JP3659030B2 - Inscribed gear pump - Google Patents

Inscribed gear pump Download PDF

Info

Publication number
JP3659030B2
JP3659030B2 JP32247698A JP32247698A JP3659030B2 JP 3659030 B2 JP3659030 B2 JP 3659030B2 JP 32247698 A JP32247698 A JP 32247698A JP 32247698 A JP32247698 A JP 32247698A JP 3659030 B2 JP3659030 B2 JP 3659030B2
Authority
JP
Japan
Prior art keywords
gear
driving gear
housing
driven gear
partition member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32247698A
Other languages
Japanese (ja)
Other versions
JP2000145659A (en
Inventor
喜代治 中村
善章 小南
栄治 中村
裕嗣 森部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32247698A priority Critical patent/JP3659030B2/en
Publication of JP2000145659A publication Critical patent/JP2000145659A/en
Application granted granted Critical
Publication of JP3659030B2 publication Critical patent/JP3659030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、水や機械油等の流体の送給や油圧等の流体圧力の付加等に使用される内接ギヤポンプに関する。
【0002】
【従来の技術】
外歯を有する原動ギヤを回転させると共に、原動ギヤの外歯へ噛合する内歯を有した従動ギヤを回転させることで、これらのギヤを収容するハウジングに設けられた吸入部から水や油等の流体を吸入して、吐出部から吐出する内接ギヤポンプの一例が、特開平10−61563号公報に開示されている。
【0003】
この公報に開示された内接ギヤポンプについて簡単に説明すると、外歯を有する原動ギヤと、この原動ギヤに回転力を付与する駆動軸との間に隙間が形成され、更に、この隙間に対応して原動ギヤと駆動軸にはそれぞれキー溝が形成されており、双方のキー溝にわたってキーが収容されている。
【0004】
このように構成した内接ギヤポンプでは、駆動軸が回転すると、駆動軸側のキー溝の内周部がキーをその回転方向に沿って押圧し、更に、キーが原動ギヤ側のキー溝の内周部をその回転方向に沿って押圧する。これにより、原動ギヤが回転する構成であるが、原動ギヤは駆動軸との間に形成された隙間の分だけ駆動軸に対してその軸直交方向に沿って変位可能である。原動ギヤ及び従動ギヤの回転により流体が吸入部側から吐出部側へ搬送されることで、上昇した吐出部側の内圧により、原動ギヤが押圧されて軸直交方向に沿って変位し、原動ギヤの外歯の歯先がクレセントへ圧接させられる。これにより、内圧の上昇した吐出部側から、内部の流体が搬送されることで負圧が発生した吸入部側への流体の漏れを防止するものである。
【0005】
【発明が解決しようとする課題】
ところで、このような内接ギヤポンプに対して、ハウジングの内部で互いに噛み合った状態で収容された一対の外歯のギヤを回転させることで、各ギヤの中心を結ぶ線を境として一方の側に設けられた吸入部から他方の側に設けられた吐出部へ向けて流体を搬送する外接ギヤポンプも一般的に使用されている。特に、この種の外接ギヤポンプにおいては、各ギヤの軸方向一端側に側板を設け、吐出部の内圧の上昇により側板のギヤとは反対側に入り込んだ流体の圧力で側板を各ギヤへ圧接させ、更に、側板からの圧力で各ギヤをハウジングの底部へ押し付けて、ギヤとハウジングの底部との間の隙間を軽減するか或いは無くす所謂プレッシャローディングタイプの外接ギヤポンプが一般的に採用されている。
【0006】
外接ギヤポンプと同様に、内接ギヤポンプにおいても側板を設け、側板の各ギヤとは反対側へ入り込んだ流体の圧力で側板を各ギヤへ押し付け、このときの押付力を以てハウジングの底部と各ギヤの間の隙間を無くせば、より一層、吐出効率が向上することは容易に考えつく。
【0007】
しかしながら、上記公報に開示された内接ギヤポンプにもあるように、一般的な内接ギヤポンプでは、クレセントや仕切り板と称される仕切部材を備えており、このような仕切部材へ原動ギヤの外歯及び従動ギヤの内歯の各歯先を当接させることで吐出部側と吸入部側とを仕切っている。ここで、各ギヤは回転するため、ハウジングの底部との摩耗で軸方向に沿った寸法が僅かではあるが小さくなる。これに対して仕切部材は基本的にギヤの軸方向に沿った方向に対しては摩耗が生じないため、その方向の寸法変化が生じることはない。これにより、各ギヤの軸方向に沿った方向で各ギヤと仕切部材との間に寸法差が生じてしまい、仮に側板を設けたとしても側板は仕切部材に当接するため側板が各ギヤを押圧することはできず、側板と各ギヤの軸方向端部との間に隙間が生じてしまう。このため、内接ギヤポンプでは、上記公報の如く、各ギヤの歯先とハウジングや仕切部材との間の隙間を軽減若しくは小さくすることはできるが、内接ギヤポンプを外接ギヤポンプのようなプレッシャローディングタイプにすることは現実的に困難とされ、ハウジングの底部と各ギヤの軸方向端部との間の隙間を無くし若しくは小さくすることができず、吐出効率が悪い。
【0008】
本発明は、上記事実を考慮して、吐出効率のよい内接ギヤポンプを得ることが目的である。
【0009】
【課題を解決するための手段】
請求項1記載の本発明は、互いに噛み合った状態でハウジングの内部に収容された外歯を有する原動ギヤと内歯を有するリング状の従動ギヤとを回転させることで、前記原動ギヤ及び従動ギヤの各歯溝に収容された流体を前記原動ギヤ及び前記従動ギヤの回転方向側へ搬送し、前記原動ギヤと前記従動ギヤの噛合部分よりも前記原動ギヤ及び従動ギヤの回転方向下流側で前記ハウジングの内底部に設けられた吸入部を介して前記ハウジングの外部から流体を吸入すると共に、前記噛合部分よりも前記回転方向上流側で前記ハウジングの内底部に設けられた吐出部を介して前記ハウジングの外部へ流体を吐出する内接ギヤポンプであって、前記原動ギヤ及び従動ギヤを介して前記ハウジングの内底部とは反対側にのみ設けられ、前記原動ギヤ及び従動ギヤに対向し、前記原動ギヤ及び従動ギヤの軸方向に沿って前記原動ギヤ及び従動ギヤに対して接離移動可能なピストンと、前記導入部を介して前記ピストンに付与された前記吐出圧力と同等の外力で弾性変形可能に全体が形成されて、前記原動ギヤの中心を介して前記噛合部分とは反対側で前記ピストンに一体的に設けられ、前記原動ギヤ及び従動ギヤの各々の歯先へ当接して前記従動ギヤと前記原動ギヤとの間の空間を前記吐出部側の空間と前記吸入部側の空間とに分割する仕切部材と、前記ハウジングの内底部に設けられると共に前記仕切部材を含めて構成されて、前記原動ギヤ及び従動ギヤの軸方向寸法よりも前記仕切部材の当該軸方向に沿った方向の寸法が大きい状態で前記原動ギヤ及び従動ギヤに対する前記仕切部材の寸法差を吸収する吸収機構と、前記仕切部材により分割された前記原動ギヤと前記従動ギヤの空間のうち、前記吐出部側の空間内の吐出圧力を、前記ピストンを介して前記原動ギヤ及び従動ギヤとは反対側へ導く導入部と、を備えることを特徴としている。
【0010】
上記構成の内接ギヤポンプによれば、ハウジングの内部に収容された原動ギヤが回転を開始し、この原動ギヤの回転に連動して原動ギヤの外歯に内歯が噛み合った従動ギヤが回転すると、原動ギヤと従動ギヤの噛合部分及び仕切部材により仕切られた原動ギヤと従動ギヤの間の空間のうちの吸入部側の空間で原動ギヤの外歯及び従動ギヤの内歯の各歯溝に収容された流体が原動ギヤと従動ギヤの間の空間のうちの吐出部側へ搬送される。このようにして、吐出部側へ流体が搬送されることで、吐出部側での空間の内圧、すなわち、吐出圧力が上昇し、吐出部を介して流体がハウジングの外部へ吐出される。
【0011】
また、吐出圧力は導入部を介して仕切部材と一体のピストンの裏面側(すなわち、ピストンを介して原動ギヤとは反対側)へ導かれ、導かれた吐出圧力がピストンを押圧して原動ギヤへ接近移動させる。これにより、原動ギヤへ接近したピストンが原動ギヤを押圧することで、原動ギヤがハウジングの内底部へ押し付けられるため、原動ギヤの軸線の傾斜が制限されると共に、原動ギヤとハウジングの内底部との間の隙間が小さく或いは無くなる。
【0012】
ところで、原動ギヤ及び従動ギヤは回転することでハウジングの内底部との間で摩擦が生じ、この摩擦により原動ギヤ及び従動ギヤが摩耗して軸方向高さが減少することが考えられる。一方、仕切部材が原動ギヤや従動ギヤのように、原動ギヤ及び従動ギヤの軸方向高さが減少することはない。したがって、上記の摩耗により、仕切部材が原動ギヤ及び従動ギヤよりもその軸方向に沿って突出してしまう。
【0013】
ここで、仕切部材がハウジング及びピストンのうち仕切部材が形成されていない側へ当接した状態で、ピストンに吐出圧力が付与されると、吐出圧力がピストンを介して仕切部材へ付与され、ハウジング及びピストンのうち仕切部材が形成されていない側を押圧する。このとき、吐出圧力と同等の反力が、原動ギヤ及び従動ギヤへピストンが当接するまで仕切部材を弾性変形させる。これにより、原動ギヤ及び従動ギヤと仕切部材との寸法差が吸収される。このため、仕切部材がピストンの移動の障害になることはなく、吐出圧力を受けたピストンは確実に原動ギヤ及び従動ギヤを押圧する。
【0015】
請求項2記載の本発明は、請求項1記載の内接ギヤポンプにおいて、前記吸収機構は、前記ピストン及び前記ハウジングの少なくとも何れか一方に設けられ、前記仕切部材へ向けて開口した仕切部材収容溝を備えることを特徴としている。
【0016】
上記構成の内接ギヤポンプによれば、仕切部材の原動ギヤ及び従動ギヤよりも突出した部分は仕切部材収容溝に収容されるため、仕切部材のうち仕切部材収容溝の外部に露出した部分の高さ寸法は、原動ギヤ及び従動ギヤの軸方向高さと同一となる。このため、仕切部材がピストンの移動の弊害になることはない。
【0017】
しかも、本内接ギヤポンプでは、ハウジング及びピストンの少なくとも何れか一方に仕切部材を収容できる程度の溝(仕切部材収容溝)を形成するだけでよいため、その構造が簡易となる。
【0018】
なお、本発明において、仕切部材収容溝は、ハウジング及びピストンの少なくとも何れか一方に形成されていればよいが、この点について更に詳細に説明すると、例えば、ハウジング及びピストンの何れか一方に仕切部材が一体形成されている場合には、ハウジング及びピストンの何れか他方に仕切部材収容溝が形成されることになる。また、仕切部材がハウジング及びピストンの何れからも独立した構成である場合には、ハウジング及びピストンの何れか一方、若しくはハウジング及びピストンの双方に仕切部材収容溝が形成される。
【0019】
請求項3記載の本発明は、請求項2記載の内接ギヤポンプにおいて、前記仕切部材収容溝の底部と前記仕切部材収容溝の内部へ収容された前記仕切部材との間に設けられ、前記仕切部材からの押圧力により弾性変形可能で且つ当該押圧力の付与により前記仕切部材収容溝の底部及び前記仕切部材の双方へ密着するシール部材を備えることを特徴としている。
【0020】
上記構成の内接ギヤポンプによれば、仕切部材収容溝の内部には、弾性部材によって形成されたシール部材が設けられており、仕切部材が仕切部材収容溝の内部に入り込んでシール部材を押圧すると、シール部材が弾性変形して仕切部材と仕切部材収容溝の底部の双方に密着し、仕切部材と仕切部材収容部の間の隙間をシールする。このため、仕切部材収容部と仕切部材との間の隙間を介して吐出圧力が吐出部側から吸入部側へ漏れることが無くなる。
【0023】
【発明の実施の形態】
図3には本発明の第1の実施の形態に係る内接ギヤポンプ10の分解斜視図が示されており、図2には内接ギヤポンプ10の蓋部12を除いた平面図が示されている。また、図1には、図2の1−1線に沿った断面図が示されている。
【0024】
図1及び図3に示されるように、内接ギヤポンプ10は、蓋部12とハウジング本体14とより構成されるハウジング18を備えている。
【0025】
ハウジング本体14は全体的に内底部16を有する略円筒形状とされており、蓋部12は外径寸法がハウジング本体14の外径寸法と略等しい略円盤形状とされ、ハウジング本体14の開口端へ当接した状態でボルト等の締結手段によりハウジング本体14へ固定され、ハウジング本体14の軸方向一端部を閉止している。
【0026】
ハウジング本体14の内側は平面視円形のギヤ収容部20とされており、その内部には円筒形状若しくはリング状の従動ギヤ22が収容されている。従動ギヤ22はその内周部に複数の内歯24が形成された平歯の内歯歯車で、外径寸法がギヤ収容部20の内径寸法よりも僅かに小さく、ギヤ収容部20の内部でギヤ収容部20に対して略同軸的に回転可能とされている。また、図1に示されるように、従動ギヤ22の軸方向寸法はギヤ収容部20の軸方向寸法よりも充分に短い。
【0027】
この従動ギヤ22の内側には原動ギヤ26が配置されている。原動ギヤ26は、外周部に外歯28が形成されたギヤ本体30を備えている。ギヤ本体30は従動ギヤ22よりも小径で、外歯28の数も内歯24より少ない。また、ギヤ本体30は、その軸方向高さが従動ギヤ22の軸方向高さに略等しく、且つ、その回転中心が従動ギヤ22の回転中心に対してその軸直交方向に沿って偏心して設けられており、外歯28が従動ギヤ22の内歯24へ噛み合っている。ギヤ本体30の軸方向一端部からは同軸的にギヤシャフト32が延出されており、内底部16に形成された軸受部34に自らの軸周りに回転自在に軸支されている。また、ギヤシャフト32の先端部は軸受部34を貫通して、直接、或いは、ギヤ等の機械的な運動伝達手段を介してモータ等の駆動手段へ機械的に接続されており、駆動手段の駆動力を受けることで自らの軸周りに回転するようになっている。
【0028】
なお、本実施の形態では、原動ギヤ26及び従動ギヤ22を平歯車とした構成であったが、はす歯歯車等の他の歯車を適用してもよい。
【0029】
一方、ギヤ本体30の軸方向他端部からはギヤシャフト36が同軸的に延出されており、蓋部12がハウジング本体14へ固定された状態では、蓋部12に形成された円孔38を貫通している。
【0030】
また、ギヤ収容部20の内底部16には、吸入部としての吸入孔46と、吐出部としての吐出孔48が形成されている。吸入孔46は、原動ギヤ26及び従動ギヤ22がギヤ収容部20の内側に配置された状態で、原動ギヤ26と従動ギヤ22との噛合部分と後述するクレセント40とにより仕切られた原動ギヤ26と従動ギヤ22との間の空間のうちの一方の空間42に対応して一端が開口しており、他端はハウジング本体14の外部で開口し、本内接ギヤポンプ10が、例えば、車両の電子制御式の油圧制動装置の一構成として適用される場合には、ブレーキオイルの貯蔵部(オイルタンク等)と連通している。一方、吐出孔48は、上述した仕切られた原動ギヤ26と従動ギヤ22との間の空間のうちの他方の空間44に対応して一端が開口しており、他端はハウジング本体14の外部で開口し、本内接ギヤポンプ10が、例えば、車両の電子制御式の油圧制動装置の一構成として適用される場合には、ブレーキのキャリパ等に設けられたシリンダ等へ連通している。
【0031】
また、内底部16の吐出孔48の側方には、導入部としての導入孔56が形成されている。図1に示されるように、導入孔56は、内底部16とハウジング本体14の外底部との間でギヤ収容部20の半径方向外側へ向けて屈曲し、更に、ギヤ収容部20とハウジング本体14の外周部との間を通ってハウジング本体14の上端部(すなわち、蓋部12と対向する側の端部)で開口している。
【0032】
一方、図1に示されるように、蓋部12には導入孔56と共に導入部を構成する導入孔58が形成されている。導入孔58は、一端がギヤ収容部20よりも半径方向外側でハウジング本体14の上端部と対向して開口しており、他端は一端部よりもギヤ収容部20の半径方向内側で内底部16と対向して開口している。また、図1に示されるように、蓋部12をハウジング本体14へ取り付けた状態では、導入孔56の他方の開口端と導入孔58の一方の開口端とが連通する。また、図1及び図3に示されるように、導入孔58の一方の開口端の周囲には、リング状のハウジング本体14側へ向けて開口した溝部60が形成されており、その内側にはゴム材や弾性変形可能な合成樹脂材によりリング状に形成されたOリング(オーリング)62が嵌め込まれている。蓋部12をハウジング本体14へ取り付けた状態では、Oリング62が弾性変形して蓋部12とハウジング本体14との間の隙間と、導入孔56と導入孔58との連通部分との間をシールしている。
【0033】
図1及び図3に示されるように、ギヤ収容部20の内部で且つ従動ギヤ22及び原動ギヤ26の軸方向一端側(すなわち、蓋部12側)側方にはピストン64が収容されている。ピストン64は外径寸法がギヤ収容部20の内径寸法よりも僅かに小さな円盤形状のピストン本体66を備えている。ピストン本体66はハウジング本体14をシリンダとしてギヤ収容部20の軸方向に沿ってスライド可能とされている。また、このピストン本体66の外周部にはリング状に溝部68が形成されており、リング状のシール材70が収容されている。このシール材70は、シール性を有し、且つ、摩擦係数が小さな材質で形成されており、その外周部はギヤ収容部20の内周部へ摺接していると共に、内周部が溝部68の内底部へ当接している。このため、ピストン本体66の外周部とギヤ収容部20の内周部との間に形成される隙間はシール材70により仕切られる。
【0034】
また、ピストン本体66の従動ギヤ22及び原動ギヤ26とは反対側の端部には円筒部72が形成されている。ピストン64は、ピストン本体66が従動ギヤ22に対して略同軸的なのに対し、円筒部72は原動ギヤ26に対して略同軸的とされており、したがって、ピストン64をギヤ収容部20内に収容した状態では、円筒部72の中心はピストン64の中心よりも従動ギヤ22の内歯24と原動ギヤ26の外歯28との噛合部分側へ偏心し、更に、円筒部72の先端側は蓋部12に形成された円孔38を貫通して外部へ突出している。この円筒部72の外周部には、その半径方向に沿って円孔38の内周部と対向したリング状の溝部74が形成されており、その内側にはリング状のシール材76が設けられ、シール材76によって、円孔38の内周部と溝部74を含む円筒部72の外周部との間の隙間がシールされている。
【0035】
また、円筒部72には、貫通孔78が同軸的に形成されている。貫通孔78は一方の開口端が円筒部72の先端で開口していると共に、他方の開口端はピストン本体66の従動ギヤ22及び原動ギヤ26と対向する側の面で開口している。この貫通孔78には原動ギヤ26のギヤシャフト36が挿入されており、ギヤシャフト36は円筒部72と共に円孔38を貫通している。
【0036】
さらに、ピストン本体66の円筒部72とは反対側の端部からは、ギヤ本体30(原動ギヤ26)の回転中心を介して外歯28と内歯24との噛合部分とは反対側で、従動ギヤ22の内歯24とギヤ本体30の外歯28との間の部分に対応して仕切部材としてのクレセント40が突出形成されている。
【0037】
原動ギヤ26及び従動ギヤ22の軸方向に沿った方向のクレセント40の寸法(高さ)は、ピストン本体66のクレセント40とは反対側の端部からクレセント40の先端部までの寸法が、ギヤ収容部20の深さよりも大きくなるように設定されている。また、原動ギヤ26及び従動ギヤ22の軸方向に沿ってクレセント40を見た場合、クレセント40は略三日月形状とされており、原動ギヤ26の外歯28と対向した側の幅方向一方の端部は外歯28の歯先を結ぶ円の曲率半径に略等しい曲率半径で湾曲した凹形状とされている。また、クレセント40の幅方向一方の端部での長手方向寸法は、ギヤ本体30(原動ギヤ26)の外歯28のピッチよりも長く、原動ギヤ26が自らの軸周りに回転した際には、常に、少なくとも1つの外歯28が原動ギヤ26の軸直交方向に沿ってクレセント40の幅方向一方の端部と対向する。
【0038】
これに対し、従動ギヤ22の内歯24と対向した側の幅方向他方の端部は内歯24の歯先を結ぶ円の曲率半径に略等しい曲率半径で従動ギヤ22側へ張り出すように湾曲している。クレセント40の幅方向他方の端部での長手方向寸法は、従動ギヤ22の内歯24のピッチよりも長く、従動ギヤ22が自らの軸周りに回転した際には、常に、少なくとも1つの内歯24が原動ギヤ26の軸直交方向に沿ってクレセント40の幅方向他方の端部と対向する。
【0039】
ここで、このクレセント40の幅方向一方の端部へ外歯28の歯先が当接し、クレセント40の幅方向他方の端部へ内歯24の歯先が当接した状態では、これらの外歯28及び内歯24とクレセント40との当接部分と内歯24と外歯28との噛合部分により、従動ギヤ22と原動ギヤ26の間の空間が、空間42と空間44とに分割され、これらの空間42、44が原動ギヤ26、従動ギヤ22、及びクレセント40によって仕切られる。
【0040】
一方、図1に示されるように、ギヤ収容部20の内底部16には、原動ギヤ26及び従動ギヤ22の軸方向に沿ってクレセント40と対向する如く開口した仕切部材収容溝或いは吸収機構としてのクレセント収容部50が形成されている。原動ギヤ26及び従動ギヤ22の軸方向に沿ってクレセント収容部50を見た場合、クレセント収容部50は外形がクレセント40よりも僅かに大きな三日月形状とされており、クレセント40が原動ギヤ26及び従動ギヤ22の軸方向に沿って変位した場合には、その内部にクレセント40を挿入できる。
【0041】
また、クレセント収容部50の深さは、クレセント収容部50の底部からギヤ収容部20の開口端までの寸法が、ピストン本体66のクレセント40とは反対側の端部からクレセント40の先端部までの寸法よりも大きくなるように設定されている。
【0042】
さらに、図1に示されるように、クレセント収容部50の内部には、ゴム材若しくは柔軟で弾性変形可能な合成樹脂材により形成されたシール部材としてのシール材80が設けられている。図1に示されるように、クレセント40がクレセント収容部50の内部に挿入された状態では、クレセント40からの押圧力により弾性変形してクレセント40とクレセント収容部50の内周部の双方に密着する。
【0043】
次に、本実施の形態の作用並びに効果について説明する。
【0044】
本内接ギヤポンプ10では、原動ギヤ26がモータ等の駆動手段の駆動力を受けて図2の矢印A方向へ向けて回転すると、内歯24が原動ギヤ26の外歯28へ噛み合った従動ギヤ22が回転を開始する。この状態で、空間42内で互いに隣接する内歯24の間の歯溝82及び互いに隣接する外歯28の間の歯溝84内にある水や油等の流体は、従動ギヤ22及び原動ギヤ26と共に回転して空間44内へと搬送される。原動ギヤ26の外径寸法は従動ギヤ22の内径寸法に比べて小さく、且つ、従動ギヤ22に対して原動ギヤ26が偏心しているため、原動ギヤ26の中心を介して外歯28と内歯24との噛合部分とは反対側では原動ギヤ26と従動ギヤ22とが最も離れるが、この部分にはクレセント40が設けられており、内歯24及び外歯28の各歯先が常にクレセント40の幅方向端部へ当接しているため、基本的に原動ギヤ26の中心を介して内歯24と外歯28との噛合部分とは反対側では、空間42と空間44とに分割され、これらの空間42、44がクレセント40とクレセント40へ当接する内歯24及び外歯28とによって遮断される。
【0045】
また、空間44において従動ギヤ22の歯溝82及び原動ギヤ26の歯溝84内の流体は、外歯28と内歯24とが互いに噛み合い歯溝82の内部へ外歯28が、歯溝84の内部へ内歯24が入り込むことで歯溝82及び歯溝84内から押し出される。これにより、空間44では流体量が増大して空間44の内圧が上昇し、この上昇した内圧が吐出圧力となり、空間44内の流体を吐出孔48を介してハウジング18の外部へ吐出する。
【0046】
一方、空間42側で原動ギヤ26及び従動ギヤ22の回転に伴い歯溝82内から外歯28が抜け出し、歯溝84内から内歯24が抜け出すことで、それまで歯溝82内で外歯28が占有していた容積の分、及び歯溝84内で内歯24が占有していた容積の分だけ空間42内に負圧が生じ、吸入孔46を介して空間42の内部へハウジング18の外部から流体が吸入される。
【0047】
上記の如く、原動ギヤ26及び従動ギヤ22を回転させることで、吸入孔46から流体が吸入されて吐出孔48から流体が吐出され、所謂ポンプとしての機能を奏することになる。
【0048】
また、空間44内の流体の一部は、吐出圧力により導入孔56及び導入孔58を介してピストン本体66の円筒部72側の端部と蓋部12との間へ導かれる。ピストン本体66と蓋部12との間に導かれた流体は、吐出圧力によりピストン本体66を原動ギヤ26へ接近させる方向へ押圧する。このように、流体に押圧されたピストン64のピストン本体66は、原動ギヤ26及び従動ギヤ22へ接近して原動ギヤ26及び従動ギヤ22を押圧して内底部16へ押し付ける。
【0049】
これにより、原動ギヤ26及び従動ギヤ22と内底部16との間での隙間の形成を防止或いは抑制できるため、この隙間を介しての空間44から空間42への流体の漏れを防止或いは抑制でき、吐出効率を向上できる。
【0050】
ところで、発明が解決しようとする課題の項目でも述べたように、原動ギヤ26及び従動ギヤ22は回転することで内底部16との間で摩擦が生じ、これにより原動ギヤ26及び従動ギヤ22が摩耗することで軸方向高さが僅かではあるが減少することが考えられる。このような場合、クレセント40には内底部16との間での摩擦が生じないことから、その高さが減少することはない。したがって原動ギヤ26及び従動ギヤ22が摩耗した状態でピストン本体66が原動ギヤ26及び従動ギヤ22へ接触すると、原動ギヤ26及び従動ギヤ22が摩耗する以前の状態よりもクレセント40の先端部が原動ギヤ26及び従動ギヤ22の内底部16側の端部より突出する。しかしながら、上述したように、クレセント収容部50の底部からギヤ収容部20の開口端までの寸法は、ピストン本体66の円筒部72側の端部からクレセント40の先端部までの寸法よりも大きいため、原動ギヤ26及び従動ギヤ22の摩耗分に対応したクレセント40の突出部分は、そのままクレセント収容部50内に収容されるため、原動ギヤ26及び従動ギヤ22が摩耗しても、ピストン64のピストン本体66は流体からの吐出圧力の付与により原動ギヤ26及び従動ギヤ22を押圧できる。原動ギヤ26及び従動ギヤ22の摩耗分に対応したクレセント40の突出部分がクレセント収容部50の内部に入り込んだとしても、その入り込み量に対応してクレセント収容部50の内部に設けられたシール材80が弾性変形するためシール性は確保できる。
【0051】
このように、本内接ギヤポンプ10では、吐出効率の向上に伴い吐出圧力を向上させることができる。このため、例えば、電子制御式の制動装置等、他の高圧仕様のポンプ(すなわち、吐出圧力が比較的高いポンプ)を併用し、内接ギヤポンプの吐出圧力が限界になった状態で高圧仕様のポンプに切換える構成の装置に適用する場合、上述したように、本内接ギヤポンプ10は吐出圧力を従来の内接ギヤポンプよりも上昇させることができるため、仮に、従来の内接ギヤポンプの吐出圧力の限界と同等の吐出圧力に達した場合に高圧仕様のポンプに切換える構成にしたとしても、高圧仕様のポンプに不具合が発生して機能が低下した場合には、本内接ギヤポンプ10の原動ギヤ26の回転数を上昇させて吐出圧力を一層上昇させることで機能の低下分を補うことができるため、装置全体としての信頼性を向上できる。また、本内接ギヤポンプ10の吐出圧力が限界に達した場合に高圧仕様のポンプに切換える構成とした場合には、高圧仕様のポンプの作動開始の吐出圧力領域を従来よりも高い圧力に設定できるため、高圧仕様のポンプの作動頻度を低減させることができる。一般的に高圧仕様のポンプは、低圧仕様のポンプに比べてエネルギー消費量が多いことから、本内接ギヤポンプ10を適用すれば、エネルギー消費量を低減でき、しかも、高圧仕様のポンプの作動頻度の低減により高圧仕様のポンプの寿命を長くすることができる。
【0052】
次に、本発明のその他の実施の形態について説明する。なお、以下の説明において前記第1の実施の形態と基本的に同一の部位に関しては、同一の符号を付与してその説明を省略する。
【0053】
図4には本発明の第2の実施の形態に係る内接ギヤポンプ110の構成が前記第1の実施の形態に係る内接ギヤポンプ10の構成を示す図1と同様の断面図によって示されている。
【0058】
この図に示されるように、本内接ギヤポンプ110を前記第1の実施の形態に係る内接ギヤポンプ10と比べた場合、本内接ギヤポンプ110はシール材80を備えておらず、代わりに、ゴム材若しくはピストン本体66に作用する吐出圧力と同等かそれ以下の外力により弾性変形可能な合成樹脂材により形成された弾性部112がクレセント40の先端部(内底部16側の端部)に一体的に設けられており、クレセント収容溝50の底部へ当接している。
【0059】
このような構成の本内接ギヤポンプ110では、原動ギヤ26及び従動ギヤ22の摩耗によりその軸方向高さが小さくなった状態で、ピストン本体66に吐出圧力が作用すると、クレセント40を介してピストン本体66が弾性部112を押圧して弾性部112を弾性変形させる。このように、ピストン本体66が原動ギヤ26及び従動ギヤ22へ当接するまで弾性部112を弾性変形させることで、ピストン本体66は原動ギヤ26及び従動ギヤ22を押圧でき、上述した効果と同様の効果を得ることができる。
【0060】
なお、本実施の形態では、クレセント40の先端部に弾性部112を設けた構成であったが、クレセント40の基端部や高さ方向中間部の何れに弾性部112を設けてもよく、さらには、クレセント40自体を弾性部112と同様の弾性部材(すなわち、ピストン本体66に作用する吐出圧力と同等かそれ以下の外力により弾性変形可能な合成樹脂材)で形成してもよい(すなわち、クレセント40自体を弾性部112としてもよい)
また、本実施の形態では、弾性部112がクレセント収容溝50の内側へ入り込んだ構成であったが、弾性部112を設ける構成の場合、クレセント収容溝50を形成しない構成であってもよい。すなわち、回転による原動ギヤ26及び従動ギヤ22の摩耗は極僅かであるため、この摩耗に伴うクレセント40の突出量を吸収する程度に弾性部112を弾性変形させても、弾性部112の変形量は極僅かであるため、弾性部112がクレセント収容溝50内になくとも、原動ギヤ26及び従動ギヤ22の回転に支障をきたすことはない。
【0062】
【発明の効果】
以上説明したように、請求項1記載の本発明では、仕切部材の高さが原動ギヤ及び従動ギヤの軸方向高さよりも大きくなったとしても、その大きくなった分を吸収機構が吸収するため、仕切部材がピストンが原動ギヤ及び従動ギヤを押圧する際の妨げになることはない。このため、ピストンによって原動ギヤ及び従動ギヤを確実に押圧してハウジングの内底部へ押し付けることができ、原動ギヤ及び従動ギヤとハウジングの内底部との間の隙間の形成を防止或いは抑制できる。これによって、原動ギヤ及び従動ギヤの軸線の傾斜や、原動ギヤ及び従動ギヤと内底部との間を介した流体の漏れを防止でき、吐出効率を向上できる。
【0063】
また、請求項2記載の本発明では、請求項1記載の本発明の効果を得られるのみならず、構造が簡素なため、安価なコストで上記の効果を得られる。
【0064】
さらに、請求項3記載の本発明では、請求項1又は請求項2記載の本発明の効果を得られるのみならず、シール部材で仕切部材収容溝の内部と仕切部材の外周部との間をシールすることにより、仕切部材収容溝と仕切部材との間の隙間を介して吐出圧力の吐出部側から吸入部側への漏れを防止できる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態に係る内接ギヤポンプの断面図で、図2の1−1線に沿った断面図である。
【図2】 蓋部を外した状態での本発明の第2の実施の形態に係る内接ギヤポンプの平面図である。
【図3】 本発明の第1の実施の形態に係る内接ギヤポンプの分解斜視図である。
【図4】 本発明の第2の実施の形態に係る内接ギヤポンプの図1に対応した断面図である。
【符号の説明】
10 内接ギヤポンプ
16 内底部
18 ハウジング
22 従動ギヤ
24 内歯
26 原動ギヤ
28 外歯
40 クレセント(仕切部材)
46 吸入孔(吸入部)
48 吐出孔(吐出部)
50 クレセント収容部(仕切部材収容溝、吸収機構)
56 導入孔(導入部)
58 導入孔(導入部)
66 ピストン
80 シール材(シール部材)
82 歯溝
84 歯溝
110 内接ギヤポンプ
112 弾性部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal gear pump used for supplying fluid such as water and machine oil or applying fluid pressure such as hydraulic pressure.
[0002]
[Prior art]
By rotating a driving gear having external teeth and rotating a driven gear having internal teeth meshing with the external teeth of the driving gear, water, oil, etc. from a suction portion provided in a housing that accommodates these gears An example of an internal gear pump that sucks the fluid and discharges it from the discharge part is disclosed in Japanese Patent Laid-Open No. 10-61563.
[0003]
Briefly describing the internal gear pump disclosed in this publication, a gap is formed between a driving gear having external teeth and a drive shaft for applying a rotational force to the driving gear. A keyway is formed in each of the driving gear and the drive shaft, and the key is accommodated over both keyways.
[0004]
In the internal gear pump configured as described above, when the drive shaft rotates, the inner peripheral portion of the key groove on the drive shaft side presses the key along the rotation direction, and the key further moves into the key groove on the drive gear side. The peripheral part is pressed along the rotation direction. As a result, the driving gear rotates, but the driving gear can be displaced along the direction perpendicular to the driving shaft by a gap formed between the driving gear and the driving shaft. The fluid is conveyed from the suction portion side to the discharge portion side by the rotation of the drive gear and the driven gear, so that the drive gear is pressed and displaced along the direction orthogonal to the axis by the increased internal pressure on the discharge portion side. The tip of the external tooth is pressed against the crescent. This prevents fluid from leaking from the discharge part side where the internal pressure has increased to the suction part side where negative pressure has been generated due to the transfer of the internal fluid.
[0005]
[Problems to be solved by the invention]
By the way, with respect to such an internal gear pump, by rotating a pair of external gears housed in a state of being engaged with each other inside the housing, one side of the line connecting the centers of the gears is defined as one boundary. An external gear pump that conveys fluid from a provided suction portion to a discharge portion provided on the other side is also generally used. In particular, in this type of external gear pump, a side plate is provided at one end in the axial direction of each gear, and the side plate is brought into pressure contact with each gear by the pressure of the fluid that has entered the side opposite to the gear of the side plate due to an increase in the internal pressure of the discharge part. Further, a so-called pressure loading type external gear pump is generally employed in which each gear is pressed against the bottom of the housing with pressure from the side plate to reduce or eliminate the gap between the gear and the bottom of the housing.
[0006]
Similar to the external gear pump, the internal gear pump is also provided with a side plate, and the side plate is pressed against each gear by the pressure of the fluid that has entered the opposite side of each gear of the side plate. It is easily conceivable that the discharge efficiency is further improved by eliminating the gap between them.
[0007]
However, as in the inscribed gear pump disclosed in the above publication, a typical inscribed gear pump includes a partition member called a crescent or a partition plate. The discharge part side and the suction part side are partitioned by bringing the tooth tips of the teeth and the inner teeth of the driven gear into contact with each other. Here, since each gear rotates, the dimension along the axial direction becomes small, though slightly, due to wear with the bottom of the housing. On the other hand, since the partition member basically does not wear in the direction along the axial direction of the gear, the dimensional change in that direction does not occur. As a result, a dimensional difference occurs between each gear and the partition member in the direction along the axial direction of each gear, and even if a side plate is provided, the side plate presses each gear because the side plate contacts the partition member. This is not possible, and a gap is generated between the side plate and the axial end of each gear. Therefore, in the internal gear pump, as described in the above publication, the gap between the tooth tip of each gear and the housing or partition member can be reduced or reduced, but the internal gear pump is a pressure loading type like the external gear pump. In practice, it is difficult to achieve this, and the gap between the bottom of the housing and the axial end of each gear cannot be eliminated or reduced, resulting in poor discharge efficiency.
[0008]
In view of the above fact, an object of the present invention is to obtain an internal gear pump with good discharge efficiency.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, the driving gear and the driven gear are rotated by rotating a driving gear having external teeth accommodated inside the housing and a ring-shaped driven gear having internal teeth while being engaged with each other. The fluid accommodated in each tooth groove is conveyed to the rotational direction side of the driving gear and the driven gear, and the downstream side in the rotational direction of the driving gear and the driven gear from the meshing portion of the driving gear and the driven gear. Fluid is sucked in from the outside of the housing via a suction portion provided in the inner bottom portion of the housing, and the discharge portion provided in the inner bottom portion of the housing on the upstream side in the rotational direction from the meshing portion. An internal gear pump that discharges fluid to the outside of the housing, and is provided only on the opposite side of the inner bottom of the housing via the driving gear and the driven gear. Facing the driven gear, piston and capable move toward and away along said axial driving gear and the driven gear of the driving gear and the driven gear, The whole is formed so as to be elastically deformable with an external force equivalent to the discharge pressure applied to the piston via the introduction part, It is provided integrally with the piston on the opposite side of the meshing portion through the center of the driving gear, and abuts against the tooth tip of each of the driving gear and the driving gear, between the driven gear and the driving gear. A partition member that divides the space into the space on the discharge portion side and the space on the suction portion side, and an inner bottom portion of the housing. And including the partition member, An absorbing mechanism that absorbs a dimensional difference of the partition member with respect to the driving gear and the driven gear in a state in which a dimension of the partition member along the axial direction is larger than an axial dimension of the driving gear and the driven gear; An introduction part that guides the discharge pressure in the space on the discharge part side to the opposite side of the drive gear and the driven gear through the piston among the space of the drive gear and the driven gear divided by the partition member; It is characterized by providing.
[0010]
According to the internal gear pump configured as described above, when the driving gear housed in the housing starts to rotate, the driven gear whose inner teeth mesh with the outer teeth of the driving gear rotates in conjunction with the rotation of the driving gear. In the space between the driving gear and the driven gear, the meshing portion of the driving gear and the driven gear, and the space between the driving gear and the driven gear partitioned by the partition member, each tooth groove of the outer teeth of the driving gear and the inner teeth of the driven gear The accommodated fluid is conveyed to the discharge portion side in the space between the driving gear and the driven gear. In this way, the fluid is transported to the discharge unit side, whereby the internal pressure of the space on the discharge unit side, that is, the discharge pressure rises, and the fluid is discharged to the outside of the housing through the discharge unit.
[0011]
In addition, the discharge pressure is Integrated with partition The piston is guided to the back side of the piston (that is, the side opposite to the driving gear via the piston), and the guided discharge pressure presses the piston to move closer to the driving gear. As a result, the piston approaching the driving gear presses the driving gear so that the driving gear is pressed against the inner bottom of the housing, so that the inclination of the axis of the driving gear is limited, and the driving gear and the inner bottom of the housing The gap between them becomes small or disappears.
[0012]
By the way, it is conceivable that friction is generated between the driving gear and the driven gear with the inner bottom portion of the housing due to rotation, and the driving gear and the driven gear are worn by this friction and the axial height is reduced. On the other hand, the axial height of the driving gear and the driven gear does not decrease as the partition member is the driving gear or the driven gear. Therefore, the partition member protrudes along the axial direction of the driving gear and the driven gear due to the wear.
[0013]
Here, when the partition member is in contact with the side of the housing and the piston where the partition member is not formed, when a discharge pressure is applied to the piston, the discharge pressure is applied to the partition member via the piston, and the housing And the side in which the partition member is not formed among pistons is pressed. At this time, the reaction force equivalent to the discharge pressure elastically deforms the partition member until the piston contacts the driving gear and the driven gear. Thereby, the driving gear and the driven gear and the partition member Dimensional differences are absorbed. For this reason, the partition member does not become an obstacle to the movement of the piston, and the piston receiving the discharge pressure reliably presses the driving gear and the driven gear.
[0015]
According to a second aspect of the present invention, in the internal gear pump according to the first aspect, the absorption mechanism is provided in at least one of the piston and the housing and is opened toward the partition member. It is characterized by having.
[0016]
According to the internal gear pump configured as described above, the portion of the partition member that protrudes from the driving gear and the driven gear is housed in the partition member housing groove, so the height of the portion of the partition member that is exposed outside the partition member housing groove is high. The size is the same as the axial height of the driving gear and the driven gear. For this reason, a partition member does not become a bad effect of the movement of a piston.
[0017]
In addition, in this inscribed gear pump, since it is only necessary to form a groove (partition member accommodation groove) that can accommodate the partition member in at least one of the housing and the piston, the structure is simplified.
[0018]
In the present invention, the partition member receiving groove may be formed in at least one of the housing and the piston. This will be described in more detail. For example, the partition member is provided in either the housing or the piston. When the is integrally formed, a partition member receiving groove is formed in either the housing or the piston. Further, when the partition member has a configuration independent of both the housing and the piston, the partition member accommodation groove is formed in either the housing or the piston, or in both the housing and the piston.
[0019]
A third aspect of the present invention is the internal gear pump according to the second aspect, wherein the internal gear pump is provided between a bottom portion of the partition member housing groove and the partition member housed in the partition member housing groove. A sealing member is provided that can be elastically deformed by a pressing force from the member and that adheres to both the bottom of the partition member receiving groove and the partition member by the application of the pressing force.
[0020]
According to the internal gear pump configured as described above, the seal member formed by the elastic member is provided inside the partition member housing groove, and when the partition member enters the partition member housing groove and presses the seal member, The seal member is elastically deformed to be in close contact with both the partition member and the bottom of the partition member accommodation groove, and seal the gap between the partition member and the partition member accommodation portion. For this reason, the discharge pressure does not leak from the discharge portion side to the suction portion side through the gap between the partition member housing portion and the partition member.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 3 is an exploded perspective view of the internal gear pump 10 according to the first embodiment of the present invention, and FIG. 2 is a plan view of the internal gear pump 10 excluding the cover 12. Yes. FIG. 1 is a cross-sectional view taken along line 1-1 of FIG.
[0024]
As shown in FIGS. 1 and 3, the internal gear pump 10 includes a housing 18 including a lid portion 12 and a housing body 14.
[0025]
The housing body 14 has a generally cylindrical shape having an inner bottom portion 16 as a whole, and the lid portion 12 has a substantially disk shape with an outer diameter dimension substantially equal to the outer diameter dimension of the housing body 14. Is fixed to the housing main body 14 by fastening means such as bolts, and closes one end of the housing main body 14 in the axial direction.
[0026]
An inner side of the housing main body 14 is a gear housing portion 20 having a circular shape in plan view, and a cylindrical or ring-shaped driven gear 22 is housed therein. The driven gear 22 is a spur-toothed internal gear having a plurality of internal teeth 24 formed on the inner periphery thereof, and has an outer diameter dimension slightly smaller than the inner diameter dimension of the gear housing section 20. The gear housing 20 is rotatable about the same axis. As shown in FIG. 1, the axial dimension of the driven gear 22 is sufficiently shorter than the axial dimension of the gear housing portion 20.
[0027]
A driving gear 26 is disposed inside the driven gear 22. The driving gear 26 includes a gear body 30 having outer teeth 28 formed on the outer periphery. The gear body 30 is smaller in diameter than the driven gear 22 and has fewer external teeth 28 than the internal teeth 24. Further, the gear body 30 is provided such that its axial height is substantially equal to the axial height of the driven gear 22 and its rotational center is eccentric with respect to the rotational center of the driven gear 22 along the direction orthogonal to the axis. The outer teeth 28 mesh with the inner teeth 24 of the driven gear 22. A gear shaft 32 extends coaxially from one axial end of the gear body 30 and is rotatably supported around its own axis by a bearing portion 34 formed on the inner bottom portion 16. The tip of the gear shaft 32 penetrates the bearing 34 and is mechanically connected to a driving means such as a motor directly or via a mechanical motion transmission means such as a gear. By receiving the driving force, it rotates around its own axis.
[0028]
In the present embodiment, the driving gear 26 and the driven gear 22 are spur gears, but other gears such as a helical gear may be applied.
[0029]
On the other hand, a gear shaft 36 is coaxially extended from the other axial end portion of the gear body 30, and the circular hole 38 formed in the lid portion 12 when the lid portion 12 is fixed to the housing body 14. It penetrates.
[0030]
Further, a suction hole 46 as a suction part and a discharge hole 48 as a discharge part are formed in the inner bottom part 16 of the gear housing part 20. The suction hole 46 has a driving gear 26 partitioned by a meshing portion between the driving gear 26 and the driven gear 22 and a crescent 40 (to be described later) in a state where the driving gear 26 and the driven gear 22 are disposed inside the gear housing portion 20. One end is open corresponding to one of the spaces 42 between the first gear 22 and the driven gear 22, the other end is opened outside the housing body 14, and the internal gear pump 10 is connected to, for example, a vehicle. When applied as a configuration of an electronically controlled hydraulic braking device, it communicates with a brake oil reservoir (such as an oil tank). On the other hand, the discharge hole 48 is open at one end corresponding to the other space 44 of the space between the partitioned driving gear 26 and the driven gear 22 described above, and the other end is outside the housing main body 14. When the internal gear pump 10 is applied as, for example, a configuration of an electronically controlled hydraulic brake device for a vehicle, the internal gear pump 10 communicates with a cylinder or the like provided in a brake caliper or the like.
[0031]
An introduction hole 56 as an introduction part is formed on the side of the discharge hole 48 of the inner bottom part 16. As shown in FIG. 1, the introduction hole 56 bends outwardly in the radial direction of the gear housing portion 20 between the inner bottom portion 16 and the outer bottom portion of the housing body 14, and further, the gear housing portion 20 and the housing body. 14 is opened at the upper end portion of the housing body 14 (that is, the end portion on the side facing the lid portion 12).
[0032]
On the other hand, as shown in FIG. 1, the lid portion 12 is formed with an introduction hole 58 that constitutes the introduction portion together with the introduction hole 56. The introduction hole 58 is open at one end radially outward from the gear housing portion 20 and facing the upper end portion of the housing body 14, and the other end is an inner bottom portion at the radially inner side of the gear housing portion 20 from the one end portion. 16 is opened. As shown in FIG. 1, the other opening end of the introduction hole 56 and one opening end of the introduction hole 58 communicate with each other in a state where the lid portion 12 is attached to the housing body 14. As shown in FIGS. 1 and 3, a groove portion 60 that opens toward the ring-shaped housing body 14 is formed around one open end of the introduction hole 58. An O-ring (O-ring) 62 formed in a ring shape from a rubber material or an elastically deformable synthetic resin material is fitted. In a state where the lid portion 12 is attached to the housing main body 14, the O-ring 62 is elastically deformed so that a gap between the lid portion 12 and the housing main body 14 and a communication portion between the introduction hole 56 and the introduction hole 58 are provided. It is sealed.
[0033]
As shown in FIGS. 1 and 3, a piston 64 is housed inside the gear housing portion 20 and on the side of one end side in the axial direction of the driven gear 22 and the driving gear 26 (that is, the lid portion 12 side). . The piston 64 includes a disk-shaped piston main body 66 whose outer diameter is slightly smaller than the inner diameter of the gear housing portion 20. The piston body 66 is slidable along the axial direction of the gear housing 20 with the housing body 14 as a cylinder. Further, a ring-shaped groove 68 is formed in the outer peripheral portion of the piston main body 66, and a ring-shaped sealing material 70 is accommodated. The sealing material 70 has a sealing property and is formed of a material having a small friction coefficient. The outer peripheral portion thereof is in sliding contact with the inner peripheral portion of the gear housing portion 20 and the inner peripheral portion is a groove portion 68. It is in contact with the inner bottom of the. For this reason, the gap formed between the outer peripheral portion of the piston main body 66 and the inner peripheral portion of the gear housing portion 20 is partitioned by the sealing material 70.
[0034]
A cylindrical portion 72 is formed at the end of the piston body 66 opposite to the driven gear 22 and the driving gear 26. The piston 64 is substantially coaxial with the driven gear 22 while the piston body 66 is substantially coaxial with the driving gear 26. Therefore, the piston 64 is accommodated in the gear accommodating portion 20. In this state, the center of the cylindrical portion 72 is decentered from the center of the piston 64 toward the meshing portion side between the inner teeth 24 of the driven gear 22 and the outer teeth 28 of the driving gear 26, and the distal end side of the cylindrical portion 72 is the lid. It penetrates the circular hole 38 formed in the part 12 and protrudes outside. A ring-shaped groove 74 facing the inner peripheral portion of the circular hole 38 is formed along the radial direction on the outer peripheral portion of the cylindrical portion 72, and a ring-shaped sealing material 76 is provided on the inner side thereof. The gap between the inner peripheral part of the circular hole 38 and the outer peripheral part of the cylindrical part 72 including the groove part 74 is sealed by the sealing material 76.
[0035]
A through hole 78 is coaxially formed in the cylindrical portion 72. The through hole 78 has one open end opened at the tip of the cylindrical portion 72 and the other open end opened on the surface of the piston main body 66 facing the driven gear 22 and the driving gear 26. The gear shaft 36 of the driving gear 26 is inserted into the through hole 78, and the gear shaft 36 penetrates the circular hole 38 together with the cylindrical portion 72.
[0036]
Further, from the end of the piston main body 66 opposite to the cylindrical portion 72, on the side opposite to the meshing portion of the outer teeth 28 and the inner teeth 24 via the rotation center of the gear main body 30 (the driving gear 26), A crescent 40 as a partitioning member is formed so as to protrude from a portion between the inner teeth 24 of the driven gear 22 and the outer teeth 28 of the gear body 30.
[0037]
The dimension (height) of the crescent 40 along the axial direction of the driving gear 26 and the driven gear 22 is such that the dimension from the end of the piston body 66 opposite to the crescent 40 to the tip of the crescent 40 is the gear. It is set to be larger than the depth of the accommodating portion 20. Further, when the crescent 40 is viewed along the axial direction of the driving gear 26 and the driven gear 22, the crescent 40 has a substantially crescent shape, and one end in the width direction on the side facing the external teeth 28 of the driving gear 26. The portion has a concave shape curved with a radius of curvature substantially equal to the radius of curvature of the circle connecting the tips of the external teeth 28. Further, the longitudinal dimension at one end in the width direction of the crescent 40 is longer than the pitch of the external teeth 28 of the gear body 30 (the driving gear 26), and when the driving gear 26 rotates around its own axis. The at least one external tooth 28 always faces one end in the width direction of the crescent 40 along the direction orthogonal to the axis of the driving gear 26.
[0038]
On the other hand, the other end in the width direction on the side facing the inner teeth 24 of the driven gear 22 protrudes toward the driven gear 22 with a radius of curvature substantially equal to the radius of curvature of the circle connecting the tips of the inner teeth 24. It is curved. The longitudinal dimension at the other end in the width direction of the crescent 40 is longer than the pitch of the inner teeth 24 of the driven gear 22, and whenever the driven gear 22 rotates around its own axis, at least one inner dimension is always present. The teeth 24 face the other end in the width direction of the crescent 40 along the direction perpendicular to the axis of the driving gear 26.
[0039]
Here, in a state where the tip of the external tooth 28 abuts on one end of the crescent 40 in the width direction and the tip of the internal tooth 24 abuts on the other end of the crescent 40 in the width direction, these external teeth The space between the driven gear 22 and the driving gear 26 is divided into a space 42 and a space 44 by the contact portions of the teeth 28 and the inner teeth 24 and the crescent 40 and the meshing portions of the inner teeth 24 and the outer teeth 28. These spaces 42 and 44 are partitioned by the driving gear 26, the driven gear 22, and the crescent 40.
[0040]
On the other hand, as shown in FIG. 1, the inner bottom portion 16 of the gear housing portion 20 has a partition member housing groove or an absorption mechanism that opens to face the crescent 40 along the axial direction of the driving gear 26 and the driven gear 22. The crescent accommodating portion 50 is formed. When the crescent housing 50 is viewed along the axial direction of the driving gear 26 and the driven gear 22, the crescent housing 50 has a crescent shape whose outer shape is slightly larger than the crescent 40. When displaced along the axial direction of the driven gear 22, the crescent 40 can be inserted therein.
[0041]
Further, the depth of the crescent accommodating portion 50 is such that the dimension from the bottom of the crescent accommodating portion 50 to the opening end of the gear accommodating portion 20 is from the end opposite to the crescent 40 of the piston body 66 to the tip of the crescent 40. It is set to be larger than the dimension of.
[0042]
Further, as shown in FIG. 1, a seal material 80 as a seal member formed of a rubber material or a flexible and elastically deformable synthetic resin material is provided inside the crescent housing portion 50. As shown in FIG. 1, when the crescent 40 is inserted into the crescent housing 50, the crescent 40 is elastically deformed by the pressing force from the crescent 40 and is in close contact with both the crescent 40 and the inner periphery of the crescent housing 50. To do.
[0043]
Next, the operation and effect of the present embodiment will be described.
[0044]
In the internal gear pump 10, when the driving gear 26 receives the driving force of driving means such as a motor and rotates in the direction of arrow A in FIG. 2, the driven gear whose inner teeth 24 mesh with the outer teeth 28 of the driving gear 26. 22 starts to rotate. In this state, the fluid such as water or oil in the tooth groove 82 between the inner teeth 24 adjacent to each other and the tooth groove 84 between the outer teeth 28 adjacent to each other in the space 42 is transferred to the driven gear 22 and the driving gear. Rotate with 26 and conveyed into space 44. The outer diameter of the driving gear 26 is smaller than the inner diameter of the driven gear 22, and the driving gear 26 is eccentric with respect to the driving gear 22. Therefore, the outer teeth 28 and the inner teeth are interposed via the center of the driving gear 26. The driving gear 26 and the driven gear 22 are farthest away from each other on the side opposite to the meshing portion 24, but a crescent 40 is provided in this portion, and the tooth tips of the inner teeth 24 and the outer teeth 28 are always at the crescent 40. Is basically divided into a space 42 and a space 44 on the side opposite to the meshing portion between the inner teeth 24 and the outer teeth 28 via the center of the driving gear 26, These spaces 42 and 44 are blocked by the crescent 40 and the inner teeth 24 and the outer teeth 28 that contact the crescent 40.
[0045]
In the space 44, the fluid in the tooth groove 82 of the driven gear 22 and the tooth groove 84 of the driving gear 26 is such that the external teeth 28 and the internal teeth 24 mesh with each other, and the external teeth 28 enter the internal groove 82. When the internal teeth 24 enter the inside of the tooth groove 82, the tooth teeth 82 and the tooth grooves 84 are pushed out. As a result, the amount of fluid increases in the space 44 and the internal pressure of the space 44 increases, and this increased internal pressure becomes the discharge pressure, and the fluid in the space 44 is discharged to the outside of the housing 18 through the discharge holes 48.
[0046]
On the other hand, as the driving gear 26 and the driven gear 22 rotate on the space 42 side, the external teeth 28 come out from the tooth grooves 82 and the internal teeth 24 come out from the tooth grooves 84, so that the external teeth in the tooth grooves 82 until then. The negative pressure is generated in the space 42 by the volume occupied by the 28 and the volume occupied by the internal teeth 24 in the tooth groove 84, and the housing 18 enters the space 42 through the suction hole 46. Fluid is sucked in from outside.
[0047]
As described above, by rotating the driving gear 26 and the driven gear 22, fluid is sucked from the suction hole 46 and discharged from the discharge hole 48, so that a function as a so-called pump is achieved.
[0048]
A part of the fluid in the space 44 is guided between the end portion of the piston main body 66 on the cylindrical portion 72 side and the lid portion 12 through the introduction hole 56 and the introduction hole 58 by the discharge pressure. The fluid guided between the piston main body 66 and the lid portion 12 presses the piston main body 66 in the direction of approaching the driving gear 26 by the discharge pressure. Thus, the piston body 66 of the piston 64 pressed by the fluid approaches the driving gear 26 and the driven gear 22 and presses the driving gear 26 and the driven gear 22 to press them against the inner bottom portion 16.
[0049]
Thereby, since the formation of a gap between the driving gear 26 and the driven gear 22 and the inner bottom portion 16 can be prevented or suppressed, the leakage of the fluid from the space 44 to the space 42 through the gap can be prevented or suppressed. , Discharge efficiency can be improved.
[0050]
By the way, as described in the item of the problem to be solved by the invention, the driving gear 26 and the driven gear 22 are rotated to cause friction with the inner bottom portion 16, thereby causing the driving gear 26 and the driven gear 22 to move. It is conceivable that the axial height slightly decreases due to wear. In such a case, since the friction between the crescent 40 and the inner bottom portion 16 does not occur, the height thereof does not decrease. Therefore, when the piston main body 66 comes into contact with the driving gear 26 and the driven gear 22 in a state where the driving gear 26 and the driven gear 22 are worn, the tip portion of the crescent 40 is driven rather than the state before the driving gear 26 and the driven gear 22 are worn. It protrudes from the end of the inner bottom 16 side of the gear 26 and the driven gear 22. However, as described above, the dimension from the bottom of the crescent housing 50 to the opening end of the gear housing 20 is larger than the dimension from the end of the piston body 66 on the cylindrical portion 72 side to the tip of the crescent 40. The protruding portion of the crescent 40 corresponding to the wear of the driving gear 26 and the driven gear 22 is accommodated in the crescent accommodating portion 50 as it is, so that even if the driving gear 26 and the driven gear 22 wear, The main body 66 can press the driving gear 26 and the driven gear 22 by applying a discharge pressure from the fluid. Even if the protruding portion of the crescent 40 corresponding to the wear of the driving gear 26 and the driven gear 22 enters the crescent housing portion 50, the sealing material provided inside the crescent housing portion 50 corresponding to the amount of penetration. Since 80 is elastically deformed, sealing performance can be secured.
[0051]
Thus, in the internal gear pump 10, the discharge pressure can be improved as the discharge efficiency is improved. For this reason, for example, other high-pressure pumps (ie, pumps with relatively high discharge pressure) such as electronically controlled braking devices are used in combination, and the discharge pressure of the internal gear pump is limited. When applied to an apparatus configured to switch to a pump, as described above, the internal gear pump 10 can increase the discharge pressure more than the conventional internal gear pump, so that the discharge pressure of the conventional internal gear pump is temporarily reduced. Even if the high pressure pump is switched to when the discharge pressure reaches the limit, if the malfunction occurs in the high pressure pump and the function is reduced, the driving gear 26 of the internal gear pump 10 is reduced. Since the decrease in the function can be compensated for by further increasing the discharge pressure by increasing the number of rotations, the reliability of the entire apparatus can be improved. Further, when the discharge pressure of the internal gear pump 10 reaches the limit, the discharge pressure region at the start of the operation of the high pressure pump can be set to a higher pressure than before when the pump is switched to the high pressure pump. Therefore, the operation frequency of the high-pressure pump can be reduced. Generally, a high-pressure pump consumes more energy than a low-pressure pump. Therefore, if this inscribed gear pump 10 is applied, the energy consumption can be reduced, and the operating frequency of the high-pressure pump is high. The life of a high-pressure pump can be extended by reducing this.
[0052]
Next, other embodiments of the present invention will be described. In the following description, the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof is omitted.
[0053]
FIG. 4 shows an internal gear pump according to the second embodiment of the present invention. 110 1 is shown by a cross-sectional view similar to FIG. 1 showing the configuration of the internal gear pump 10 according to the first embodiment.
[0058]
As shown in this figure, when the inscribed gear pump 110 is compared with the inscribed gear pump 10 according to the first embodiment, the inscribed gear pump 110 does not include the sealing material 80, instead, An elastic portion 112 formed of a rubber material or a synthetic resin material that can be elastically deformed by an external force equal to or less than the discharge pressure acting on the piston main body 66 is integrated with the tip portion of the crescent 40 (the end portion on the inner bottom portion 16 side). And is in contact with the bottom of the crescent housing groove 50.
[0059]
In the internal gear pump 110 having such a configuration, when a discharge pressure is applied to the piston main body 66 in a state where the axial height is reduced due to wear of the driving gear 26 and the driven gear 22, the piston is connected via the crescent 40. The main body 66 presses the elastic portion 112 to elastically deform the elastic portion 112. Thus, by elastically deforming the elastic portion 112 until the piston main body 66 contacts the driving gear 26 and the driven gear 22, the piston main body 66 can press the driving gear 26 and the driven gear 22, and the same effect as described above. An effect can be obtained.
[0060]
In the present embodiment, the elastic portion 112 is provided at the distal end portion of the crescent 40. However, the elastic portion 112 may be provided at any of the proximal end portion and the height direction intermediate portion of the crescent 40, Furthermore, the crescent 40 itself may be formed of an elastic member similar to the elastic portion 112 (that is, a synthetic resin material that can be elastically deformed by an external force equal to or less than the discharge pressure acting on the piston main body 66) (that is, The crescent 40 itself may be used as the elastic portion 112)
Further, in the present embodiment, the elastic portion 112 is inserted into the crescent accommodating groove 50. However, in the case where the elastic portion 112 is provided, the crescent accommodating groove 50 may not be formed. That is, since the wear of the driving gear 26 and the driven gear 22 due to the rotation is very small, even if the elastic portion 112 is elastically deformed to the extent that the protruding amount of the crescent 40 due to this wear is absorbed, the deformation amount of the elastic portion 112 Therefore, even if the elastic portion 112 is not in the crescent housing groove 50, the rotation of the driving gear 26 and the driven gear 22 is not hindered.
[0062]
【The invention's effect】
As described above, in the present invention according to claim 1, even if the height of the partition member is larger than the height in the axial direction of the driving gear and the driven gear, the absorbing mechanism absorbs the increased amount. The partition member does not hinder the piston from pressing the driving gear and the driven gear. For this reason, the driving gear and the driven gear can be reliably pressed by the piston and pressed against the inner bottom portion of the housing, and the formation of a gap between the driving gear and the driven gear and the inner bottom portion of the housing can be prevented or suppressed. Accordingly, it is possible to prevent the inclination of the axes of the driving gear and the driven gear and the leakage of fluid between the driving gear and the driven gear and the inner bottom portion, thereby improving the discharge efficiency.
[0063]
Further, in the present invention described in claim 2, not only the effect of the present invention described in claim 1 can be obtained, but also the above effect can be obtained at a low cost because the structure is simple.
[0064]
Furthermore, in this invention of Claim 3, not only the effect of this invention of Claim 1 or Claim 2 can be acquired, but between the inside of a partition member accommodation groove | channel and the outer peripheral part of a partition member with a sealing member. By sealing, leakage of the discharge pressure from the discharge part side to the suction part side can be prevented through the gap between the partition member accommodation groove and the partition member.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an internal gear pump according to a first embodiment of the present invention, and is a cross-sectional view taken along line 1-1 of FIG.
FIG. 2 is a plan view of an internal gear pump according to a second embodiment of the present invention with a lid part removed.
FIG. 3 is an exploded perspective view of the internal gear pump according to the first embodiment of the present invention.
FIG. 4 is a cross-sectional view corresponding to FIG. 1 of an internal gear pump according to a second embodiment of the present invention.
[Explanation of symbols]
10 Internal gear pump
16 Inner bottom
18 Housing
22 Driven gear
24 internal teeth
26 Driving gear
28 external teeth
40 Crescent (partition member)
46 Suction hole (suction part)
48 Discharge hole (Discharge part)
50 Crescent housing (partition member housing groove, absorption mechanism)
56 Introduction hole (introduction part)
58 Introduction hole (Introduction part)
66 piston
80 Sealing material
82 tooth gap
84 tooth gap
110 Internal gear pump
112 Elastic part

Claims (3)

互いに噛み合った状態でハウジングの内部に収容された外歯を有する原動ギヤと内歯を有するリング状の従動ギヤとを回転させることで、前記原動ギヤ及び従動ギヤの各歯溝に収容された流体を前記原動ギヤ及び前記従動ギヤの回転方向側へ搬送し、前記原動ギヤと前記従動ギヤの噛合部分よりも前記原動ギヤ及び従動ギヤの回転方向下流側で前記ハウジングの内底部に設けられた吸入部を介して前記ハウジングの外部から流体を吸入すると共に、前記噛合部分よりも前記回転方向上流側で前記ハウジングの内底部に設けられた吐出部を介して前記ハウジングの外部へ流体を吐出する内接ギヤポンプであって、
前記原動ギヤ及び従動ギヤを介して前記ハウジングの内底部とは反対側にのみ設けられ、前記原動ギヤ及び従動ギヤに対向し、前記原動ギヤ及び従動ギヤの軸方向に沿って前記原動ギヤ及び従動ギヤに対して接離移動可能なピストンと、
前記導入部を介して前記ピストンに付与された前記吐出圧力と同等の外力で弾性変形可能に全体が形成されて、前記原動ギヤの中心を介して前記噛合部分とは反対側で前記ピストンに一体的に設けられ、前記原動ギヤ及び従動ギヤの各々の歯先へ当接して前記従動ギヤと前記原動ギヤとの間の空間を前記吐出部側の空間と前記吸入部側の空間とに分割する仕切部材と、
前記ハウジングの内底部に設けられると共に前記仕切部材を含めて構成されて、前記原動ギヤ及び従動ギヤの軸方向寸法よりも前記仕切部材の当該軸方向に沿った方向の寸法が大きい状態で前記原動ギヤ及び従動ギヤに対する前記仕切部材の寸法差を吸収する吸収機構と、
前記仕切部材により分割された前記原動ギヤと前記従動ギヤの空間のうち、前記吐出部側の空間内の吐出圧力を、前記ピストンを介して前記原動ギヤ及び従動ギヤとは反対側へ導く導入部と、
を備えることを特徴とする内接ギヤポンプ。
A fluid accommodated in each tooth groove of the driving gear and the driven gear by rotating a driving gear having external teeth accommodated inside the housing and a ring-shaped driven gear having internal teeth while being engaged with each other. Is sucked in the inner bottom portion of the housing on the downstream side in the rotation direction of the driving gear and the driven gear from the meshing portion of the driving gear and the driven gear. A fluid is sucked in from the outside of the housing through the portion, and the fluid is discharged to the outside of the housing through a discharge portion provided in the inner bottom portion of the housing at the upstream side in the rotational direction from the meshing portion. A contact gear pump,
It is provided only on the opposite side of the inner bottom of the housing via the driving gear and the driven gear, and faces the driving gear and the driven gear, and the driving gear and the driven gear along the axial direction of the driving gear and the driven gear. A piston movable toward and away from the gear;
The whole is formed to be elastically deformable with an external force equivalent to the discharge pressure applied to the piston through the introduction portion, and is integrated with the piston on the opposite side of the meshing portion through the center of the driving gear. The space between the driven gear and the driving gear is divided into a space on the discharge portion side and a space on the suction portion side by contacting the tooth tips of the driving gear and the driven gear. A partition member;
Consists entirely of Rutotomoni the partition member provided on the inner bottom portion of said housing than said axial dimension of said driving gear and the driven gear in a state the size of the axial direction along the direction is large of the partition member An absorption mechanism that absorbs the dimensional difference of the partition member relative to the driving gear and the driven gear;
Of the space between the driving gear and the driven gear divided by the partition member, the introducing portion that guides the discharge pressure in the space on the discharge portion side to the opposite side of the driving gear and the driven gear through the piston. When,
An internal gear pump comprising:
前記吸収機構は、前記ピストン及び前記ハウジングの少なくとも何れか一方に設けられ、前記仕切部材へ向けて開口した仕切部材収容溝を備えることを特徴とする請求項1記載の内接ギヤポンプ。  2. The internal gear pump according to claim 1, wherein the absorption mechanism includes a partition member accommodation groove provided in at least one of the piston and the housing and opening toward the partition member. 前記仕切部材収容溝の底部と前記仕切部材収容溝の内部へ収容された前記仕切部材との間に設けられ、前記仕切部材からの押圧力により弾性変形可能で且つ当該押圧力の付与により前記仕切部材収容溝の底部及び前記仕切部材の双方へ密着するシール部材を備えることを特徴とする請求項2記載の内接ギヤポンプ。  Provided between the bottom of the partition member housing groove and the partition member housed inside the partition member housing groove, and can be elastically deformed by a pressing force from the partition member, and the partition by the application of the pressing force. The internal gear pump according to claim 2, further comprising a seal member that is in close contact with both the bottom of the member housing groove and the partition member.
JP32247698A 1998-11-12 1998-11-12 Inscribed gear pump Expired - Lifetime JP3659030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32247698A JP3659030B2 (en) 1998-11-12 1998-11-12 Inscribed gear pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32247698A JP3659030B2 (en) 1998-11-12 1998-11-12 Inscribed gear pump

Publications (2)

Publication Number Publication Date
JP2000145659A JP2000145659A (en) 2000-05-26
JP3659030B2 true JP3659030B2 (en) 2005-06-15

Family

ID=18144070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32247698A Expired - Lifetime JP3659030B2 (en) 1998-11-12 1998-11-12 Inscribed gear pump

Country Status (1)

Country Link
JP (1) JP3659030B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652708B2 (en) * 2004-03-23 2011-03-16 株式会社デンソー PUMP DEVICE PROVIDED WITH ROTARY PUMP AND METHOD FOR DRIVING ROTARY PUMP IN PUMP DEVICE
JP4831208B2 (en) * 2009-05-22 2011-12-07 株式会社デンソー Brake device for vehicle using rotary pump
DE102011017374A1 (en) * 2011-04-01 2012-10-04 Magna Steyr Fahrzeugtechnik Ag & Co Kg Internal gear pump i.e. gerotor pump, for conveying fluid, has channel extending from pressure area to intermediate area between disk and pressure section and formed at housing for conveying fluid from pressure area to intermediate area
JP5816129B2 (en) * 2012-05-15 2015-11-18 日立オートモティブシステムズメジャメント株式会社 Pump device
DE102012210938A1 (en) * 2012-06-27 2014-05-15 Robert Bosch Gmbh Internal gear pump
DE102013204616B4 (en) * 2013-03-15 2021-12-09 Robert Bosch Gmbh 2 internal gear pump

Also Published As

Publication number Publication date
JP2000145659A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
KR100325593B1 (en) Internal gear unit without peeling member
JP3659030B2 (en) Inscribed gear pump
JP4978041B2 (en) Pump device and vehicle brake device using the same
JPH07109981A (en) Scroll fluid machinery
US6186757B1 (en) Internal-gear machine
KR20170044635A (en) Vacuum Pump with eccentrically driven vane (eccentric pump design)
JP2004301125A (en) Gear pump
JP2006502342A (en) Integrated assembly of speed reduction mechanism and pump
GB2383611A (en) Rotary vane-type machine
JP3514144B2 (en) Internal gear pump
JP3124014B2 (en) Hydraulic motor assembly with locking function
JP3641962B2 (en) Internal gear pump and manufacturing method thereof
JP3491540B2 (en) External gear pump
JP3631887B2 (en) Oil pump structure
JP4061847B2 (en) Gear pump
JP3612393B2 (en) Gear pump
JP4082472B2 (en) Inscribed rotor type fluid device
JP3652133B2 (en) Gear pump
EP0881390B1 (en) Oil pump apparatus
JP2009150253A (en) External gear pump
JP4596841B2 (en) Oil pump
JP2001214870A (en) Gear pump
JPS61223281A (en) Oil pump device
JPH09222157A (en) Differential limiting mechanism and power transmission device provided with differential limiting mechanism
JP4400468B2 (en) Drive joint

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

EXPY Cancellation because of completion of term