JP3660613B2 - Manufacturing method of chip type surge absorbing element - Google Patents

Manufacturing method of chip type surge absorbing element Download PDF

Info

Publication number
JP3660613B2
JP3660613B2 JP2001217677A JP2001217677A JP3660613B2 JP 3660613 B2 JP3660613 B2 JP 3660613B2 JP 2001217677 A JP2001217677 A JP 2001217677A JP 2001217677 A JP2001217677 A JP 2001217677A JP 3660613 B2 JP3660613 B2 JP 3660613B2
Authority
JP
Japan
Prior art keywords
electrode
bent portion
discharge electrode
insulating substrate
main discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001217677A
Other languages
Japanese (ja)
Other versions
JP2003031337A (en
Inventor
義和 花村
昭雄 向井
一行 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP2001217677A priority Critical patent/JP3660613B2/en
Publication of JP2003031337A publication Critical patent/JP2003031337A/en
Application granted granted Critical
Publication of JP3660613B2 publication Critical patent/JP3660613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、気密容器内に封入した放電間隙における放電現象を利用して誘導雷等のサージを吸収することにより、電子機器が損傷することを防止するサージ吸収素子の製造方法に係り、特に、気中放電に対するトリガ手段として沿面コロナ放電を用いると共に、素子の一面が平面化され、回路基板への表面実装に適したチップ型サージ吸収素子の製造方法に関する。
【0002】
【従来の技術】
従来、誘導雷等のサージから電子機器の電子回路を保護するためのサージ吸収素子として、電圧非直線特性を有する高抵抗体素子よりなるバリスタや、放電間隙を気密容器内に収容したガスアレスタ等、種々のサージ吸収素子が使用されている。
そして、かかるサージ吸収素子の中、高い応答性を実現するために沿面コロナ放電をトリガ放電として利用し、また、回路基板へ装着し易くするために素子の一面が平面化されたチップ型サージ吸収素子が多く用いられている。
【0003】
図5は、出願人が先に提案した特許第3130012号に係るチップ型サージ吸収素子60を示すものであり、このチップ型サージ吸収素子60は、絶縁材より成る略直方体形状の筐体62の両端開口部に、それぞれ第1及び第2の外部電極64,66を嵌合させ、図示しないシール材を介して両者間を気密封止することにより、気密外囲器68を形成し、該気密外囲器68内に放電ガスを封入してなる。
上記外部電極64,66は、上記筐体62開口部と略同一形状と成された略直方体形状の板状部64a,66aと、該板状部64a,66aの略中央から筐体62内部へ向かって突出する略円錐台形状の凸部64b,66bとを備えている。
【0004】
また、上記筐体62内部の底面上に、絶縁基板70が積層されており、該絶縁基板70の表面には、微小放電間隙72を隔てて対向配置された一対の第1及び第2のトリガ放電電極74,76が被着形成されている。
上記第1の外部電極64及び第2の外部電極66の凸部64b,66b先端面には、それぞれ第1及び第2の主放電電極78,80が接合されている。該主放電電極78,80は、弾性金属板を折り曲げて形成した板バネで構成されており、その両端に、それぞれ上記外部電極64,66側に折り曲げられた屈曲部78a,78b,屈曲部80a,80bを有すると共に、該屈曲部78a,78b間,屈曲部80a,80b間を連接する平面部78c,平面部80cを有している。
【0005】
上記第1の主放電電極78の一方の屈曲部78aは、上記筐体62内部の上面に圧接されると共に、他方の屈曲部78bは、上記第1のトリガ放電電極74に圧接されている。また、上記第2の主放電電極80の一方の屈曲部80aは、上記筐体62内部の上面に圧接されると共に、他方の屈曲部80bは、上記第2のトリガ放電電極76に圧接されている。このように、板バネで構成された第1の主放電電極78の屈曲部78bが、その弾性力によって第1のトリガ放電電極74に圧接し、第2の主放電電極80の屈曲部80bが、その弾性力によって第2のトリガ放電電極76に圧接しているので、第1の主放電電極78と第1のトリガ放電電極74,第2の主放電電極80と第2のトリガ放電電極76とが機械的に強固に接続され、その結果、第1の主放電電極78と第1のトリガ放電電極74間、第2の主放電電極80と第2のトリガ放電電極76間の安定した電気的接続を確保することができるようになっている。しかも、第1の主放電電極78の屈曲部78a及び第2の主放電電極80の屈曲部80aが筐体62内部の上面に圧接されているので、第1の主放電電極78と第1のトリガ放電電極74、第2の主放電電極80と第2のトリガ放電電極76との接続強度が一層高められている。
また、上記第1の主放電電極78の平面部78cと、第2の主放電電極80の平面部80cとは主放電間隙82を隔てて平行配置されている。
【0006】
而して、上記チップ型サージ吸収素子60に外部電極64,66を介してサージが印加されると、まず微小放電間隙72を隔てた第1及び第2のトリガ放電電極74,76間に電位差が生じ、これにより微小放電間隙72に電子が放出されてトリガ放電としての沿面コロナ放電が発生する。次いで、この沿面コロナ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電がサージ電流の増加によって主放電間隙82へと転移し、さらに主放電としてのアーク放電に移行してサージの吸収が行われるのである。
【0007】
このチップ型サージ吸収素子60は、微小放電間隙72に生ずる元来応答速度の速い沿面コロナ放電をトリガ放電として利用するものであるため、高い応答性を実現できるものである。
また、このチップ型サージ吸収素子60は、素子の外形が略直方体形状と成され、その外面が平坦面であるため、回路基板へ実装する際の位置決めが極めて容易である。すなわち、図5に示すように、上記第1の外部電極64及び第2の外部電極66をハンダ84を介して回路基板86へ接続することにより、リードレスで回路基板86への実装を行うことができるようになっている。
【0008】
【発明が解決しようとする課題】
ところで、上記従来のチップ型サージ吸収素子60にあっては、トリガ放電電極74,76の被着形成された絶縁基板70が、筐体62内部の底面上に積層されている関係上、サージが印加されて生成されるトリガ放電(沿面コロナ放電)、グロー放電及び主放電(アーク放電)は、主として外部電極64,66の凸部64b,66bと絶縁基板70表面間の空間を中心に生成されるものである。
従って、外部電極64,66の凸部64b,66bと筐体62上面間に介在する空間は、上記トリガ放電(沿面コロナ放電)、グロー放電及び主放電(アーク放電)の生成に殆ど寄与しないことから、チップ型サージ吸収素子60の小型化を図る上においては、斯かる凸部64b,66bと筐体62上面間の空間は存在しないのが望ましいといえる。
しかしながら、上記チップ型サージ吸収素子60にあっては、上記の通り、主放電電極78,80の平面部78c,80cの両端に屈曲部78a,78b,80a,80bを設け、第1の主放電電極78と第1のトリガ放電電極74、第2の主放電電極80と第2のトリガ放電電極76との接続強度を向上させる目的で、第1の主放電電極78の屈曲部78a及び第2の主放電電極80の屈曲部80aを筐体62内部の上面に圧接させている関係上、外部電極64,66の凸部64b,66bと筐体62上面間の空間が必要不可欠であり、このため、チップ型サージ吸収素子60の小型化を図る上で限界が生じていた。
【0009】
本発明は、従来の上記問題点に鑑みてなされたものであり、その目的とするところは、従来の上記チップ型サージ吸収素子に比べて、より一層小型化が可能なチップ型サージ吸収素子の製造方法の実現にある。
【0010】
【課題を解決するための手段】
上記の目的を達成するため、本発明のチップ型サージ吸収素子の製造方法は、少なくとも一面が平坦面と成された絶縁材より成る筐体の両端開口部に、上記筐体内部に向かって突出する凸部を備えた第1及び第2の外部電極を嵌合して気密外囲器を形成し、該気密外囲器内に放電ガスを封入すると共に、表面に微小放電間隙を隔てて対向配置された第1及び第2のトリガ放電電極を有する絶縁基板を筐体内部の一面上に配置し、また、上記第1の外部電極の凸部先端に接続され、該第1の外部電極側に折り曲げられた第1の屈曲部と、該第1の屈曲部の先端から、上記絶縁基板の表面と略平行となるように折り曲げられた第2の屈曲部を一端に有する板バネで構成された第1の主放電電極と、上記第2の外部電極の凸部先端に接続され、該第2の外部電極側に折り曲げられた第1の屈曲部と、該第1の屈曲部の先端から、上記絶縁基板の表面と略平行となるように折り曲げられた第2の屈曲部を一端に有する板バネで構成された第2の主放電電極とを、主放電間隙を隔てて対向配置して成り、さらに、上記第1の主放電電極の第2の屈曲部を、上記第1のトリガ放電電極に圧接すると共に、上記第2の主放電電極の第2の屈曲部を、上記第2のトリガ放電電極に圧接し、また、上記第1及び第2の外部電極の凸部外面を、上記絶縁基板の配置された筐体一面の対向面に当接して成るチップ型サージ吸収素子の製造方法であって、上記第1の外部電極と第1の主放電電極とを接合して成る第1の電極組立体を構成すると共に、上記第2の外部電極と上記第2の主放電電極とを接合して成る第2の電極組立体を構成する第1の工程と、上記絶縁基板を、上記筐体の一方又は他方の開口部側から、筐体内部の一面に沿って挿入配置する第2の工程と、上記第1の電極組立体を、第1の外部電極の凸部外面が、上記絶縁基板の配置された筐体一面の対向面に当接すると共に、第1の主放電電極の第1の屈曲部が絶縁基板と当接した後、第1の外部電極側に弾性変形し、その後、第2の屈曲部が絶縁基板の第1のトリガ放電電極に圧接した状態で、上記筐体の一方又は他方の開口部側から筐体内に挿入し、以て、上記第1の外部電極を筐体開口部に嵌合する第3の工程と、上記第2の電極組立体を、第2の外部電極の凸部外面が、上記絶縁基板の配置された筐体一面の対向面に当接すると共に、第2の主放電電極の第1の屈曲部が絶縁基板と当接した後、第2の外部電極側に弾性変形し、その後、第2の屈曲部が絶縁基板の第2のトリガ放電電極に圧接した状態で、上記第1の電極組立体が挿入された筐体開口部側とは異なる開口部側から筐体内に挿入し、以て、上記第2の外部電極を筐体開口部に嵌合する第4の工程と、上記筐体内の真空排気後、該筐体内に放電ガスを封入し、その後、上記筐体と、第1の外部電極及び第2の外部電極とを気密封止する第5の工程とを備えたことを特徴とする。
【0011】
上記方法で製造される本発明のチップ型サージ吸収素子にあっては、第1及び第2の主放電電極の一端にのみ第1の屈曲部及び第2の屈曲部を形成し、第2の屈曲部を絶縁基板表面のトリガ放電電極に圧接すると共に、第1及び第2の外部電極を構成する凸部外面を、上記絶縁基板が配置された筐体一面の対向面に当接しているので、従来のチップ型サージ吸収素子60のように、放電生成に殆ど寄与しない第1及び第2の外部電極の凸部と、絶縁基板の配置された筐体一面の対向面との間の空間が全く存在せず、斯かる空間が存在しない分だけ、チップ型サージ吸収素子の小型化を図ることができる。
【0012】
上記チップ型サージ吸収素子の製造方法にあっては、先ず、第1の外部電極と第1の主放電電極とを接合して成る第1の電極組立体及び第2の外部電極と第2の主放電電極とを接合して成る第2の電極組立体を構成しておき、筐体内に、絶縁基板、第1の電極組立体及び第2の電極組立体を順次挿入していくだけで、第1の主放電電極の第2の屈曲部が第1のトリガ放電電極に圧接して、第1の主放電電極と第1のトリガ放電電極間の電気的接続が実現されると共に、第2の主放電電極の第2の屈曲部が第2のトリガ放電電極に圧接して、第2の主放電電極と第2のトリガ放電電極間の電気的接続が実現される。
【0013】
上記のように、第1及び第2の主放電電極の第2の屈曲部を、絶縁基板の表面と略平行と成すことにより、斯かる第2の屈曲部を、絶縁基板の第1及び第2のトリガ放電電極に圧接させた状態で挿入していく際の抵抗力が小さくなり、第1の電極組立体及び第2の電極組立体の挿入を容易に行うことができる。
【0014】
【発明の実施の形態】
以下、添付図面に基づき、本発明の実施の形態を説明する。図1は、本発明に係るチップ型サージ吸収素子10を示す断面図である。
このチップ型サージ吸収素子10は、アルミナやフォルステライト等のセラミック製の絶縁材より成る略直方体形状の筐体12の両端開口部に、それぞれコバールより成る第1及び第2の外部電極14,16を嵌合させ、図示しないガラス、銀ろう、活性銀ろう等のシール材を介して両者間を気密封止することにより、気密外囲器18を形成している。尚、シール材として銀ろうを用いる場合には、上記筐体12の両端開口部の端面をMo−Mnで被覆後、Niメッキ等を行うメタライズ処理を施した後に、銀ろうを介して封止する。
そして、上記気密外囲器18内には、Ne、Ar等の希ガスやN等の不活性ガスを主体とした放電ガスが封入されている。
【0015】
上記外部電極14,16は、上記筐体12開口部と略同一形状と成された略直方体形状の板状部14a,16aと、該板状部14a,16aから筐体12内部へ向かって突出する略柱状の凸部14b,16bとを備えており、上記板状部14a,16aと凸部14b,16bとは、一体的に形成されている。そして、板状部14a,16aの周縁が、筐体12の開口端面に当接されると共に、凸部14b,16bの外面が、筐体12内部の上面12aに当接されている。
【0016】
また、上記筐体上面12aと対向する底面12b上に、アルミナ等のセラミックより成る厚さ0.25mm程度の絶縁基板20が積層配置されており、該絶縁基板20の表面には、幅20μm程度の微小放電間隙22を隔てて対向配置されたTiAlON等より成る一対の第1及び第2のトリガ放電電極24,26が被着形成されている。尚、上記微小放電間隙24の幅により放電開始電圧が定まるため、上記微小放電間隙24の幅を、例えば1乃至150μmの範囲内で適宜調整することにより、放電開始電圧を所望の値に設定することができる。
【0017】
上記第1の外部電極14及び第2の外部電極16の凸部14b,16b先端面には、それぞれ第1及び第2の主放電電極28,30がレーザ溶接等を施すことにより接合されている。
該主放電電極28,30は、耐食性及び耐熱性を有するインコネル、ステンレス、リン青銅等の弾性金属板を折り曲げて形成した板バネで構成されており、上記外部電極14,16の凸部14b,16b先端面に接合された平面部28a,30aと、該平面部28a,30aの下端から、それぞれ上記外部電極14,16側に折り曲げられた第1の屈曲部28b,30bと、該第1の屈曲部28b,30bの先端から、上記絶縁基板20の表面と略平行となるように折り曲げられた第2の屈曲部28c,30cを有している。
【0018】
上記第1の主放電電極28の平面部28aと、第2の主放電電極30の平面部30aとは主放電間隙32を隔てて平行配置されている。
また、第1の主放電電極28の第2の屈曲部28cは、上記第1のトリガ放電電極24に圧接され、第2の主放電電極30の第2の屈曲部30cは、上記第2のトリガ放電電極26に圧接されている。
上記の如く、第1の主放電電極28の第2の屈曲部28cが、第1のトリガ放電電極24に圧接することにより、第1の主放電電極28と第1のトリガ放電電極24が電気的に接続され、また、第2の主放電電極30の第2の屈曲部30cが、第2のトリガ放電電極26に圧接することにより、第2の主放電電極30と第2のトリガ放電電極26とが電気的に接続され、その結果、上記微小放電間隙22と主放電間隙32とが並列接続されることとなる。
【0019】
上記チップ型サージ吸収素子10は、素子の外形が略直方体形状と成され、その外面が平坦面であるため、回路基板へ実装する際の位置決めが極めて容易である。そして、図1に示すように、上記第1の外部電極14及び第2の外部電極16をハンダ34を介して回路基板36へ接続することにより、リードレスで回路基板36への実装を行うことができる。
因みに、上記チップ型サージ吸収素子10の外形寸法は、例えば、幅3.20mm、高さ1.35mm、奥行が1.60mm程度である。
【0020】
而して、上記本発明のチップ型サージ吸収素子10に外部電極14,16を介してサージが印加されると、まず微小放電間隙22を隔てた第1及び第2のトリガ放電電極24,26間に電位差が生じ、これにより微小放電間隙22に電子が放出されてトリガ放電としての沿面コロナ放電が発生する。次いで、この沿面コロナ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電がサージ電流の増加によって主放電間隙32へと転移し、さらに主放電としてのアーク放電に移行してサージの吸収が行われるのである。このチップ型サージ吸収素子10は、微小放電間隙22に生ずる元来応答速度の速い沿面コロナ放電をトリガ放電として利用するものであるため、高い応答性を実現できるものである。
【0021】
また、板バネで構成された第1の主放電電極28の第2の屈曲部28cが、その弾性力によって第1のトリガ放電電極24に圧接し、第2の主放電電極30の第2の屈曲部30cが、その弾性力によって第2のトリガ放電電極26に圧接しているので、第1の主放電電極28と第1のトリガ放電電極24,第2の主放電電極30と第2のトリガ放電電極26とが機械的に強固に接続され、その結果、第1の主放電電極28と第1のトリガ放電電極24間、第2の主放電電極30と第2のトリガ放電電極26間の安定した電気的接続を確保することができる。
【0022】
本発明のチップ型サージ吸収素子10にあっては、主放電電極28,30を構成する平面部28a,30aの一端(下端)にのみ、トリガ放電電極24,26との接続用の屈曲部28b,28c,30b,30cを形成すると共に、外部電極14,16を構成する略柱状の凸部14b,16bの外面を筐体12内部の上面12aに当接させたことから、従来のチップ型サージ吸収素子60のように、放電生成に殆ど寄与しない外部電極14,16の凸部14b,16bと筐体上面12a間の空間は全く存在せず、斯かる空間が存在しない分だけ、チップ型サージ吸収素子10の小型化を図ることができる。
【0023】
尚、上記第1の主放電電極28と、第2の主放電電極30とを、その平面部28a,30aが主放電間隙32を隔てて平行するように配置したため、主放電電極28,30間で生成される放電は平面間放電となる。その結果、放電時に局所的な電界集中を生じることがなく、放電特性が安定化するものである。
また、主放電間隙32と微小放電間隙22とが比較的離れて配置されているため、主放電間隙32での放電に起因して発生する主放電電極材料のスパッタ物質が、トリガ放電電極24,26間に付着することを回避でき、その結果、トリガ放電電極24,26間の絶縁劣化を防止することができる。
【0024】
以下において、図2乃至図4に基づいて、上記チップ型サージ吸収素子10の製造方法を説明する。
まず、第1の外部電極14の凸部14b先端面と、第1の主放電電極28の平面部28aとをレーザ溶接又は電気溶接等により接合し、第1の外部電極14と第1の主放電電極28とが一体的と成された第1の電極組立体38(図3参照)を構成しておく。同様の方法で、第2の外部電極16の凸部16b先端面と、第2の主放電電極30の平面部30aとを接合し、第2の外部電極16と第2の主放電電極30とが一体的と成された第2の電極組立体40(図4参照)を構成しておく。
尚、上記第1,第2の外部電極の凸部14b,16b先端面と、第1,第2の主放電電極の平面部28a,30aとは銀ろうを介して接合しても良い。この場合、第1,第2の外部電極の凸部14b,16b先端面と、第1,第2の主放電電極の平面部28a,30aとの間に、銀ろう板を介在させた後、該銀ろう板を溶融する等して接合すれば良い。
【0025】
次に、図2に示すように、トリガ放電電極24,26の被着形成された絶縁基板20を、筐体12の一方の開口部側から、筐体底面12bに沿って挿入する。
その後、上記第1の電極組立体38を 筐体12の一方の開口部側から、筐体12内に挿入していく(図3)。この際、第1の外部電極14の凸部14b外面が、筐体上面12aと当接するように挿入する。
上記の通り、第1の主放電電極28は板バネで構成され、平面部28aの下端から外部電極14側に折り曲げられた第1の屈曲部28bと、該第1の屈曲部28bの先端から絶縁基板20の表面と略平行となるように折り曲げられた第2の屈曲部28cを有していることから、先ず、第1の屈曲部28bが、絶縁基板20と当接した後、第1の外部電極14側に弾性変形し、その後、第2の屈曲部28cが絶縁基板20表面のトリガ放電電極24に圧接された状態で筐体12内に挿入されていくこととなる。
そして、第1の外部電極14の板状部14aの周縁を、筐体12の開口端面に当接させることにより、第1の外部電極14が筐体12開口部に嵌合し、第1の電極組立体38の挿入工程が完了する。
上記の通り、第2の屈曲部28cは、絶縁基板20表面と略平行と成されていることから、該第2の屈曲部28cを、絶縁基板20表面のトリガ放電電極24に圧接した状態で挿入していく際の抵抗力が小さく、第1の電極組立体38の挿入を容易に行うことができる。
【0026】
上記第1の電極組立体38の挿入後、第2の電極組立体40を、筐体12の他方の開口部側から、上記第1の電極組立体38の場合と同様に、筐体12内に挿入していき、第2の外部電極16の板状部16aの周縁を、筐体12の開口端面に当接させることにより、第2の外部電極16が筐体12開口部に嵌合し、第2の電極組立体40の挿入工程が完了する(図4)。
【0027】
上記絶縁基板20、第1の電極組立体38及び第2の電極組立体40の筐体12内への挿入工程の完了後、これらを図示しない封着室内に配置して、筐体12内の真空排気を行った後、Ne、Ar等の希ガスやN等の不活性ガスを主体とした放電ガスを筐体12内に封入する。
最後に、上記筐体12と、該筐体12の両端開口部にそれぞれ嵌合した第1の外部電極14及び第2の外部電極16とを活性銀ろう等のシール材を介して気密封止することにより上記気密外囲器18が構成され、図1に示す本発明のチップ型サージ吸収素子10を得ることができるのである。
【0028】
上記したチップ型サージ吸収素子10の製造方法にあっては、第1の主放電電極28及び第2の主放電電極30を板バネで構成し、筐体12内に絶縁基板20、第1の電極組立体38及び第2の電極組立体40を順次挿入していくだけで、第1の主放電電極28の第2の屈曲部28cが第1のトリガ放電電極24に圧接して、第1の主放電電極28と第1のトリガ放電電極24間の電気的接続が実現できると共に、第2の主放電電極30の第2の屈曲部30cが第2のトリガ放電電極26に圧接して、第2の主放電電極30と第2のトリガ放電電極26間の電気的接続を実現することができるため、その製造が極めて容易である。
【0029】
【発明の効果】
本発明に係るチップ型サージ吸収素子の製造方法にあっては、先ず、第1の外部電極と第1の主放電電極とを接合して成る第1の電極組立体及び第2の外部電極と第2の主放電電極とを接合して成る第2の電極組立体を構成しておき、筐体内に、絶縁基板、第1の電極組立体及び第2の電極組立体を順次挿入していくだけで、第1の主放電電極の第2の屈曲部が第1のトリガ放電電極に圧接して、第1の主放電電極と第1のトリガ放電電極間の電気的接続が実現されると共に、第2の主放電電極の第2の屈曲部が第2のトリガ放電電極に圧接して、第2の主放電電極と第2のトリガ放電電極間の電気的接続が実現される。
また、第1及び第2の主放電電極の第2の屈曲部を、絶縁基板の表面と略平行と成すことにより、斯かる第2の屈曲部を、絶縁基板の第1及び第2のトリガ放電電極に圧接させた状態で挿入していく際の抵抗力が小さくなり、第1の電極組立体及び第2の電極組立体の挿入を容易に行うことができる。
【図面の簡単な説明】
【図1】 本発明に係るチップ型サージ吸収素子を示す断面図である。
【図2】 本発明に係るチップ型サージ吸収素子の製造方法を示す説明図である。
【図3】 本発明に係るチップ型サージ吸収素子の製造方法を示す説明図である。
【図4】 本発明に係るチップ型サージ吸収素子の製造方法を示す説明図である。
【図5】 従来のチップ型サージ吸収素子を示す断面図である
【符号の説明】
10 チップ型サージ吸収素子
12 筐体
12a 筐体上面
12b 筐体底面
14 第1の外部電極
14b 第1の外部電極の凸部
16 第2の外部電極
16b 第2の外部電極の凸部
18 気密外囲器
20 絶縁基板
22 微小放電間隙
24 第1のトリガ放電電極
26 第2のトリガ放電電極
28 第1の主放電電極
28a 第1の主放電電極の平面部
28b 第1の主放電電極の第1の屈曲部
28c 第1の主放電電極の第2の屈曲部
30 第2の主放電電極
30a 第2の主放電電極の平面部
30b 第2の主放電電極の第1の屈曲部
30c 第2の主放電電極の第2の屈曲部
32 主放電間隙
38 第1の電極組立体
40 第2の電極組立体
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a surge absorbing element that prevents damage to an electronic device by absorbing a surge such as an induced lightning by utilizing a discharge phenomenon in a discharge gap sealed in an airtight container. The present invention relates to a method for manufacturing a chip-type surge absorbing element that uses creeping corona discharge as a trigger means for air discharge and that has one surface planarized and is suitable for surface mounting on a circuit board.
[0002]
[Prior art]
Conventionally, as a surge absorbing element for protecting electronic circuits of electronic equipment from surges such as induced lightning, a varistor made of a high-resistance element having voltage nonlinear characteristics, a gas arrester in which a discharge gap is housed in an airtight container, etc. Various surge absorbing elements are used.
Among such surge absorption elements, chip-type surge absorption is used in which creeping corona discharge is used as a trigger discharge to achieve high responsiveness, and one side of the element is planarized for easy mounting on a circuit board. Many elements are used.
[0003]
FIG. 5 shows a chip-type surge absorbing element 60 according to Japanese Patent No. 3130012 previously proposed by the applicant. The chip-type surge absorbing element 60 includes a substantially rectangular parallelepiped casing 62 made of an insulating material. The first and second external electrodes 64 and 66 are fitted to the opening portions at both ends, respectively, and hermetically sealed between both via a sealing material (not shown), thereby forming an airtight envelope 68. A discharge gas is sealed in the envelope 68.
The external electrodes 64, 66 are substantially rectangular parallelepiped plate-like portions 64a, 66a having substantially the same shape as the opening of the housing 62, and from the approximate center of the plate-like portions 64a, 66a to the inside of the housing 62. And convex portions 64b and 66b having a substantially truncated cone shape projecting toward the top.
[0004]
Also, an insulating substrate 70 is laminated on the bottom surface inside the casing 62, and a pair of first and second triggers disposed opposite to each other with a minute discharge gap 72 on the surface of the insulating substrate 70. Discharge electrodes 74 and 76 are deposited.
First and second main discharge electrodes 78 and 80 are joined to the front end surfaces of the convex portions 64b and 66b of the first external electrode 64 and the second external electrode 66, respectively. The main discharge electrodes 78 and 80 are constituted by leaf springs formed by bending an elastic metal plate, and bent portions 78a and 78b and bent portions 80a bent at the both ends thereof toward the external electrodes 64 and 66, respectively. , 80b, and a flat portion 78c and a flat portion 80c connecting the bent portions 78a, 78b and the bent portions 80a, 80b.
[0005]
One bent portion 78 a of the first main discharge electrode 78 is in pressure contact with the upper surface inside the housing 62, and the other bent portion 78 b is in pressure contact with the first trigger discharge electrode 74. One bent portion 80a of the second main discharge electrode 80 is pressed against the upper surface inside the casing 62, and the other bent portion 80b is pressed against the second trigger discharge electrode 76. Yes. In this way, the bent portion 78b of the first main discharge electrode 78 formed of a leaf spring is pressed against the first trigger discharge electrode 74 by its elastic force, and the bent portion 80b of the second main discharge electrode 80 is Because of its elastic force, it is in pressure contact with the second trigger discharge electrode 76, so that the first main discharge electrode 78, the first trigger discharge electrode 74, the second main discharge electrode 80, and the second trigger discharge electrode 76 are in contact with each other. Are connected to each other mechanically, and as a result, stable electric current is generated between the first main discharge electrode 78 and the first trigger discharge electrode 74 and between the second main discharge electrode 80 and the second trigger discharge electrode 76. Secure connection. In addition, since the bent portion 78a of the first main discharge electrode 78 and the bent portion 80a of the second main discharge electrode 80 are in pressure contact with the upper surface inside the housing 62, the first main discharge electrode 78 and the first main discharge electrode 78 are in contact with each other. The connection strength between the trigger discharge electrode 74, the second main discharge electrode 80, and the second trigger discharge electrode 76 is further increased.
The flat portion 78c of the first main discharge electrode 78 and the flat portion 80c of the second main discharge electrode 80 are arranged in parallel with a main discharge gap 82 therebetween.
[0006]
Thus, when a surge is applied to the chip-type surge absorbing element 60 via the external electrodes 64 and 66, first, a potential difference is generated between the first and second trigger discharge electrodes 74 and 76 with a minute discharge gap 72 therebetween. As a result, electrons are emitted into the minute discharge gap 72 and a creeping corona discharge as a trigger discharge is generated. Next, this creeping corona discharge shifts to glow discharge due to an electron priming effect. The glow discharge is transferred to the main discharge gap 82 due to the increase of the surge current, and then the arc discharge is performed as the main discharge to absorb the surge.
[0007]
Since this chip type surge absorbing element 60 uses creeping corona discharge, which is originally generated in the minute discharge gap 72 and has a high response speed, as a trigger discharge, it can realize high responsiveness.
In addition, since the outer shape of the chip-type surge absorbing element 60 has a substantially rectangular parallelepiped shape and the outer surface is a flat surface, positioning when mounted on a circuit board is extremely easy. That is, as shown in FIG. 5, the first external electrode 64 and the second external electrode 66 are connected to the circuit board 86 through the solder 84, thereby mounting the circuit board 86 in a leadless manner. Can be done.
[0008]
[Problems to be solved by the invention]
By the way, in the conventional chip type surge absorbing element 60, since the insulating substrate 70 on which the trigger discharge electrodes 74 and 76 are deposited is laminated on the bottom surface inside the housing 62, a surge is generated. Trigger discharge (creeping corona discharge), glow discharge, and main discharge (arc discharge) generated by application are generated mainly in the space between the convex portions 64b and 66b of the external electrodes 64 and 66 and the surface of the insulating substrate 70. Is.
Therefore, the space interposed between the convex portions 64b and 66b of the external electrodes 64 and 66 and the upper surface of the housing 62 hardly contributes to the generation of the trigger discharge (creeping corona discharge), glow discharge, and main discharge (arc discharge). Therefore, in order to reduce the size of the chip-type surge absorber 60, it can be said that it is desirable that there is no space between the convex portions 64b and 66b and the upper surface of the housing 62.
However, in the chip type surge absorbing element 60, as described above, the bent portions 78a, 78b, 80a, 80b are provided at both ends of the flat portions 78c, 80c of the main discharge electrodes 78, 80, and the first main discharge is performed. For the purpose of improving the connection strength between the electrode 78 and the first trigger discharge electrode 74, and the second main discharge electrode 80 and the second trigger discharge electrode 76, the bent portion 78a and the second of the first main discharge electrode 78 are provided. The space between the convex portions 64b and 66b of the external electrodes 64 and 66 and the upper surface of the housing 62 is indispensable because the bent portion 80a of the main discharge electrode 80 is pressed against the upper surface of the housing 62. Therefore, there has been a limit in reducing the size of the chip-type surge absorber 60.
[0009]
The present invention has been made in view of the conventional problems described above, and the object of the present invention is to provide a chip-type surge absorbing element that can be further reduced in size as compared with the conventional chip-type surge absorbing element. The realization of the manufacturing method .
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the method of manufacturing a chip-type surge absorbing element according to the present invention protrudes toward the inside of the casing at both end openings of the casing made of an insulating material having at least one flat surface. An airtight envelope is formed by fitting the first and second external electrodes having convex portions, and a discharge gas is sealed in the airtight envelope, and the surface is opposed to each other with a minute discharge gap. An insulating substrate having the first and second trigger discharge electrodes arranged is arranged on one surface inside the housing, and connected to the tip of the convex portion of the first external electrode, on the first external electrode side And a leaf spring having at one end a second bent portion bent from the tip of the first bent portion so as to be substantially parallel to the surface of the insulating substrate. Connected to the first main discharge electrode and the tip of the convex portion of the second external electrode, A plate having a first bent portion bent toward the external electrode side, and a second bent portion bent at one end from the tip of the first bent portion so as to be substantially parallel to the surface of the insulating substrate. A second main discharge electrode formed by a spring and facing the main discharge gap, and a second bent portion of the first main discharge electrode is formed as the first trigger discharge electrode. And the second bent portion of the second main discharge electrode is pressed against the second trigger discharge electrode, and the convex outer surfaces of the first and second external electrodes are A method of manufacturing a chip-type surge absorbing element that is in contact with an opposite surface of a housing on which a substrate is disposed, wherein the first external electrode and a first main discharge electrode are joined together. The electrode assembly is configured, and the second external electrode and the second main discharge electrode are joined to each other. A first step of constituting the second electrode assembly, and a second step of inserting and arranging the insulating substrate from one or the other opening side of the case along one surface inside the case. In the first electrode assembly, the outer surface of the convex portion of the first external electrode is in contact with the opposing surface of the entire surface of the housing on which the insulating substrate is disposed, and the first bending of the first main discharge electrode is performed . After the portion comes into contact with the insulating substrate, it is elastically deformed toward the first external electrode, and then the second bent portion is in contact with the first trigger discharge electrode of the insulating substrate. A third step of inserting the first external electrode into the housing opening from the other opening side, and the second electrode assembly into the second external electrode. The outer surface of the convex portion abuts against the opposing surface of the entire surface of the housing on which the insulating substrate is disposed, and the first bent portion of the second main discharge electrode is insulated. After contact with the substrate , the first electrode assembly is inserted in a state where the second electrode is elastically deformed toward the second external electrode, and then the second bent portion is in pressure contact with the second trigger discharge electrode of the insulating substrate. A fourth step of inserting the second external electrode into the housing opening from the opening side different from the housing opening side, and evacuating the housing. Thereafter, a discharge gas is sealed in the housing, and then, the housing and a fifth step of hermetically sealing the first external electrode and the second external electrode are provided.
[0011]
In the chip-type surge absorber of the present invention produced by the above method, to form a first bent portion and the second bent portion at only one end of the first and second main discharge electrodes, the second Since the bent portion is pressed against the trigger discharge electrode on the surface of the insulating substrate, the outer surface of the convex portion constituting the first and second external electrodes is in contact with the opposing surface of the entire surface of the housing on which the insulating substrate is disposed. As in the conventional chip-type surge absorber 60, there is a space between the convex portions of the first and second external electrodes that hardly contribute to the generation of discharge and the opposing surface of the entire housing on which the insulating substrate is disposed. The chip-type surge absorbing element can be reduced in size by the absence of such a space.
[0012]
In the method of manufacturing the chip-type surge absorbing element, first, the first electrode assembly formed by joining the first external electrode and the first main discharge electrode, the second external electrode, and the second The second electrode assembly formed by joining the main discharge electrode is configured, and the insulating substrate, the first electrode assembly, and the second electrode assembly are sequentially inserted into the casing, The second bent portion of the first main discharge electrode is in pressure contact with the first trigger discharge electrode, and electrical connection between the first main discharge electrode and the first trigger discharge electrode is realized, and the second The second bent portion of the main discharge electrode is pressed against the second trigger discharge electrode, and electrical connection between the second main discharge electrode and the second trigger discharge electrode is realized.
[0013]
As described above, the second bent portion of the first and second main discharge electrodes is made substantially parallel to the surface of the insulating substrate, whereby the second bent portion is made to be the first and second of the insulating substrate. The resistance force when inserting the first electrode assembly while being pressed against the second trigger discharge electrode is reduced, and the first electrode assembly and the second electrode assembly can be easily inserted.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a sectional view showing a chip type surge absorbing element 10 according to the present invention.
The chip-type surge absorbing element 10 includes first and second external electrodes 14 and 16 made of Kovar at openings at both ends of a substantially rectangular parallelepiped casing 12 made of a ceramic insulating material such as alumina or forsterite. Are hermetically sealed through a sealing material such as glass, silver solder, or active silver solder (not shown) to form the hermetic envelope 18. When silver brazing is used as the sealing material, the end faces of the opening portions at both ends of the casing 12 are coated with Mo-Mn, and then subjected to metallization processing such as Ni plating, followed by sealing with silver brazing. To do.
The hermetic envelope 18 is filled with a discharge gas mainly composed of a rare gas such as Ne or Ar or an inert gas such as N 2 .
[0015]
The external electrodes 14 and 16 are substantially rectangular parallelepiped plate-like portions 14a and 16a having substantially the same shape as the opening of the housing 12, and project from the plate-like portions 14a and 16a toward the inside of the housing 12. The plate-like portions 14a and 16a and the convex portions 14b and 16b are integrally formed. The peripheral edges of the plate-like portions 14 a and 16 a are in contact with the opening end surface of the housing 12, and the outer surfaces of the convex portions 14 b and 16 b are in contact with the upper surface 12 a inside the housing 12.
[0016]
Further, an insulating substrate 20 made of ceramic such as alumina is laminated on the bottom surface 12b facing the housing upper surface 12a, and the surface of the insulating substrate 20 has a width of about 20 μm. A pair of first and second trigger discharge electrodes 24 and 26 made of TiAlON or the like disposed opposite to each other with a small discharge gap 22 therebetween are formed. Since the discharge start voltage is determined by the width of the minute discharge gap 24, the discharge start voltage is set to a desired value by appropriately adjusting the width of the minute discharge gap 24 within a range of, for example, 1 to 150 μm. be able to.
[0017]
First and second main discharge electrodes 28 and 30 are joined to the tip surfaces of the protrusions 14b and 16b of the first external electrode 14 and the second external electrode 16 by performing laser welding or the like, respectively. .
The main discharge electrodes 28 and 30 are constituted by plate springs formed by bending an elastic metal plate such as Inconel, stainless steel, phosphor bronze or the like having corrosion resistance and heat resistance, and the convex portions 14b, The first bent portions 28b and 30b bent to the external electrodes 14 and 16 side from the lower ends of the flat portions 28a and 30a joined to the tip end surface of the 16b, the lower ends of the flat portions 28a and 30a, and the first There are second bent portions 28c and 30c bent from the ends of the bent portions 28b and 30b so as to be substantially parallel to the surface of the insulating substrate 20.
[0018]
The flat portion 28a of the first main discharge electrode 28 and the flat portion 30a of the second main discharge electrode 30 are arranged in parallel with a main discharge gap 32 therebetween.
The second bent portion 28c of the first main discharge electrode 28 is in pressure contact with the first trigger discharge electrode 24, and the second bent portion 30c of the second main discharge electrode 30 is The trigger discharge electrode 26 is in pressure contact.
As described above, when the second bent portion 28c of the first main discharge electrode 28 is in pressure contact with the first trigger discharge electrode 24, the first main discharge electrode 28 and the first trigger discharge electrode 24 are electrically connected. And the second bent portion 30c of the second main discharge electrode 30 is in pressure contact with the second trigger discharge electrode 26, whereby the second main discharge electrode 30 and the second trigger discharge electrode are connected. 26 is electrically connected, and as a result, the minute discharge gap 22 and the main discharge gap 32 are connected in parallel.
[0019]
The chip-type surge absorbing element 10 has a substantially rectangular parallelepiped shape and a flat outer surface, so that positioning when mounted on a circuit board is extremely easy. Then, as shown in FIG. 1, the first external electrode 14 and the second external electrode 16 are connected to the circuit board 36 through the solder 34, and are mounted on the circuit board 36 in a leadless manner. Can do.
Incidentally, the outer dimensions of the chip-type surge absorber 10 are, for example, a width of 3.20 mm, a height of 1.35 mm, and a depth of about 1.60 mm.
[0020]
Thus, when a surge is applied to the chip-type surge absorbing element 10 of the present invention via the external electrodes 14 and 16, the first and second trigger discharge electrodes 24 and 26 having the minute discharge gap 22 are first separated. A potential difference is generated between them, whereby electrons are emitted into the minute discharge gap 22 to generate creeping corona discharge as a trigger discharge. Next, this creeping corona discharge shifts to glow discharge due to an electron priming effect. Then, this glow discharge is transferred to the main discharge gap 32 due to an increase in surge current, and further shifts to arc discharge as the main discharge to absorb the surge. Since this chip type surge absorbing element 10 uses creeping corona discharge, which is originally generated in the minute discharge gap 22 and has a high response speed, as a trigger discharge, it can realize high responsiveness.
[0021]
In addition, the second bent portion 28c of the first main discharge electrode 28 formed of a leaf spring is pressed against the first trigger discharge electrode 24 by its elastic force, and the second main discharge electrode 30 has the second bent portion 28c. Since the bent portion 30c is pressed against the second trigger discharge electrode 26 by its elastic force, the first main discharge electrode 28, the first trigger discharge electrode 24, the second main discharge electrode 30, and the second main discharge electrode 30 are in contact with each other. The trigger discharge electrode 26 is mechanically firmly connected, and as a result, between the first main discharge electrode 28 and the first trigger discharge electrode 24 and between the second main discharge electrode 30 and the second trigger discharge electrode 26. Stable electrical connection can be ensured.
[0022]
In the chip type surge absorbing element 10 of the present invention, the bent portion 28b for connection to the trigger discharge electrodes 24, 26 is provided only at one end (lower end) of the flat portions 28a, 30a constituting the main discharge electrodes 28, 30. , 28c, 30b, 30c and the outer surfaces of the substantially columnar convex portions 14b, 16b constituting the external electrodes 14, 16 are brought into contact with the upper surface 12a inside the housing 12, so that a conventional chip surge There is no space between the projections 14b and 16b of the external electrodes 14 and 16 that hardly contribute to the generation of the discharge and the housing upper surface 12a as in the absorption element 60. The absorption element 10 can be downsized.
[0023]
The first main discharge electrode 28 and the second main discharge electrode 30 are arranged so that the plane portions 28a, 30a thereof are parallel to each other with the main discharge gap 32 therebetween, so that the main discharge electrodes 28, 30 are arranged. The discharge generated at is an interplane discharge. As a result, local electric field concentration does not occur during discharge, and discharge characteristics are stabilized.
Further, since the main discharge gap 32 and the minute discharge gap 22 are disposed relatively apart from each other, the sputter substance of the main discharge electrode material generated due to the discharge in the main discharge gap 32 is caused by the trigger discharge electrode 24, Adhesion between the electrodes 26 can be avoided, and as a result, insulation deterioration between the trigger discharge electrodes 24 and 26 can be prevented.
[0024]
Hereinafter, a method for manufacturing the chip-type surge absorber 10 will be described with reference to FIGS.
First, the tip end surface of the convex portion 14b of the first external electrode 14 and the flat surface portion 28a of the first main discharge electrode 28 are joined by laser welding or electric welding, and the first external electrode 14 and the first main electrode 14 are joined. A first electrode assembly 38 (see FIG. 3) in which the discharge electrode 28 is integrally formed is formed. In a similar manner, the tip end surface of the convex portion 16b of the second external electrode 16 and the flat surface portion 30a of the second main discharge electrode 30 are joined, and the second external electrode 16 and the second main discharge electrode 30 are joined together. A second electrode assembly 40 (see FIG. 4) in which is integrally formed.
It should be noted that the protrusions 14b and 16b of the first and second external electrodes and the flat surfaces 28a and 30a of the first and second main discharge electrodes may be joined via silver solder. In this case, after interposing a silver brazing plate between the front end surfaces of the convex portions 14b and 16b of the first and second external electrodes and the flat portions 28a and 30a of the first and second main discharge electrodes, What is necessary is just to join this by melting the silver brazing plate.
[0025]
Next, as shown in FIG. 2, the insulating substrate 20 on which the trigger discharge electrodes 24 and 26 are formed is inserted from one opening side of the housing 12 along the housing bottom surface 12 b.
Thereafter, the first electrode assembly 38 is inserted into the housing 12 from one opening side of the housing 12 (FIG. 3). At this time, the outer surface of the convex portion 14b of the first external electrode 14 is inserted so as to contact the upper surface 12a of the housing.
As described above, the first main discharge electrode 28 is configured by a leaf spring, and is bent from the lower end of the flat portion 28a to the external electrode 14 side, and from the tip of the first bent portion 28b. Since the second bent portion 28c is bent so as to be substantially parallel to the surface of the insulating substrate 20, first, after the first bent portion 28b comes into contact with the insulating substrate 20, the first bent portion 28c is brought into contact with the insulating substrate 20. Then, the second bent portion 28c is inserted into the housing 12 in a state of being pressed against the trigger discharge electrode 24 on the surface of the insulating substrate 20.
Then, by bringing the peripheral edge of the plate-like portion 14a of the first external electrode 14 into contact with the opening end face of the housing 12, the first external electrode 14 is fitted into the opening of the housing 12, and the first The insertion process of the electrode assembly 38 is completed.
As described above, the second bent portion 28c is substantially parallel to the surface of the insulating substrate 20, so that the second bent portion 28c is in pressure contact with the trigger discharge electrode 24 on the surface of the insulating substrate 20. The resistance force during insertion is small, and the first electrode assembly 38 can be easily inserted.
[0026]
After the insertion of the first electrode assembly 38, the second electrode assembly 40 is inserted into the housing 12 from the other opening side of the housing 12, as in the case of the first electrode assembly 38. And the peripheral edge of the plate-like portion 16a of the second external electrode 16 is brought into contact with the opening end surface of the housing 12, so that the second external electrode 16 is fitted into the opening of the housing 12. Then, the insertion process of the second electrode assembly 40 is completed (FIG. 4).
[0027]
After the process of inserting the insulating substrate 20, the first electrode assembly 38, and the second electrode assembly 40 into the housing 12 is completed, the insulating substrate 20, the first electrode assembly 38, and the second electrode assembly 40 are disposed in a sealing chamber (not shown). After evacuation, a discharge gas mainly composed of a rare gas such as Ne or Ar or an inert gas such as N 2 is sealed in the housing 12.
Finally, the casing 12 and the first external electrode 14 and the second external electrode 16 respectively fitted to the openings at both ends of the casing 12 are hermetically sealed through a sealing material such as active silver brazing. Thus, the hermetic envelope 18 is constructed, and the chip type surge absorbing element 10 of the present invention shown in FIG. 1 can be obtained.
[0028]
In the manufacturing method of the chip-type surge absorbing element 10 described above, the first main discharge electrode 28 and the second main discharge electrode 30 are configured by leaf springs, and the insulating substrate 20 and the first main discharge electrode 30 are formed in the housing 12. By simply inserting the electrode assembly 38 and the second electrode assembly 40 sequentially, the second bent portion 28c of the first main discharge electrode 28 comes into pressure contact with the first trigger discharge electrode 24, and the first The electrical connection between the main discharge electrode 28 and the first trigger discharge electrode 24 can be realized, and the second bent portion 30c of the second main discharge electrode 30 is pressed against the second trigger discharge electrode 26, Since the electrical connection between the two main discharge electrodes 30 and the second trigger discharge electrode 26 can be realized, the manufacture thereof is extremely easy.
[0029]
【The invention's effect】
In the manufacturing method of the chip type surge absorbing element according to the present invention, first, a first electrode assembly and a second external electrode formed by joining a first external electrode and a first main discharge electrode, A second electrode assembly formed by joining the second main discharge electrode is configured, and the insulating substrate, the first electrode assembly, and the second electrode assembly are sequentially inserted into the casing. Then, the second bent portion of the first main discharge electrode is pressed against the first trigger discharge electrode, and electrical connection between the first main discharge electrode and the first trigger discharge electrode is realized, The second bent portion of the second main discharge electrode is pressed against the second trigger discharge electrode, and electrical connection between the second main discharge electrode and the second trigger discharge electrode is realized.
Further, the second bent portion of the first and second main discharge electrodes is made substantially parallel to the surface of the insulating substrate, so that the second bent portion is made to be the first and second triggers of the insulating substrate. The resistance force during insertion in a state of being pressed against the discharge electrode is reduced, and the first electrode assembly and the second electrode assembly can be easily inserted.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a chip type surge absorbing element according to the present invention.
FIG. 2 is an explanatory view showing a method for manufacturing a chip-type surge absorber according to the present invention.
FIG. 3 is an explanatory diagram showing a method for manufacturing a chip-type surge absorber according to the present invention.
FIG. 4 is an explanatory view showing a method for manufacturing a chip-type surge absorbing element according to the present invention.
FIG. 5 is a cross-sectional view showing a conventional chip-type surge absorbing element.
10 Chip type surge absorber
12 housing
12a Case top
12b Case bottom
14 First external electrode
14b Convex part of the first external electrode
16 Second external electrode
16b Convex part of second external electrode
18 Airtight envelope
20 Insulating substrate
22 Micro discharge gap
24 First trigger discharge electrode
26 Second trigger discharge electrode
28 First main discharge electrode
28a Plane portion of first main discharge electrode
28b First bent portion of the first main discharge electrode
28c Second bent portion of the first main discharge electrode
30 Second main discharge electrode
30a Plane portion of second main discharge electrode
30b First bent portion of the second main discharge electrode
30c Second bent portion of second main discharge electrode
32 Main discharge gap
38 First electrode assembly
40 Second electrode assembly

Claims (1)

少なくとも一面が平坦面と成された絶縁材より成る筐体の両端開口部に、上記筐体内部に向かって突出する凸部を備えた第1及び第2の外部電極を嵌合して気密外囲器を形成し、該気密外囲器内に放電ガスを封入すると共に、表面に微小放電間隙を隔てて対向配置された第1及び第2のトリガ放電電極を有する絶縁基板を筐体内部の一面上に配置し、また、上記第1の外部電極の凸部先端に接続され、該第1の外部電極側に折り曲げられた第1の屈曲部と、該第1の屈曲部の先端から、上記絶縁基板の表面と略平行となるように折り曲げられた第2の屈曲部を一端に有する板バネで構成された第1の主放電電極と、上記第2の外部電極の凸部先端に接続され、該第2の外部電極側に折り曲げられた第1の屈曲部と、該第1の屈曲部の先端から、上記絶縁基板の表面と略平行となるように折り曲げられた第2の屈曲部を一端に有する板バネで構成された第2の主放電電極とを、主放電間隙を隔てて対向配置して成り、さらに、上記第1の主放電電極の第2の屈曲部を、上記第1のトリガ放電電極に圧接すると共に、上記第2の主放電電極の第2の屈曲部を、上記第2のトリガ放電電極に圧接し、また、上記第1及び第2の外部電極の凸部外面を、上記絶縁基板の配置された筐体一面の対向面に当接して成るチップ型サージ吸収素子の製造方法であって、
上記第1の外部電極と第1の主放電電極とを接合して成る第1の電極組立体を構成すると共に、上記第2の外部電極と上記第2の主放電電極とを接合して成る第2の電極組立体を構成する第1の工程と、
上記絶縁基板を、上記筐体の一方又は他方の開口部側から、筐体内部の一面に沿って挿入配置する第2の工程と、
上記第1の電極組立体を、第1の外部電極の凸部外面が、上記絶縁基板の配置された筐体一面の対向面に当接すると共に、第1の主放電電極の第1の屈曲部が絶縁基板と当接した後、第1の外部電極側に弾性変形し、その後、第2の屈曲部が絶縁基板の第1のトリガ放電電極に圧接した状態で、上記筐体の一方又は他方の開口部側から筐体内に挿入し、以て、上記第1の外部電極を筐体開口部に嵌合する第3の工程と、
上記第2の電極組立体を、第2の外部電極の凸部外面が、上記絶縁基板の配置された筐体一面の対向面に当接すると共に、第2の主放電電極の第1の屈曲部が絶縁基板と当接した後、第2の外部電極側に弾性変形し、その後、第2の屈曲部が絶縁基板の第2のトリガ放電電極に圧接した状態で、上記第1の電極組立体が挿入された筐体開口部側とは異なる開口部側から筐体内に挿入し、以て、上記第2の外部電極を筐体開口部に嵌合する第4の工程と、
上記筐体内の真空排気後、該筐体内に放電ガスを封入し、その後、上記筐体と、第1の外部電極及び第2の外部電極とを気密封止する第5の工程と、
を備えたことを特徴とするチップ型サージ吸収素子の製造方法。
First and second external electrodes having protrusions projecting toward the inside of the casing are fitted into both end openings of the casing made of an insulating material having at least one surface as a flat surface. An enclosure is formed, and a discharge gas is sealed in the hermetic envelope, and an insulating substrate having first and second trigger discharge electrodes disposed on the surface facing each other with a minute discharge gap is disposed inside the casing. A first bent portion disposed on one surface and connected to the tip of the convex portion of the first external electrode and bent toward the first external electrode; and from the tip of the first bent portion, Connected to the first main discharge electrode composed of a leaf spring having a second bent portion at one end bent so as to be substantially parallel to the surface of the insulating substrate, and the tip of the convex portion of the second external electrode A first bent portion bent toward the second external electrode, and a tip of the first bent portion And a second main discharge electrode composed of a leaf spring having at one end a second bent portion which is bent so as to be approximately parallel to the surface of the insulating substrate, made to face disposed with a main discharge gap Further, the second bent portion of the first main discharge electrode is pressed against the first trigger discharge electrode, and the second bent portion of the second main discharge electrode is connected to the second trigger. A method of manufacturing a chip-type surge absorbing element that is in pressure contact with a discharge electrode and abuts the outer surface of the convex portion of the first and second external electrodes with the opposing surface of the entire casing on which the insulating substrate is disposed. There,
A first electrode assembly is formed by bonding the first external electrode and the first main discharge electrode, and is formed by bonding the second external electrode and the second main discharge electrode. A first step of constituting a second electrode assembly;
A second step of inserting and arranging the insulating substrate from one or the other opening side of the casing along one surface inside the casing;
In the first electrode assembly, the outer surface of the convex portion of the first external electrode is in contact with the opposing surface of the entire surface of the housing on which the insulating substrate is disposed, and the first bent portion of the first main discharge electrode . Is in contact with the insulating substrate and then elastically deformed toward the first external electrode, and then the second bent portion is in pressure contact with the first trigger discharge electrode of the insulating substrate. A third step of inserting the first external electrode into the housing opening from the opening side of the housing;
In the second electrode assembly, the outer surface of the convex portion of the second external electrode is in contact with the opposing surface of the entire surface of the housing on which the insulating substrate is disposed, and the first bent portion of the second main discharge electrode . Is in contact with the insulating substrate and then elastically deformed to the second external electrode side, and then the first electrode assembly with the second bent portion pressed against the second trigger discharge electrode of the insulating substrate. Is inserted into the housing from the side of the opening different from the side of the housing opening where the is inserted, and thus the fourth step of fitting the second external electrode into the housing opening,
After evacuating the casing, a fifth step of sealing discharge gas in the casing and then hermetically sealing the casing, the first external electrode, and the second external electrode;
A method for manufacturing a chip-type surge absorbing element, comprising:
JP2001217677A 2001-07-18 2001-07-18 Manufacturing method of chip type surge absorbing element Expired - Fee Related JP3660613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001217677A JP3660613B2 (en) 2001-07-18 2001-07-18 Manufacturing method of chip type surge absorbing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001217677A JP3660613B2 (en) 2001-07-18 2001-07-18 Manufacturing method of chip type surge absorbing element

Publications (2)

Publication Number Publication Date
JP2003031337A JP2003031337A (en) 2003-01-31
JP3660613B2 true JP3660613B2 (en) 2005-06-15

Family

ID=19051958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001217677A Expired - Fee Related JP3660613B2 (en) 2001-07-18 2001-07-18 Manufacturing method of chip type surge absorbing element

Country Status (1)

Country Link
JP (1) JP3660613B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077632A1 (en) * 2003-02-28 2004-09-10 Mitsubishi Materials Corporation Surge absorber and production method therefor

Also Published As

Publication number Publication date
JP2003031337A (en) 2003-01-31

Similar Documents

Publication Publication Date Title
JP4352098B1 (en) Discharge element and manufacturing method thereof
TWI361536B (en) Surge absorber
JP4770550B2 (en) surge absorber
JP5316762B2 (en) surge absorber
JP3439746B2 (en) Surface mount type surge absorbing element and method of manufacturing the same
JP3660613B2 (en) Manufacturing method of chip type surge absorbing element
JP3130012B2 (en) Chip type surge absorbing element and method of manufacturing the same
KR100723572B1 (en) Chip type surge absorber and method of manufacturing the same
CN108305822B (en) Gas discharge tube, overvoltage protection device, and method for manufacturing gas discharge tube
JPH0668949A (en) Lightning arrester
JP2606885Y2 (en) Surge absorbing element
JP3686013B2 (en) Chip type surge absorber
JP3508565B2 (en) Chip type surge absorber and method of manufacturing the same
JP3686012B2 (en) Chip type surge absorber
JP4239422B2 (en) surge absorber
JP2000003775A (en) Chip type surge absorber and manufacture thereof
JP3131165B2 (en) Method for manufacturing field electron emission type surge absorbing element
JP4123981B2 (en) Chip-type surge absorber and manufacturing method thereof
JPH0443584A (en) Gas-tight structure of surge absorbing element
JP2005116192A (en) Chip type surge absorber and its manufacturing method
JPH06310252A (en) Surge absorber
JP6167681B2 (en) surge absorber
JP3777886B2 (en) Chip type surge absorber (1)
JP2001211050A (en) Quartz oscillator with seating
JP2637983B2 (en) Surge absorbing element with insulating thin plate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees