JP3662503B2 - Waste steam heat recovery device - Google Patents

Waste steam heat recovery device Download PDF

Info

Publication number
JP3662503B2
JP3662503B2 JP2001076579A JP2001076579A JP3662503B2 JP 3662503 B2 JP3662503 B2 JP 3662503B2 JP 2001076579 A JP2001076579 A JP 2001076579A JP 2001076579 A JP2001076579 A JP 2001076579A JP 3662503 B2 JP3662503 B2 JP 3662503B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
wort boiling
boiling pot
wort
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001076579A
Other languages
Japanese (ja)
Other versions
JP2002272444A (en
Inventor
伸吾 大村
暢智 今泉
哲哉 富岡
隆弘 草部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Breweries Ltd
Daikin Applied Systems Co Ltd
Original Assignee
Asahi Breweries Ltd
Daikin Applied Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries Ltd, Daikin Applied Systems Co Ltd filed Critical Asahi Breweries Ltd
Priority to JP2001076579A priority Critical patent/JP3662503B2/en
Publication of JP2002272444A publication Critical patent/JP2002272444A/en
Application granted granted Critical
Publication of JP3662503B2 publication Critical patent/JP3662503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビール製造ラインに配置された麦汁煮沸釜で発生する蒸気の熱を回収して利用する排蒸気熱回収装置に関する。
【0002】
【従来の技術】
図3は、ビールの標準的な製造工程を示す図である。仕込み工程では、麦芽と原料湯とが混ぜ合わされ、副原料とともに煮られ、次の麦汁ろ過工程でろ過され、透明な飴湯状の麦汁とされる。この麦汁は、麦汁予熱工程を経て、麦汁煮沸工程に送り込まれる。この麦汁煮沸工程では、麦汁煮沸釜において上記麦汁にホップを加えて煮沸して、全体の10%程度を蒸気として排出し濃縮する。したがって、この麦汁煮沸工程では蒸気の排出に伴い多くの熱量が排出される。煮沸され濃縮された麦汁は、ワールプール(図示せず)に静置され、熱い状態のまま熱凝固物が除去される。ワールプールから送り出されたこの熱麦汁は、麦汁冷却工程において、熱交換器により冷却され、さらに発酵タンクに送り込まれ、発酵が行われる。その後、貯酒タンクで貯酒され、ろ過工程でろ過され、殺菌が行われた後、容器に詰められ製品とされる。
【0003】
上記のビール製造工程において、麦汁煮沸工程においては多くの熱量が排出されるため、熱回収してその熱を麦汁予熱や殺菌に利用している。図4は、麦汁煮沸釜から排出された蒸気の熱回収を行う熱回収装置の概略構成図である。図4を参照して、煮沸釜103からの排蒸気は、熱交換器HEにおいて、タンクから送り込まれる約80℃のお湯と熱交換して凝集し、凝集しない分は蒸気として排出される。麦汁煮沸釜103内の圧力は、品質上およびその他の理由により、低いことが好ましい。このため、麦汁煮沸釜103には圧力を検知して発信する圧力発信器PEが備えられている。この圧力発信器PEからの信号が、圧力指示調節計PICの設定圧力値より小さい場合は、温水流量制御弁CVを絞り、2次側熱媒体の熱回収を減らし、また、設定圧力以上になると温水流量制御弁CVを開いて2次側熱媒体の熱回収量を増やす。このため、熱交換器HEにおける排蒸気の凝集量が増え、この結果、煮沸釜内の蒸気圧を減少させることができる。本発明において、熱交換器の高温熱媒体の側を1次側、また低温熱媒体の側を2次側とする。
【0004】
熱交換器HEに送り込まれた約80℃のお湯は、この熱交換によって約97℃に加熱され、貯湯タンク108に送り返される。貯湯タンク108の湯は、麦汁予熱の熱交換器104および殺菌湯をつくるための熱交換器105における熱交換に用いられる。麦汁予熱の熱交換器104では、約80℃の麦汁が95℃程度に加熱され、また殺菌湯製造の熱交換器105では、常温の水が95℃程度の熱湯に加熱される。この殺菌湯は、殺菌湯タンク106に保管され、熱湯殺菌に使用される。
【0005】
麦汁煮沸釜から発生する排蒸気の熱量を150としたとき、上記の熱交換器HEにおいてその150を回収し、このうち100を殺菌湯の製造に用い、50を麦汁予熱に用いることができる。
【0006】
【発明が解決しようとする課題】
上記の熱回収装置では、もっぱら麦汁予熱を廃熱利用の主目的にして構成されたシステムであるので、熱回収をする水は約80℃から約97℃に昇温されていた。煮沸釜内の圧力を低くするためには、排蒸気路の断面積を大きくする、排蒸気路の断面が同じ場合には、熱交換器の容量を高め排蒸気の凝集速度を高める等の手段が考えられる。しかし、上記の昇温分約17℃では、麦汁煮沸釜からの排蒸気を高速度で凝集させるためには、熱回収媒体である80℃程度のお湯を大量に熱交換器に送り込む必要がある。このため、ポンプP0の能力を非常に大きくしなければならない。図4に示すように、ポンプP0以外に、上記した各熱交換器の1次および2次循環路には、ポンプP1,P2,P3等を配置する必要がある。
【0007】
本発明は、麦汁煮沸釜内の圧力を低くすることができ、小さいポンプ容量で運転することができる排蒸気熱回収装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の排蒸気熱回収装置は、ビール製造ラインに配置された麦汁煮沸釜から発生した蒸気の熱を回収して利用する装置である。この排蒸気熱回収装置には、第1の熱交換器と第2の熱交換器とのそれぞれに麦汁煮沸釜から蒸気が送り込まれるように、第1の熱交換器と第2の熱交換器とが麦汁煮沸釜に対して並列に配置され、麦汁煮沸釜から発生した蒸気を排出する第1の排出路と第2の排出路とをその麦汁煮沸釜に対して並列に備え、第1の排出路に前記第1の熱交換器(HE - 1)を、また前記第2の排出路に第2の熱交換器(HE - 2)を備える。そして、第1の熱交換器(HE - 1)の後において、第1の排出路を閉じることが可能な閉鎖手段(MD - 1)を備える(請求項1)。
【0009】
この構成により、排蒸気熱回収が互いに並列に配置された2つの熱交換器によって行われるので、排蒸気熱回収部分の長さは長くならずかえって断面積が増大する。このため、麦汁煮沸釜内の圧力を低く維持した上で、排蒸気の熱を余裕をもって回収することができる。また、たとえば、一方の熱交換器の2次側の昇温分を大きくとるようにすれば、循環する(温)水量はそれほど多くしなくてもよく、その結果、熱交換器が2つになっただけポンプの台数は増えるが、各ポンプの容量は小さくてすむので、ポンプの設置コストおよび電力代等を下げることができる。また、装置全体の構成を簡明な構成にすることができ、運転や保守点検を行うことが容易となる。
【0010】
また、第1の熱交換器および第2の熱交換器は、それぞれ、麦汁煮沸釜から排出される蒸気の最大量に対して、当該蒸気を熱交換によって凝集させる容量を有していることが望ましい。この構成により、麦汁煮沸釜内の圧力に応じて蒸気を凝集させ、余裕をもって麦汁煮沸釜内の圧力を低い値に保つことができる。また、排蒸気の熱回収をより完全に行うことができ熱経済性を向上させることができる。さらに、熱蒸気を外部に放出することなく、凝集した水を、たとえばドレンによって簡便に排水することができる。なお、「麦汁煮沸釜に対して熱交換器を並列に配置する」とは、麦汁煮沸釜から排出される蒸気の経路において、麦汁煮沸釜から見て、熱交換器が並列に配置されていることを指す。すなわち、経路的にみて並列であれば、どのような熱交換器の配置および熱交換器の配置に付随する蒸気排出路の配置も含まれる。
【0011】
この構成により、排蒸気熱回収が互いに並列に配置された2つの排出路にそれぞれ配置された熱交換器によって行われる。排蒸気熱回収部分の断面積は、2つの排出路の断面積の合計へと増大する。このため、麦汁煮沸釜内の圧力を低く維持した上で、排蒸気の熱を余裕をもって回収することができる。また、第1の熱交換器および第2の熱交換器は、それぞれの排出路を経て排出される蒸気の最大量に対して、当該蒸気を熱交換によって凝集させる容量を有していることが望ましい。この構成により、麦汁煮沸釜内の圧力に応じて蒸気を凝集させ、余裕をもって麦汁煮沸釜内の圧力を低い値に保つことができる。また、熱蒸気を外部に放出することなく、凝集した水を、たとえばドレンによって簡便に排水することができる。なお、上記第1および第2の排出路は、麦汁煮沸釜からの共通の排出路が分岐した2つの排出路であってもよいし、麦汁煮沸釜から別々に設けられた2本の排出路であってもよい。
【0012】
上記閉鎖手段によって第1の排出路を閉鎖することにより、第1の熱交換器は第1の排出路に入ってきて凝集する排蒸気分の熱量のみを回収することができる。このため、第1の熱交換器に排蒸気熱回収の固定的な分のみを分担させ、第2の熱交換器に排蒸気熱回収の変動的な分を分担させることができる。このため、熱回収の変動制御を第2の熱交換器に集中して行うことができ、制御装置コストを低減することができる。なお、上記閉鎖手段としては弁等があげられる。
【0017】
上記本発明の排蒸気熱回収装置では、たとえば、麦汁煮沸釜内の圧力が設定圧力以上になった場合に、閉鎖手段を閉じ、第2の循環路を循環する流体の流量を制御することが望ましい(請求項)。
【0018】
この構成により、麦汁煮沸釜の稼動状況に応じて、閉鎖手段を開閉し、第2の熱交換器の2次側熱媒体の流量を増減させることにより、麦汁煮沸釜の圧力を、所望の低い値に容易に高精度で維持することができる。
【0019】
【発明の実施の形態】
次に、図面を用いて本発明の実施の形態について説明する。図1は、本発明の実施の形態における排蒸気熱回収装置の概略構成図である。本発明の最大の特徴は、麦汁煮沸釜3から排出される排蒸気から、並列に配置された2つの熱交換器HE-1,HE-2によって熱回収を行う点にある。熱交換器HE-1で回収された熱は、タンク7に熱湯として貯蔵され、麦汁予熱の熱交換器4において麦汁煮沸釜に入る前の麦汁を約80℃から約97℃に予熱するのに用いられる。また、熱交換器HE-2において排蒸気から熱回収して常温から95℃へと昇温した殺菌湯は、タンク6に貯蔵され、必要に応じ殺菌湯として使用される。
【0020】
上記構成においては、麦汁煮沸釜から排出された排蒸気と熱交換した熱湯を2つの熱湯タンク6,7にそれぞれ送り込むポンプP1,P3を必要とする。しかし、これらのポンプの容量は、すべて足し合わせても、従来の大容量のポンプP0よりも小さくて済む容量である。
【0021】
このような構成を採用することにより、熱回収の容量を増やし排蒸気路の断面積を増やすことができる。このため、熱回収を十分行ったうえで麦汁煮沸釜内の圧力を低下させ、一定圧に維持することができる。さらに、図4に示した従来例と比較して分るように、熱交換器、貯湯タンク、ポンプの数は増えるが、容量の大きなポンプP0を不要とすることができる。また、従来の装置のように、1つの貯湯タンクを用いて麦汁予熱や殺菌湯製造の熱交換を行わないので、簡明な構成の排蒸気熱回収装置とすることができる。このため、運転や保守点検が容易化される。
【0022】
図1において、熱交換器HE-2の後の弁MD-2は開放されているが、熱交換器HE-1の後の弁MD-1は閉じられている。麦汁煮沸釜からの蒸気の所定量は熱交換器HE-1に導かれ凝集され、その凝集分に見合う排蒸気がHE-1に送り込まれる。したがって、排蒸気熱回収の一定量の固定的な部分を熱交換器HE-1が分担する。熱交換器HE-2では、つぎの機構により変動的な排蒸気熱回収を行う。麦汁煮沸釜の蒸気圧力を検知する圧力検知器を兼ねる圧力発信器PEからの圧力信号を受けた圧力指示調節計PICは、その圧力信号が予め設定した設定圧力以上になると作動を開始する。圧力指示調節計PICは、設定圧力と現実の圧力との差の大きさに応じて、流量制御弁CVの開きを調節する。たとえば、麦汁煮沸釜内の圧力が非常に高まった場合には、設定圧力との差は非常に大きくなり、流量制御弁CVを全開にする。このため、熱交換器HE-2における熱回収量が増え、したがって凝集量が増え、熱交換器HE-2に通じている麦汁煮沸釜3内の圧力を低下させることができる。
【0023】
図2は、ビール製造の1バッチの各装置の稼動状況を示すタイムチャートである。麦汁煮沸釜で煮沸が開始された時点では、麦汁煮沸釜内の圧力は低い状態にある。この開始状態では、熱交換器HE-1の弁MD-1が開放され、第1の循環路におけるポンプP1のみが作動し、熱交換器HE-2の弁MD-2が閉じられ、ポンプP2が停止している。したがって、熱交換器HE-1でのみ熱交換が行われている。煮沸が開始され、30分を経過すると弁MD-1のみの開放では、麦汁煮沸釜内の圧力が上昇してくる。PE-PICが設定圧力以上になったことを検知すると、熱交換器HE-2が熱交換を開始するように、弁MD-2を開き、ポンプP2を作動させる。このとき、熱交換器HE-1の弁MD-1を閉じることにより、熱交換器HE-1では熱回収の一定量の固定的な分のみを行うようにする。PE-PICは、設定圧力と実際の圧力との差を検知して、その差の大きさに応じて流量制御弁CVの開き度を比例的に調節する。その結果、麦汁煮沸釜内の圧力に応じて熱交換器HE-2における排蒸気の凝集量の速度を加減することができ、麦汁煮沸釜内の圧力変動を抑制することができる。
【0024】
麦汁煮沸釜で発生する排蒸気の熱量を150とすると、熱交換器HE-1ではそのうちの50を回収し、熱交換器HE-2では残りの100を回収する。熱回収容量の大きい熱交換器HE-2において、熱回収の変動分を分担させることにより、応答性よく麦汁煮沸釜内の圧力変動を抑制して、所望の低い圧力を保つことができる。
【0025】
上記において、本発明の実施の形態について説明を行ったが、上記に開示された本発明の実施の形態はあくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されることはない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
【0026】
【発明の効果】
本発明により、ビール製造ラインに配置された麦汁煮沸釜から排出される排蒸気熱を、麦汁煮沸釜圧力を低い範囲に保った状態で、回収することができる。また、従来の装置に比較して、大きい容量のポンプを不要とし、装置の構成を簡明なものにすることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態における排蒸気熱回収装置の構成図である。
【図2】 図1の排蒸気熱回収装置における各部分装置のタイムチャートである。
【図3】 一般的なビール製造工程を示す図である。
【図4】 従来の排蒸気熱回収装置の構成図である。
【符号の説明】
3 麦汁煮沸釜、4 麦汁予熱の熱交換器、6 殺菌湯タンク、7 麦汁予熱用の熱湯タンク、HE-1 麦汁予熱のための熱回収用熱交換器、HE-2 殺菌湯製造のための熱回収用熱交換器、MD-1 熱交換器HE-1の弁(ダンパ)、MD-2 熱交換器HE-1の弁(ダンパ)、PE 圧力発信器、PIC 圧力指示調節計、CV 流量調節弁、P1,P3,P4 ポンプ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust steam heat recovery apparatus that recovers and uses the heat of steam generated in a wort boiling kettle arranged in a beer production line.
[0002]
[Prior art]
FIG. 3 is a diagram showing a standard production process of beer. In the preparation process, the malt and the raw material hot water are mixed, boiled with the auxiliary raw materials, filtered in the next wort filtration process, and made into a transparent hot water-like wort. This wort is fed into the wort boiling process through the wort preheating process. In this wort boiling process, hop is added to the wort in the wort boiling pot and boiled, and about 10% of the whole is discharged as steam and concentrated. Therefore, in this wort boiling process, a large amount of heat is discharged with the discharge of steam. The boiled and concentrated wort is allowed to stand in a whirlpool (not shown), and the hot coagulum is removed while still hot. This hot wort sent out from the whirlpool is cooled by a heat exchanger in a wort cooling step, and further fed into a fermentation tank for fermentation. Thereafter, the alcohol is stored in a storage tank, filtered in a filtration process, sterilized, and then packed into a container to obtain a product.
[0003]
In the beer production process described above, since a large amount of heat is discharged in the wort boiling process, the heat is recovered and the heat is used for wort preheating and sterilization. FIG. 4 is a schematic configuration diagram of a heat recovery apparatus that performs heat recovery of steam discharged from the wort boiling pot. Referring to FIG. 4, the exhaust steam from boiling kettle 103 is agglomerated by heat exchange with about 80 ° C. hot water fed from the tank in heat exchanger HE, and the part not agglomerated is discharged as steam. The pressure in the wort boiling pot 103 is preferably low for quality and other reasons. For this reason, the wort boiling pot 103 is provided with a pressure transmitter PE that detects and transmits pressure. When the signal from the pressure transmitter PE is smaller than the set pressure value of the pressure indicating controller PIC, the hot water flow rate control valve CV is closed to reduce the heat recovery of the secondary side heat medium, and when the pressure exceeds the set pressure. The hot water flow rate control valve CV is opened to increase the heat recovery amount of the secondary side heat medium. For this reason, the aggregate amount of the exhaust steam in the heat exchanger HE increases, and as a result, the steam pressure in the boiling kettle can be reduced. In the present invention, the high-temperature heat medium side of the heat exchanger is the primary side, and the low-temperature heat medium side is the secondary side.
[0004]
The hot water of about 80 ° C. sent to the heat exchanger HE is heated to about 97 ° C. by this heat exchange and sent back to the hot water storage tank 108. Hot water in the hot water storage tank 108 is used for heat exchange in the heat exchanger 104 for preheating wort and the heat exchanger 105 for producing sterilized hot water. In the wort preheating heat exchanger 104, about 80 ° C. wort is heated to about 95 ° C., and in the heat exchanger 105 for producing sterilized hot water, room temperature water is heated to about 95 ° C. hot water. This sterilized water is stored in the sterilized water tank 106 and used for sterilizing hot water.
[0005]
When the calorific value of the waste steam generated from the wort boiling pot is 150, 150 is recovered in the heat exchanger HE, 100 of which is used for the production of bactericidal hot water, and 50 is used for the preheating of the wort. it can.
[0006]
[Problems to be solved by the invention]
In the above heat recovery apparatus, since the system is configured mainly using wort preheating as the main purpose of waste heat utilization, the temperature of water for heat recovery has been raised from about 80 ° C. to about 97 ° C. In order to reduce the pressure in the boiling kettle, means such as increasing the cross-sectional area of the exhaust steam passage, or increasing the capacity of the heat exchanger and increasing the condensation rate of the exhaust steam when the cross-section of the exhaust steam passage is the same. Can be considered. However, when the temperature rise is about 17 ° C., in order to agglomerate the exhaust steam from the wort boiling pot at a high speed, it is necessary to send a large amount of hot water of about 80 ° C. as a heat recovery medium to the heat exchanger. is there. For this reason, the capacity of the pump P0 must be very large. As shown in FIG. 4, in addition to the pump P0, it is necessary to arrange pumps P1, P2, P3, etc. in the primary and secondary circulation paths of the heat exchangers described above.
[0007]
An object of the present invention is to provide an exhaust steam heat recovery apparatus that can reduce the pressure in a wort boiling pot and can be operated with a small pump capacity.
[0008]
[Means for Solving the Problems]
The exhaust steam heat recovery apparatus of the present invention is an apparatus that recovers and uses the heat of steam generated from a wort boiling pot disposed in a beer production line. In this exhaust steam heat recovery device, the first heat exchanger and the second heat exchange are made so that steam is fed from the wort boiling pot to each of the first heat exchanger and the second heat exchanger. Are disposed in parallel with the wort boiling kettle, and are provided with a first discharge path and a second discharge path for discharging steam generated from the wort boiling kettle in parallel with the wort boiling pot. The first heat exchanger (HE - 1) is provided in the first exhaust passage, and the second heat exchanger (HE - 2) is provided in the second exhaust passage . Then, after the first heat exchanger (HE - 1), a closing means (MD - 1) capable of closing the first discharge path is provided (Claim 1).
[0009]
With this configuration, the exhaust steam heat recovery is performed by two heat exchangers arranged in parallel to each other, so that the length of the exhaust steam heat recovery portion is not increased, but the cross-sectional area is increased. For this reason, while maintaining the pressure in the wort boiling pot low, the heat of the exhaust steam can be recovered with a margin. In addition, for example, if the temperature increase on the secondary side of one heat exchanger is increased, the amount of circulating (warm) water does not have to be increased so much. As a result, the number of heat exchangers is reduced to two. Although the number of pumps increases as much as possible, the capacity of each pump can be reduced, so that the installation cost of the pump and the power cost can be reduced. In addition, the overall configuration of the apparatus can be simplified, and operation and maintenance inspection can be easily performed.
[0010]
In addition, each of the first heat exchanger and the second heat exchanger has a capacity to aggregate the steam by heat exchange with respect to the maximum amount of steam discharged from the wort boiling pot. Is desirable. With this configuration, steam can be condensed according to the pressure in the wort boiling pot, and the pressure in the wort boiling pot can be kept at a low value with a margin. Moreover, the heat recovery of the exhaust steam can be performed more completely, and the thermal economy can be improved. Furthermore, the aggregated water can be easily drained with, for example, drain without releasing the heat vapor to the outside. “The heat exchanger is arranged in parallel to the wort boiling pot” means that the heat exchanger is arranged in parallel in the path of the steam discharged from the wort boiling pot as seen from the wort boiling pot. It means being. That is, the arrangement of any heat exchanger and the arrangement of the steam discharge passages associated with the arrangement of the heat exchanger are included as long as they are parallel in terms of the path.
[0011]
With this configuration, exhaust steam heat recovery is performed by heat exchangers respectively disposed in two discharge paths that are disposed in parallel with each other. The cross-sectional area of the exhaust steam heat recovery portion increases to the sum of the cross-sectional areas of the two exhaust passages. For this reason, while maintaining the pressure in the wort boiling pot low, the heat of the exhaust steam can be recovered with a margin. Further, the first heat exchanger and the second heat exchanger may have a capacity for aggregating the steam by heat exchange with respect to the maximum amount of steam discharged through the respective discharge paths. desirable. With this configuration, steam can be condensed according to the pressure in the wort boiling pot, and the pressure in the wort boiling pot can be kept at a low value with a margin. Moreover, the aggregated water can be easily drained with, for example, drain without releasing the heat vapor to the outside. The first and second discharge paths may be two discharge paths branched from a common discharge path from the wort boiling pot, or two provided separately from the wort boiling pot. It may be a discharge path.
[0012]
By closing the first discharge path by the closing means, the first heat exchanger can recover only the heat quantity of the exhaust steam that enters the first discharge path and condenses. For this reason, only the fixed part of exhaust steam heat recovery can be shared by the first heat exchanger, and the variable part of exhaust steam heat recovery can be shared by the second heat exchanger. For this reason, the fluctuation control of the heat recovery can be concentrated on the second heat exchanger, and the control device cost can be reduced. In addition, a valve etc. are mention | raise | lifted as said closing means.
[0017]
In the exhaust steam heat recovery apparatus of the present invention, for example, when the pressure in the wort boiling pot becomes equal to or higher than a set pressure, the closing means is closed and the flow rate of the fluid circulating in the second circulation path is controlled. Is desirable (Claim 2 ).
[0018]
According to this configuration, the pressure of the wort boiling pot can be set to a desired value by opening and closing the closing means and increasing or decreasing the flow rate of the secondary heat medium of the second heat exchanger according to the operation status of the wort boiling pot. Can be easily maintained with high accuracy at a low value.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of an exhaust steam heat recovery apparatus according to an embodiment of the present invention. The greatest feature of the present invention is that heat is recovered from the exhaust steam discharged from the wort boiling pot 3 by two heat exchangers HE-1 and HE-2 arranged in parallel. The heat recovered in the heat exchanger HE-1 is stored in the tank 7 as hot water, and the wort before entering the wort boiling pot in the wort preheating heat exchanger 4 is preheated from about 80 ° C. to about 97 ° C. Used to do. Further, the sterilized hot water recovered from the exhaust steam and heated from normal temperature to 95 ° C. in the heat exchanger HE-2 is stored in the tank 6 and used as sterilized hot water as necessary.
[0020]
In the said structure, the pumps P1 and P3 which respectively send the hot water heat-exchanged with the waste steam discharged | emitted from the wort boiling pot to the two hot water tanks 6 and 7 are required. However, the capacity of these pumps, even if all are added, is a capacity that can be smaller than that of the conventional large-capacity pump P0.
[0021]
By adopting such a configuration, the heat recovery capacity can be increased and the cross-sectional area of the exhaust steam path can be increased. For this reason, after sufficient heat recovery, the pressure in the wort boiling pot can be reduced and maintained at a constant pressure. Furthermore, as can be seen from the conventional example shown in FIG. 4, the number of heat exchangers, hot water storage tanks, and pumps increases, but the pump P0 having a large capacity can be dispensed with. In addition, unlike the conventional apparatus, heat exchange for wort preheating and sterilizing water production is not performed using a single hot water storage tank, so that an exhaust steam heat recovery apparatus with a simple configuration can be obtained. For this reason, operation and maintenance inspection are facilitated.
[0022]
In FIG. 1, the valve MD-2 after the heat exchanger HE-2 is open, but the valve MD-1 after the heat exchanger HE-1 is closed. A predetermined amount of steam from the wort boiling pot is led to the heat exchanger HE-1 and aggregated, and exhaust steam corresponding to the aggregated amount is sent to HE-1. Therefore, the heat exchanger HE-1 shares a certain fixed part of the exhaust steam heat recovery. The heat exchanger HE-2 performs variable exhaust steam heat recovery by the following mechanism. The pressure indicating controller PIC that has received the pressure signal from the pressure transmitter PE that also serves as a pressure detector for detecting the steam pressure of the wort boiling pot starts its operation when the pressure signal exceeds a preset pressure. The pressure indicating controller PIC adjusts the opening of the flow control valve CV according to the magnitude of the difference between the set pressure and the actual pressure. For example, when the pressure in the wort boiling pot is very high, the difference from the set pressure becomes very large, and the flow control valve CV is fully opened. For this reason, the amount of heat recovered in the heat exchanger HE-2 increases, and therefore the amount of aggregation increases, and the pressure in the wort boiling pot 3 leading to the heat exchanger HE-2 can be reduced.
[0023]
FIG. 2 is a time chart showing the operation status of each device of one batch of beer production. When boiling is started in the wort boiling pot, the pressure in the wort boiling pot is low. In this starting state, the valve MD-1 of the heat exchanger HE-1 is opened, only the pump P1 in the first circuit is operated, the valve MD-2 of the heat exchanger HE-2 is closed, and the pump P2 Has stopped. Therefore, heat exchange is performed only in the heat exchanger HE-1. When the boiling is started and 30 minutes have passed, the pressure in the wort boiling pot rises when only the valve MD-1 is opened. When it is detected that the PE-PIC has become equal to or higher than the set pressure, the valve MD-2 is opened and the pump P2 is operated so that the heat exchanger HE-2 starts heat exchange. At this time, by closing the valve MD-1 of the heat exchanger HE-1, the heat exchanger HE-1 performs only a fixed amount of heat recovery. The PE-PIC detects the difference between the set pressure and the actual pressure, and proportionally adjusts the degree of opening of the flow control valve CV according to the magnitude of the difference. As a result, according to the pressure in the wort boiling kettle, the speed of the aggregate amount of the exhaust steam in the heat exchanger HE-2 can be adjusted, and the pressure fluctuation in the wort boiling kettle can be suppressed.
[0024]
Assuming that the calorific value of the exhaust steam generated in the wort boiling pot is 150, the heat exchanger HE-1 collects 50 of them, and the heat exchanger HE-2 collects the remaining 100. In the heat exchanger HE-2 having a large heat recovery capacity, by sharing the fluctuation amount of the heat recovery, the pressure fluctuation in the wort boiling pot can be suppressed with high responsiveness, and a desired low pressure can be maintained.
[0025]
Although the embodiments of the present invention have been described above, the embodiments of the present invention disclosed above are merely examples, and the scope of the present invention is limited to these embodiments. There is no. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.
[0026]
【The invention's effect】
According to the present invention, exhaust steam heat discharged from a wort boiling pot disposed in a beer production line can be recovered in a state where the wort boiling pot pressure is kept in a low range. Moreover, compared with the conventional apparatus, a pump with a large capacity is not required, and the structure of the apparatus can be simplified.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an exhaust steam heat recovery apparatus according to an embodiment of the present invention.
2 is a time chart of each partial device in the exhaust steam heat recovery device of FIG. 1. FIG.
FIG. 3 is a diagram showing a general beer manufacturing process.
FIG. 4 is a configuration diagram of a conventional exhaust steam heat recovery device.
[Explanation of symbols]
3 Wort boiling kettle, 4 wort preheating heat exchanger, 6 bactericidal hot water tank, 7 wort preheating hot water tank, HE-1 heat recovery heat exchanger for wort preheating, HE-2 bactericidal hot water Heat exchanger for heat recovery for manufacturing, MD-1 Heat exchanger HE-1 valve (damper), MD-2 Heat exchanger HE-1 valve (damper), PE pressure transmitter, PIC pressure indication adjustment Meter, CV flow control valve, P1, P3, P4 pump.

Claims (2)

ビール製造ラインに配置された麦汁煮沸釜(3)から発生した蒸気の熱を回収する装置であって、
第1の熱交換器(HE-1)と第2の熱交換器(HE-2)とのそれぞれに前記麦汁煮沸釜から蒸気が送り込まれるように、当該第1の熱交換器(HE-1)と第2の熱交換器(HE-2)とが前記麦汁煮沸釜に対して並列に配置され
前記麦汁煮沸釜から発生した蒸気を排出する第1の排出路と第2の排出路とをその麦汁煮沸釜に対して並列に備え、前記第1の排出路に前記第1の熱交換器(HE - 1)を、また前記第2の排出路に第2の熱交換器(HE - 2)を備え、
前記第1の熱交換器(HE - 1)の後において、前記第1の排出路を閉じることが可能な閉鎖手段(MD - 1)を備える、排蒸気熱回収装置。
An apparatus for recovering heat of steam generated from a wort boiling pot (3) arranged in a beer production line,
The first heat exchanger (HE-1) and the second heat exchanger (HE-2) are each fed so that steam is fed from the wort boiling pot into the first heat exchanger (HE-1) and the second heat exchanger (HE-2). 1) and the second heat exchanger (HE-2) are arranged in parallel to the wort boiling pot ,
A first discharge path for discharging steam generated from the wort boiling pot and a second discharge path are provided in parallel to the wort boiling pot, and the first heat exchange is provided in the first discharge path. A heater (HE - 1) and a second heat exchanger (HE - 2) in the second discharge path ,
An exhaust steam heat recovery apparatus comprising closing means (MD - 1) capable of closing the first exhaust path after the first heat exchanger (HE - 1) .
前記麦汁煮沸釜(3)内の圧力が、設定圧力以上になった場合に、前記閉鎖手段(MD-1)を閉じ、前記第2の循環路を循環する流体の流量を制御する、請求項に記載の排蒸気熱回収装置。When the pressure in the wort boiling pot (3) becomes equal to or higher than a set pressure, the closing means (MD-1) is closed to control the flow rate of the fluid circulating in the second circulation path. Item 2. An exhaust steam heat recovery apparatus according to Item 1 .
JP2001076579A 2001-03-16 2001-03-16 Waste steam heat recovery device Expired - Fee Related JP3662503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001076579A JP3662503B2 (en) 2001-03-16 2001-03-16 Waste steam heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001076579A JP3662503B2 (en) 2001-03-16 2001-03-16 Waste steam heat recovery device

Publications (2)

Publication Number Publication Date
JP2002272444A JP2002272444A (en) 2002-09-24
JP3662503B2 true JP3662503B2 (en) 2005-06-22

Family

ID=18933487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001076579A Expired - Fee Related JP3662503B2 (en) 2001-03-16 2001-03-16 Waste steam heat recovery device

Country Status (1)

Country Link
JP (1) JP3662503B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357418C (en) * 2005-12-01 2007-12-26 张文琴 Beer wheat-juice energy-saving high-temperature boiling system
DE102012220581A1 (en) * 2012-11-12 2014-05-15 Krones Ag Heat supply to a processing facility in a beer production facility

Also Published As

Publication number Publication date
JP2002272444A (en) 2002-09-24

Similar Documents

Publication Publication Date Title
JP2013515466A (en) Apparatus and method for energy recovery
CN109984602B (en) water dispenser
JP2010196992A (en) Water heater
CN107692838A (en) A kind of water heater
JP3662503B2 (en) Waste steam heat recovery device
CN211484063U (en) Water dispenser capable of continuously producing warm boiled water at preset temperature
CN206910826U (en) Low temperature concentration and evaporation system
US9963664B2 (en) Supplying heat to a processing device in a plant for producing beer
CN209996001U (en) Warm water system and watering device
CN210227820U (en) Drinking machine with multiple water containers
JP3920619B2 (en) Absorption chiller / heater and control method thereof
JP2008131882A (en) Yeast storage apparatus and yeast storage method
CN206986148U (en) A kind of intelligentized rice wine high temperature sterilizing device
CN218811122U (en) Water purifying equipment
JP3401510B2 (en) Multipurpose heating equipment in beer production plant
CN221223003U (en) Heating device
CN215062838U (en) Water boiler and energy-saving type water boiling system thereof
CN110469840A (en) MTO condensate system heat-energy recovering apparatus and method
JP2005083659A (en) Water heater
CN216282090U (en) Heating system and water purifier
CN217658040U (en) Balance energy-saving device for high-temperature thermal sterilization of beverage
CN212788256U (en) Electric heating kettle
CN210058216U (en) Reation kettle heats cooling system
CN216393819U (en) Step-by-step heating non-pressure-bearing lower heat exchange cold boiled water constant temperature system
CN216717050U (en) Heat energy recycling device for saccharification steam condensate water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050323

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees