JP3661634B2 - Double-sided gap type rotating electric machine - Google Patents

Double-sided gap type rotating electric machine Download PDF

Info

Publication number
JP3661634B2
JP3661634B2 JP2001360904A JP2001360904A JP3661634B2 JP 3661634 B2 JP3661634 B2 JP 3661634B2 JP 2001360904 A JP2001360904 A JP 2001360904A JP 2001360904 A JP2001360904 A JP 2001360904A JP 3661634 B2 JP3661634 B2 JP 3661634B2
Authority
JP
Japan
Prior art keywords
armature
magnetic pole
winding
core
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001360904A
Other languages
Japanese (ja)
Other versions
JP2003164125A (en
Inventor
新 草瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001360904A priority Critical patent/JP3661634B2/en
Priority to US10/295,891 priority patent/US6727632B2/en
Publication of JP2003164125A publication Critical patent/JP2003164125A/en
Application granted granted Critical
Publication of JP3661634B2 publication Critical patent/JP3661634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、同期回転機一般に適用されるものであるが、とりわけ軸方向薄型化が要求されるエンジン直結型発電電動機に適するものである。
【0002】
【従来の技術】
燃費向上ニーズより車の電気化がすすみ、低速でエンジンの動力補助や、或いは車両制動時に運動エネルギー回生など、エンジンと連携協調して車両の省エネルギーを図る技術が脚光を浴びている。このような機械・電気ハイブリッドシステムのカギは、エンジンと結ばれる回転機の大きさと性能である。特に、トランスミッションとエンジンの間に挟んで配置するエンジン直結型のものにおいては軸方向が長いと限られた車幅の中での収まりが悪化することのほか、エンジン振動の支持特性の悪化を招くなどの問題があった。これまでに効率の悪い誘導機式から効率のよい同期機式へ、中でも効率や小型化で効果の大きい永久磁石式の技術開発と実用化が図られてきている。
【0003】
しかしながらこれらのものは従来の回転機と同様に固定子の内径または外径に分布捲きあるいは集中捲きされたものであり、電圧誘導にかかわらないコイルエンド部の長さも長く、軸方向長さにおいて約50mm〜100mmといった長いものであった。そのために、巻線抵抗の大きいことによる銅損も大きく、また軸方向取り付け寸法すなわちコイルトランスミッションとエンジンの間を大きく離間する必要があり、パワトレイン部全体としての体格や支持構造が大きくなってしまう問題もあった。また特に負荷の多いときに効率のよい永久磁石式であっても負荷が少ない時には磁気力を抑制するために固定子巻線に対向する起磁力発生用の電流を流す必要があるなど複雑な特殊な制御技術を必要とするのみならず通常使用の軽負荷では効率が伸びないという問題があった。
【0004】
【発明が解決しようとする課題】
本願は前述のいくつかの問題点を同時解決すべく効率のよい、軸方向寸法の短い回転機を提供しようとするものである。そのために効率の良い同期機を基本として、界磁調整の可能な永久磁石式で、また固定子巻線抵抗も低い構造への工夫を果たすことを課題としている。
【0005】
【課題を解決するための手段】
前述の課題に対して本願は次のように解決を図るものである。
【0006】
まず請求項1に示す構成のように、電機子巻線とそれを具備した電機子鉄心よりなる固定子と、前記積層鉄心の内外径もしくは軸方向両端面の二面のそれぞれにおいて周方向にN、S極を交互に配置した第1、第2の磁極群を具備する回転子と、を有し、かつ前記第1の磁極群の起磁力源は永久磁石であり、前記第2の起磁力源は電磁石であり、前記電機子鉄心は、それぞれの起磁力源の作用による磁束を同一通路に通し、かつ該通路に電機子巻線を巻装する。
【0007】
この構成により、固定子の両面を空隙面としていることで鉄心も電機子巻線も軸方向寸法が短縮し、また出力に必要な界磁のうちの半分について永久磁石を用いているために軸方向厚さ含めてコンパクトで済み、効率もよい。また一つの電機子巻線鎖交磁束通路に永久磁石磁束と電磁石磁束とを作用できるようにしているので、一方の前記界磁巻線の起磁力を調整することで、前記電機子巻線磁束鎖交量の和が制御できることとなる。すなわちインバータにより電機子巻線の電流を流して弱め界磁制御をするなどの複雑な制御を行なうこともなく簡単に発電量の可変が可能となる。
【0008】
また、請求項2に示す構成では、前記第1の磁極群は前記電機子鉄心の外径側に位置し、前記第2の磁極群は前記電機子鉄心の内径側に位置し、かつ前記第2の磁極群は爪状磁極とその内径側に巻いた界磁巻線よりなる単一集中巻線界磁としている。
【0009】
これにより、単一の界磁巻線にて大きな起磁力を前記電機子鉄心内径側の第2磁極群に同時に印加することができて、前記第1の磁極群の永久磁石から前記電機子巻線に作用する磁束を簡単にしかも強力に制御できるので、換言すれば磁石も強力なものが使用できることとなり、全体としての性能向上効果を大きくすることができ、同一定格性能の要求に対してより小型化が達成できることとなる。
【0010】
また、請求項3に示すように、前記固定子鉄心は円環状に連接した継鉄部と、前記両面空隙に向かう歯状部とを有し、前記継鉄部の外周囲にトロイダル巻線を巻装して、これらを多相巻線に結線する。
【0011】
これにより、一般には電機子巻線のエンドターン部で空間中を這いまわす軸方向の高さを必要とするのに対して、継鉄部の周りを周回する際の実質巻装高さしか必要とせずしかも、その一つのトロイダル巻線で、両空隙面分の巻線をなしたこととなり、両面のにそれぞれ分布巻きや集中巻きをするものと比べると巻線総量を半減することができる。
【0012】
また、請求項4に示すように、前記固定子鉄心の少なくとも一部において前記継鉄部において係合部を有したセグメント部材となして、該継鉄部に前記トロイダル巻線を個々に装着して、円環状固定子とする。
【0013】
これにより、一般にはきわめて大量生産困難なトロイダル巻線であるものの、あらかじめ作っておき嵌めこむことができるようになるので、実用化できることとなる。またエンジン直結機として大柄であっても大掛かりの生産設備を必要とせず、また製品使用時の点検補修なども容易となる。すなわち前記の薄型高効率、高性能の製品を実用提供できることが可能となる。
【0014】
【発明の実施の形態】
[第1の実施形態]
車両走行用エンジンに直結した発電機に適用した第1の実施例について図1を参照してその構成を説明する。
【0015】
ハウジング1に、積層鉄板よりなる電機子鉄心2が取り付けられ該鉄心2には電機子巻線3が巻装されるとともに該巻線3は前記ハウジング1に熱的に良好に接触している。またハウジング1に対して電機子巻線3の突出部すなわちエンドターン部が熱的に良好に接触させている。
【0016】
前記積層鉄心2の内外径の二面には、その外径側の第1の空隙面12と内径側の第2の空隙面5とは回転界磁鉄心4に支持された第1の外径側の磁極群6と、内径側磁極群13とが対向配置されている。前記各磁極群および支持体の界磁鉄心は、鉄製ハブ10と一体部材となっており、トルコン15,クランクシャフト16と締結ボルト11などにより固定されている。
【0017】
また図2に示す如く、前記第1の磁極群と第2の磁極群とは、周方向に交互にN.S磁気極性となるように配置されており、また前記電機子鉄心の歯状部と継鉄部とは百足虫形状になっており、内外径側の歯状部は径線に対して揃った位置にあり、また前記第1磁極と第2磁極もこの径線上にほぼ整列しうる(回転子の回転角度によっては)ような配置関係となっている。また電機子巻線は細部図示していないが平角断面の銅線であり、前記百足虫状の鉄心の胴体部にあたる継鉄部に、蜜に巻装してなる。
【0018】
前記固定子歯状部は、内径側外径側とも2磁極ピッチの間に3個配置されており前記トロイダル巻線は2/3π短節巻線(集中巻線)に相当するものとなっている。
【0019】
次にこの第1実施例の作動について説明する。クランクシャフトの回転にともないハブが回転し、これに固定された界磁鉄心と磁極が回転して電機子鉄心に交番磁界を与えて、電機子巻線に電圧を誘導する。発電された電圧は、前記電機子巻線に接続された図示なき三相整流器に導かれて、直流に変換されて、車両の蓄電池に導かれ充電する。
【0020】
界磁巻線9と電機子巻線3はともに通電に伴い発熱するが、前記界磁巻線3と、前記電機子巻線とは、ハウジング1に伝熱し前記両巻線は良好に冷却される。また前記のようにハウジング1に対して電機子巻線3の突出部すなわちエンドターン部が熱的に良好に接触させているので、前記電機子巻線は熱伝導によっても良好に冷却される。
【0021】
前記蓄電池は、その充電量の増加に伴い電池の充電電圧が上昇するが、図示なき界磁電流調整器が、この電圧を検知して、前記界磁巻線の電流量を減少する。これにより前記電機子巻線の発電量が減少する。また前記充電電圧が減少すると、前記界磁巻線の電流を増加して、前記電機子巻線の発電量を増す。
【0022】
ここでさらに前記界磁電流の増減と、電機子巻線に鎖交する磁束量の増減すなわち発電量の調整について詳細説明する。
【0023】
図2に示す横断面において電機子巻線3の囲む、鉄心継鉄部に着目して、ここを通過する磁束を説明する。図2において界磁巻線の電流のない時は、永久磁石の磁束が図中破線で示すように隣り合う他の磁石磁極に磁束を流し、前記鉄心継鉄部に通過し、電機子巻線に鎖交する。次に界磁巻線に図中( )外に示す極性を生じる電流を流すことにより、図中実線に示すような磁束が前記継鉄部に流れ、前記電機子巻線の鎖交磁束は増加する。また逆に界磁電流を流すと、図中一点鎖線に示すように、磁石磁極の磁束は、電磁石磁極にダイレクトに行き、前記鉄心継鉄部には磁束が鎖交しないようにできる。このように界磁電流の大きさと向きを制御することで、永久磁石を含む磁気回路の発電にかかわる磁束の制御が可能となる。
【0024】
以上のような構造とすることにより軸方向の寸法が小さくなり搭載が容易となりまた励磁電力が節減できるとともに電機子の銅損が少ないために効率がよく、永久磁石を利用しながら簡単な界磁電流制御で発電制御ができまた簡単な組み立てで大量生産に向く実用的なエンジン直結発電機が提供できることとなった。
【0025】
本実施例の具体的試作例として、外径φ280mm,全長20mmにて、14v−7kw(600rpm)、効率82%となり、従来技術でのランデル型鉄心同期機での試作例(外径φ280mm,全長80mmにて、42v−6kw(600rpm)、効率75%)に対して大幅に薄型かつ高出力、高効率となった。
【0026】
また前記のようにトロイダル巻線を、平角銅線を後で連接する構造としたから、体格性能向上以外にも大掛かりで実質敷設困難な鍛造設備や、大型電機子鉄心打ちぬき巻き取り設備などを必要としないようになり、簡素な設備にて製造可能という量産性の面での効果も奏することはいうまでもない。
【0027】
[その他の実施形態]
前記第一実施例では電機子鉄心の内径と外径を空隙面としていたが、軸方向両端面をそれぞれ空隙面としてもよい。軸方向制約がゆるく径方向に制約が厳しいケースにおいては空隙面積がよりおおきく拡大できることから、特に有用である。また図示していないが磁極や電機子鉄心歯状部は部分扇形状となりコイルは第一実施例のように継鉄部ではなくこれら両面の歯状部に扇形状に旋回して巻装してもよい。
【0028】
また前記第一実施例では、2磁極ピッチに対して電機子鉄心歯状部を3つとして、これらの継鉄部に電機子巻線を施した等価的に2/3π短節巻き(集中巻き)としたが、2磁極ピッチに対して電機子鉄心歯状部を6つとして、これらの継鉄部に電機子巻線を施しさらにこれらを三相結線して、短節巻きの双対結線としてもよい。これによると電機子反作用の大きさと位相が分散できるために磁気騒音が減少できるという効果がある。
【0029】
また前記実施例では発電機の適用を示したが、整流回路を双方向のインバータとした発電電動機としてもよい。電機子巻線は断面が略矩形状の平角導線としても、丸線としてもよい。トロイダル巻きでなくとも分布巻きとしてもよい。
【0030】
内径、外径に1磁極一相あたり複数スロットとして、複数の三相回路を形成して第三高調波にもとづく騒音を低減するようにしてもよい。
【0031】
すなわち、以上のように、電機子巻線や電機子鉄心は適宜その設計の狙い重視点によって変更、工夫できるものである。
【0032】
また上述の各実施例では磁石磁極を外径側に配置したり、が回転子の表面に磁石を貼りつける仕様としているが、内径側でもよく、また磁石の磁気回路中どこに設けるかは適宜変更できる。また磁束を集中するために全ての磁極には軟鉄磁極片を用いて、内奥部に磁石を配置したり、また回転子表面に磁石を貼りつけるにしても、その外周に遠心力拘束用のナイロン,カーボン繊維を巻装したり、非磁性ステンレス板を張り付けたり、複合磁性材料を用いて構成することも出来る。
【0033】
また前記実施例では、電磁石界磁子は爪状磁極を有するいわゆるランデル型界磁子としているが、図3に示すように固定界磁鉄心8の一部を構成するである椀状界磁鉄心20に、界磁巻線9が巻装してあり、また椀状の先端部には磁束漏洩防止磁石リングが介在されている。またこの外径と前記電機子鉄心との間には、磁石内蔵積層第1磁極と磁石内蔵積層第2磁極と、それらの間には磁束漏れを防止するステンレス製の非磁性リングが固着されている。前記第1積層鉄心磁極と第2積層鉄心磁極の内部には、1磁極ピッチ置きに永久磁石が埋め込まれており、永久磁石部と非永久磁石部とでNS交互磁極を形成した内側回転子をなしている。なお前記第1積層磁極と前記第2積層磁極とは、その回転子表面の極性が軸線方向においては揃っており、電機子のある巻線に対しては、同一時刻に略同一の磁束を与えるように構成されており磁束供給効率が最適としていることは言うまでもない。
【0034】
この実施例においては、内径側も永久磁石の力を利用した励磁が行えるとともにその磁束供給も椀状鉄心内央部に具備した小型界磁巻線により制御が可能となるので、高性能で小型の回転電機が実現できる。さらに前記第1実施例のような大型の爪状磁極鉄心の鍛造を回避することができる。すなわちプレス成形にて前記椀状界磁鉄心が形成できるので特殊設備なくして簡素に製造できるという効果も奏する。
【図面の簡単な説明】
【図1】本発明となる第一実施例の説明図である。
【図2】図1の内部詳細構造説明図である。
【図3】他の実施例の内部詳細構造説明図である。
【符号の説明】
1…ハウジング、
2…電機子鉄心、
3…電機子巻線、
4…回転界磁鉄心、
5…内径空隙面、
6…内径側界磁磁極、
7…界磁鉄心空隙部
8…固定界磁鉄心、
9…固定界磁巻線、
10…鉄製ハブ、
11…締結ボルト、
12…外径側空隙面、
13…外径側界磁磁極、
14…永久磁石、
15…トルコン、
16…クランクシャフト。
[0001]
BACKGROUND OF THE INVENTION
The present invention is generally applied to a synchronous rotating machine, and is particularly suitable for an engine direct-coupled generator-motor that is required to be thin in the axial direction.
[0002]
[Prior art]
Vehicles are becoming more electrified because of the need to improve fuel efficiency, and technologies that aim at energy saving of vehicles in cooperation with the engine, such as assisting engine power at low speed or kinetic energy regeneration during vehicle braking, are in the spotlight. The key to such a mechanical / electric hybrid system is the size and performance of the rotating machine connected to the engine. In particular, in the engine direct-coupled type that is sandwiched between the transmission and the engine, the longer the axial direction, the worse the fit within a limited vehicle width, and the worse the support characteristics of engine vibration. There were problems such as. From the inefficient induction machine type to the efficient synchronous machine type, technical development and practical application of a permanent magnet type that is particularly effective in reducing efficiency and size have been attempted.
[0003]
However, these are distributed or concentrated on the inner or outer diameter of the stator as in the conventional rotating machine, and the length of the coil end portion that is not related to voltage induction is also long, and the axial length is about The length was 50 mm to 100 mm. Therefore, the copper loss due to the large winding resistance is also large, and it is necessary to greatly separate the axial mounting dimension, that is, the coil transmission and the engine, and the physique and the support structure as a whole of the power train section become large. There was also a problem. Even if the permanent magnet type is efficient when the load is particularly heavy, it is necessary to supply a current for generating a magnetomotive force facing the stator winding to suppress the magnetic force when the load is small. There is a problem that the efficiency does not increase with a light load of normal use as well as requiring a special control technique.
[0004]
[Problems to be solved by the invention]
The present application intends to provide a rotating machine with a short axial dimension that is efficient to solve the above-mentioned problems at the same time. Therefore, it is an object to devise a structure based on an efficient synchronous machine that is a permanent magnet type capable of adjusting the field and has a low stator winding resistance.
[0005]
[Means for Solving the Problems]
The present application intends to solve the above-described problems as follows.
[0006]
First, as in the configuration shown in claim 1, N is arranged in the circumferential direction on each of the armature winding and the stator composed of the armature core having the armature winding, and the inner and outer diameters or both end surfaces of the laminated core. And a rotor having first and second magnetic pole groups in which S poles are alternately arranged, and the magnetomotive force source of the first magnetic pole group is a permanent magnet, and the second magnetomotive force is The source is an electromagnet, and the armature core passes the magnetic flux generated by the action of each magnetomotive force source through the same passage, and the armature winding is wound around the passage.
[0007]
With this configuration, both sides of the stator are air gaps, so that the axial dimension of both the iron core and armature winding is shortened, and a permanent magnet is used for half of the field required for output. It is compact, including the directional thickness, and is efficient. In addition, since the permanent magnet magnetic flux and the electromagnet magnetic flux can be applied to one armature winding interlinkage magnetic flux path, the armature winding magnetic flux can be adjusted by adjusting the magnetomotive force of one of the field windings. The sum of the amount of linkage can be controlled. That is, the amount of power generation can be easily varied without performing complicated control such as field weakening control by causing the current of the armature winding to flow by the inverter.
[0008]
In the configuration shown in claim 2, the first magnetic pole group is located on the outer diameter side of the armature core, the second magnetic pole group is located on the inner diameter side of the armature core, and the first The magnetic pole group 2 has a single concentrated winding field consisting of a claw-shaped magnetic pole and a field winding wound on the inner diameter side thereof.
[0009]
Accordingly, a large magnetomotive force can be simultaneously applied to the second magnetic pole group on the inner diameter side of the armature core by a single field winding, and the armature winding can be applied from the permanent magnet of the first magnetic pole group. Since the magnetic flux acting on the wire can be controlled easily and powerfully, in other words, a strong magnet can be used, and the overall performance improvement effect can be increased. Miniaturization can be achieved.
[0010]
According to a third aspect of the present invention, the stator core has a yoke portion connected in an annular shape and a tooth-like portion toward the double-sided gap, and a toroidal winding is provided around the yoke portion. Wind them and connect them to the multiphase winding.
[0011]
As a result, the armature winding generally requires a height in the end direction of the armature winding in the axial direction, but only the actual winding height when circling around the yoke is required. In addition, the single toroidal winding forms windings corresponding to both air gap surfaces, and the total winding amount can be halved compared with a case where distributed winding and concentrated winding are performed on both sides.
[0012]
According to a fourth aspect of the present invention, at least a part of the stator core is a segment member having an engaging portion in the yoke portion, and the toroidal windings are individually attached to the yoke portion. And an annular stator.
[0013]
As a result, although it is generally a toroidal winding that is extremely difficult to mass-produce, it can be made in advance and fitted, so that it can be put into practical use. Even if it is a large engine direct-coupled machine, it does not require large-scale production facilities, and it is easy to inspect and repair when using the product. That is, it becomes possible to provide the above-described thin, high-efficiency, high-performance product in practical use.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
A configuration of a first embodiment applied to a generator directly connected to a vehicle running engine will be described with reference to FIG.
[0015]
An armature core 2 made of a laminated iron plate is attached to the housing 1, and an armature winding 3 is wound around the iron core 2 and the winding 3 is in good thermal contact with the housing 1. Further, the protruding portion of the armature winding 3, that is, the end turn portion is in good thermal contact with the housing 1.
[0016]
On the two inner and outer diameter surfaces of the laminated core 2, the first outer diameter side 12 and the second outer diameter surface 5 on the inner diameter side are supported by the rotating field core 4. The side magnetic pole group 6 and the inner diameter side magnetic pole group 13 are arranged to face each other. Each magnetic pole group and the field iron core of the support body are integrated with the iron hub 10 and are fixed by a torque converter 15, a crankshaft 16, a fastening bolt 11, and the like.
[0017]
Further, as shown in FIG. 2, the first magnetic pole group and the second magnetic pole group have N.P. The armature core has a tooth-shaped portion and a yoke portion in a hundred-legged shape, and the inner and outer diameter-side tooth-like portions are aligned with the radial line. The first magnetic pole and the second magnetic pole are positioned so as to be substantially aligned on this radial line (depending on the rotation angle of the rotor). Although not shown in detail, the armature winding is a copper wire having a rectangular cross section, and is wound around the yoke portion corresponding to the body portion of the above-mentioned centripetal iron core.
[0018]
Three stator teeth are arranged between two magnetic pole pitches on the inner and outer diameter sides, and the toroidal winding corresponds to a 2 / 3π short-pitch winding (concentrated winding). Yes.
[0019]
Next, the operation of the first embodiment will be described. As the crankshaft rotates, the hub rotates, and the field core and magnetic pole fixed thereto rotate to apply an alternating magnetic field to the armature core, thereby inducing a voltage in the armature winding. The generated voltage is led to a three-phase rectifier (not shown) connected to the armature winding, converted to direct current, and led to a vehicle storage battery for charging.
[0020]
Although both the field winding 9 and the armature winding 3 generate heat when energized, the field winding 3 and the armature winding transfer heat to the housing 1 and both the windings are cooled well. The Further, as described above, since the protruding portion of the armature winding 3, that is, the end turn portion, is in good thermal contact with the housing 1, the armature winding is also cooled well by heat conduction.
[0021]
In the storage battery, the charging voltage of the battery increases as the charging amount increases. A field current regulator (not shown) detects this voltage and decreases the current amount of the field winding. This reduces the amount of power generated by the armature winding. When the charging voltage is decreased, the current of the field winding is increased to increase the power generation amount of the armature winding.
[0022]
Here, the increase / decrease of the field current and the increase / decrease of the amount of magnetic flux linked to the armature winding, that is, the adjustment of the power generation amount will be described in detail.
[0023]
The magnetic flux passing through the core yoke portion surrounded by the armature winding 3 in the cross section shown in FIG. 2 will be described. In FIG. 2, when there is no current in the field winding, the magnetic flux of the permanent magnet flows through the other magnet magnetic poles adjacent to each other as shown by the broken line in the figure, passes through the iron core yoke, and the armature winding. Interlink with. Next, by passing a current that generates the polarity shown outside () in the field winding, a magnetic flux as shown by a solid line in the figure flows to the yoke portion, and the linkage flux of the armature winding increases. To do. Conversely, when a field current is applied, the magnetic flux of the magnet magnetic pole goes directly to the electromagnet magnetic pole as shown by the one-dot chain line in the figure, and the magnetic flux does not interlink with the iron core yoke. By controlling the magnitude and direction of the field current in this way, it is possible to control the magnetic flux involved in the power generation of the magnetic circuit including the permanent magnet.
[0024]
With the above structure, the axial dimension is reduced, mounting is easy, the excitation power can be reduced, and the copper loss of the armature is low. It is possible to provide a practical engine direct-coupled generator that can control power generation with current control and is suitable for mass production with simple assembly.
[0025]
As a concrete prototype example of this example, 14v-7 kw (600 rpm) and efficiency 82% at an outer diameter of 280 mm and a total length of 20 mm, and a prototype example of a conventional Landel type iron core synchronous machine (outer diameter of φ280 mm, full length) At 80 mm, it was significantly thinner, higher output and higher efficiency than 42v-6 kw (600 rpm), efficiency 75%).
[0026]
In addition, as described above, the toroidal winding has a structure in which flat copper wires are connected later, so that in addition to improving the physique performance, forging facilities that are large and difficult to lay, large armature core punching winding facilities, etc. Needless to say, there is no need for this, and there is an effect in terms of mass productivity that it can be manufactured with simple equipment.
[0027]
[Other Embodiments]
In the first embodiment, the inner and outer diameters of the armature core are the gap surfaces, but both axial end faces may be the gap surfaces. This is particularly useful in cases where the axial direction is loose and the radial direction is severe, since the void area can be greatly increased. Although not shown, the magnetic poles and armature core teeth are partially fan-shaped, and the coil is wound and wound around the teeth on both sides instead of the yoke as in the first embodiment. Also good.
[0028]
In the first embodiment, three armature core teeth are provided for two magnetic pole pitches, and equivalently 2 / 3π short-pitch winding (concentrated winding) in which armature windings are applied to these yoke portions. However, six armature core teeth for two magnetic pole pitches, armature windings are applied to these yokes, and these are connected in three phases to form a dual connection with short-pitch winding. Also good. According to this, the magnetic noise can be reduced because the magnitude and phase of the armature reaction can be dispersed.
[0029]
Moreover, although application of the generator was shown in the said Example, it is good also as a generator motor which used the rectifier circuit as the bidirectional inverter. The armature winding may be a flat wire having a substantially rectangular cross section or a round wire. Distributed winding may be used instead of toroidal winding.
[0030]
A plurality of three-phase circuits may be formed with a plurality of slots per magnetic pole / phase on the inner and outer diameters to reduce noise based on the third harmonic.
[0031]
That is, as described above, the armature winding and the armature core can be appropriately changed and devised depending on the design focus.
[0032]
In each of the above-described embodiments, the magnet magnetic pole is disposed on the outer diameter side, or the magnet is attached to the surface of the rotor. However, the inner diameter side may be used, and the position of the magnet in the magnetic circuit may be changed as appropriate. it can. In order to concentrate the magnetic flux, soft iron pole pieces are used for all the magnetic poles, and even if magnets are placed in the inner part or attached to the rotor surface, centrifugal force restraining is applied to the outer periphery. Nylon and carbon fiber can be wound, a nonmagnetic stainless steel plate can be attached, or a composite magnetic material can be used.
[0033]
In the above embodiment, the electromagnet field element is a so-called Landell-type field element having claw-shaped magnetic poles. However, as shown in FIG. 3, the saddle-shaped field core is a part of the fixed field core 8. 20, a field winding 9 is wound, and a magnetic flux leakage prevention magnet ring is interposed at a bowl-shaped tip. Also, between this outer diameter and the armature core, a magnet built-in laminated first magnetic pole and a magnet built-in laminated second magnetic pole, and a stainless non-magnetic ring for preventing magnetic flux leakage are fixed between them. Yes. Inside the first laminated core magnetic pole and the second laminated core magnetic pole, permanent magnets are embedded at every other magnetic pole pitch, and an inner rotor having NS alternating magnetic poles formed by permanent magnet portions and non-permanent magnet portions is provided. There is no. The first laminated magnetic pole and the second laminated magnetic pole have the same rotor surface polarity in the axial direction, and apply substantially the same magnetic flux to the winding with the armature at the same time. Needless to say, the magnetic flux supply efficiency is optimal.
[0034]
In this embodiment, the inner diameter side can be excited using the force of the permanent magnet, and the magnetic flux supply can be controlled by a small field winding provided in the central part of the saddle-shaped iron core. Can be realized. Furthermore, forging of a large claw-shaped magnetic pole core as in the first embodiment can be avoided. That is, since the saddle-shaped field core can be formed by press molding, there is also an effect that it can be simply manufactured without special equipment.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a first embodiment according to the present invention.
FIG. 2 is an explanatory diagram of the internal detailed structure of FIG. 1;
FIG. 3 is an explanatory diagram of an internal detailed structure of another embodiment.
[Explanation of symbols]
1 ... Housing,
2 ... Armature core,
3 ... Armature winding,
4 ... Rotating field core,
5: Internal cavity surface,
6 ... Inner diameter side field magnetic pole,
7: Field core gap 8: Fixed field core,
9: Fixed field winding,
10 ... Iron hub,
11 ... fastening bolt,
12: outer diameter side void surface,
13 ... outer diameter side field magnetic pole,
14 ... Permanent magnet,
15 ... Torcon,
16 ... Crankshaft.

Claims (4)

電機子巻線とそれを具備した電機子鉄心よりなる固定子と、前記積層鉄心の内外径のそれぞれにおいて周方向にN、S極を交互に配置した第1、第2の磁極群を具備する回転子と、を有し、かつ前記第1の磁極群の起磁力源は永久磁石であり、前記第2の起磁力源は電磁石であり、前記電機子鉄心は、それぞれの起磁力源の作用による磁束を同一通路に通し、かつ該通路に電機子巻線が巻装されていると共に、
前記第1の磁極群は前記電機子鉄心の外径側に位置し、前記第2の磁極群は前記電機子鉄心の内径側に位置し、周方向に交互にかつこれら磁極群は同一部材に設けられており、
前記電機子鉄心は、継鉄部と径線に対して揃った位置にある内外径側の歯状部とを有し、
前記第1の磁極と第2の磁極も上記径線上にほぼ整列しうる配置関係となっていることを特徴とする両面空隙型回転電機。
A stator composed of an armature winding and an armature core including the armature winding, and first and second magnetic pole groups in which N and S poles are alternately arranged in the circumferential direction in each of the inner and outer diameters of the laminated core. And the magnetomotive force source of the first magnetic pole group is a permanent magnet, the second magnetomotive force source is an electromagnet, and the armature core is an action of each magnetomotive force source. The magnetic flux by is passed through the same passage, and the armature winding is wound around the passage ,
The first magnetic pole group is located on the outer diameter side of the armature core, the second magnetic pole group is located on the inner diameter side of the armature core, and these magnetic pole groups are alternately arranged in the circumferential direction and are made of the same member. Provided,
The armature iron core has a yoke portion and a tooth-like portion on the inner and outer diameter side in a position aligned with the radial line,
The double-sided gap type rotating electric machine characterized in that the first magnetic pole and the second magnetic pole are also arranged so as to be substantially aligned on the radial line .
前記第2の磁極群は内央部に筒状鉄心とその外径部に単一の集中界磁巻線により励磁されることを特徴とする請求項1に記載の両面空隙型回転電機。2. The double-sided air gap rotating electric machine according to claim 1, wherein the second magnetic pole group is excited by a cylindrical iron core at an inner central portion and a single concentrated field winding at an outer diameter portion thereof. 前記電機子巻線は、電機子鉄心の周方向継鉄部に巻装されたトロイダル巻線であることを特徴とする請求項1又は2に記載の両面空隙型回転電機。  The double-sided gap type rotating electric machine according to claim 1 or 2, wherein the armature winding is a toroidal winding wound around a circumferential yoke portion of an armature core. 前記電機子鉄心は、前記周方向継鉄部の一部においてダブテイル状の係り止め部により相互に円環状に配列、固定されていることを特徴とする請求項3記載の両面空隙型回転電機。  4. The double-sided gap type rotating electric machine according to claim 3, wherein the armature cores are arranged and fixed to each other in a ring shape by a dovetail-shaped locking portion at a part of the circumferential yoke portion.
JP2001360904A 2001-11-27 2001-11-27 Double-sided gap type rotating electric machine Expired - Fee Related JP3661634B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001360904A JP3661634B2 (en) 2001-11-27 2001-11-27 Double-sided gap type rotating electric machine
US10/295,891 US6727632B2 (en) 2001-11-27 2002-11-18 Flat rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001360904A JP3661634B2 (en) 2001-11-27 2001-11-27 Double-sided gap type rotating electric machine

Publications (2)

Publication Number Publication Date
JP2003164125A JP2003164125A (en) 2003-06-06
JP3661634B2 true JP3661634B2 (en) 2005-06-15

Family

ID=19171649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360904A Expired - Fee Related JP3661634B2 (en) 2001-11-27 2001-11-27 Double-sided gap type rotating electric machine

Country Status (1)

Country Link
JP (1) JP3661634B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4983022B2 (en) * 2006-01-05 2012-07-25 パナソニック株式会社 motor
JP2007300769A (en) * 2006-05-08 2007-11-15 Matsushita Electric Ind Co Ltd Motor
US7750521B2 (en) * 2006-12-07 2010-07-06 General Electric Company Double-sided starter/generator for aircrafts
US20110006545A1 (en) * 2009-07-08 2011-01-13 Hamilton Sundstrand Corporation Nested exciter and main generator stages for a wound field generator
US9502931B2 (en) 2012-03-23 2016-11-22 Asmo Co., Ltd. Brushless motor
JP2013243884A (en) * 2012-05-22 2013-12-05 Asmo Co Ltd Brushless motor
CN109149795A (en) * 2017-06-16 2019-01-04 李伟 A kind of generator armature and generator
CN110571976A (en) * 2019-09-18 2019-12-13 精进电动科技股份有限公司 Engine and motor assembly

Also Published As

Publication number Publication date
JP2003164125A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
US8860274B2 (en) Motor provided with two stators arranged radially inside and outside rotor
JP4707696B2 (en) Axial gap type motor
US6727632B2 (en) Flat rotary electric machine
US6590312B1 (en) Rotary electric machine having a permanent magnet stator and permanent magnet rotor
JP4709775B2 (en) Electromagnetic coupler
US8294321B2 (en) Brushless machine having ferromagnetic side plates and side magnets
JP6446932B2 (en) Rotating electric machine
US9935532B2 (en) Double-rotor type electrical rotating machines
JP2012529877A (en) Claw pole type AC electric motor
JP2007288864A (en) Ac generator for tandem type vehicle
JP6081304B2 (en) Transverse magnetic flux type rotating electric machine and vehicle
CN102651597B (en) Permanent-magnet type electric rotating machine
JP3724416B2 (en) Axial division hybrid magnetic pole type brushless rotating electrical machine
JP3661634B2 (en) Double-sided gap type rotating electric machine
CN108649768B (en) Hybrid excitation flux switching motor with stator having claw pole bypass structure
CN107508440B (en) A kind of axial direction multiple-unit stator electrical excitation bipolarity inductor machine
CN110676996B (en) Double-magnetic-circuit magnetic-regulation axial permanent magnet motor
JP2001145209A (en) Vehicle dynamoelectric machine
JP2015511811A (en) Power motor generator excited by magnetic transfer
JP2013236412A (en) Transverse flux mechanical apparatus
JP5446213B2 (en) Power transmission device
JP3945346B2 (en) Double-sided gap type rotating electric machine
JPWO2019208032A1 (en) Stator and rotary machine
JP4346955B2 (en) Rotating electric machine
JP2003204661A (en) Rotating-electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees