Radiographic imaging method and radiographic imaging device
JP2005080839A (en) Radiation tomograph apparatus and radiation tomography method
JP2005296277A (en) X-ray diagnostic apparatus and diagnostic method using the same
WO2000060908A1 (en) X-ray examination apparatus with a brightness control system
JP2000068095A (en) Stabilization of x-ray radiation
JPH11244275A (en) X-ray ct scanner
JP2002320607A (en) X-ray ct apparatus
JPH08266532A (en) X-ray ct system
JPH08266531A (en) X-ray ct system
JP2004125722A (en) Radiation detector and x-ray ct system using it
JP5812679B2 (en) X-ray computed tomography system
JP4080738B2 (en) X-ray computed tomography system
JP3544261B2 (en) X-ray CT system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees