JP3658907B2 - Method and apparatus for restarting operation of semiconductor slicing apparatus during wire cutting - Google Patents

Method and apparatus for restarting operation of semiconductor slicing apparatus during wire cutting Download PDF

Info

Publication number
JP3658907B2
JP3658907B2 JP1588697A JP1588697A JP3658907B2 JP 3658907 B2 JP3658907 B2 JP 3658907B2 JP 1588697 A JP1588697 A JP 1588697A JP 1588697 A JP1588697 A JP 1588697A JP 3658907 B2 JP3658907 B2 JP 3658907B2
Authority
JP
Japan
Prior art keywords
wire
roller
cutting
heat exchange
exchange medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1588697A
Other languages
Japanese (ja)
Other versions
JPH10202497A (en
Inventor
公平 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP1588697A priority Critical patent/JP3658907B2/en
Publication of JPH10202497A publication Critical patent/JPH10202497A/en
Application granted granted Critical
Publication of JP3658907B2 publication Critical patent/JP3658907B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はワイヤにスラリーを供給しながら半導体インゴットを押し付けて切断する半導体スライス装置に係り、特に、ワイヤ切断時における半導体スライス装置の運転再開方法及びその装置に関するものである。
【0002】
【従来の技術】
単結晶インゴットのスライス装置としては、内周刃に対して単結晶インゴットのワークbを軸直角方向へ移動させてスライスする周知の内周刃スライサーと、図5に示すように、外周面にワイヤaの嵌込み溝(図3参照)を螺旋状に形成したローラb,c,dを逆三角形の頂点位置にそれぞれ配設して、これらローラb,c,dの各嵌込み溝間にワイヤ列eを形成し、これらワイヤ列eにスラリー供給ノズルfから切削材の砥粒を含むスラリーgを供給しながら、半導体インゴットhを押付けて砥粒のラッピング作用により半導体インゴットをスライス切断するもの(ワイヤソー)が用いられているが、前者の内周刃スライサーは、後者のワイヤソーと比べて材料のロスが少なく、且つ高精度にスライス切断することができる利点を有するものの、構造上、ウェーハを一枚ずつ切出していかなくてはならず、量産性に乏しく大口径の半導体インゴットの切断には不向きであるという弱点があった。そこで近年では、特に大口径の半導体インゴットのスライス装置としてワイヤソー形式が採用されつつある。
【0003】
【発明が解決しようとする課題】
ところで前記ワイヤソーのワイヤには、耐摩耗、耐張力性に富み、しかも高硬度の線材、例えば、特殊ピアノ線等が用いられ、また、ローラには、ワイヤの損傷を防ぐため所定硬度の樹脂ローラが使用されているが、ワイヤの経時的な摩耗や、疲労によって半導体インゴットのスライス切断時にワイヤが切断して前記ローラに絡みついたしまったり、その切断部によってローラ外周の嵌込み溝に損傷を生じてしまい、ウェーハの切断を継続することができない場合がある。
【0004】
このような場合、従来は、ワイヤから半導体インゴットの切込みを離脱させる離脱作業を行った後、ワイヤを手動又引き出したり、又はローラ駆装置をマニュアルで操作してワイヤの切断箇所を一方のローラの適宜外側まで引出して、その切断部同士を連結し、その後、ワイヤ同士の接続部が半導体インゴットの切断に直接関与しない位置に再度引き出したりする引き出し作業を行ったり、使用不能な状態ではワイヤを新規なものに交換するという交換作業がなされていた。そして、このようなワイヤ補修処理の後、ワイヤの各列に対して半導体インゴットの各切込みを対応させて係合させる復帰作業を行い、半導体インゴットの切断を再開することにより、半導体インゴットのスライス切断を完了するという復旧作業が行われていた。
【0005】
しかし、前記ワイヤ復旧開始から半導体インゴットの切断再開までの所要時間が極めて短い場合、例えば、ワイヤの切断がローラと嵌合していないところで起きた場合のように、単にワイヤ同士の接続のみでワイヤ処理を完了できる場合を除き、ワイヤ補修処理に長時間(1〜3時間)を要してしまう場合には、上記ローラの軸受部やワイヤとの摩擦熱によって熱膨張をしていたローラが冷えて、ワイヤを嵌込む上記ワイヤ嵌込み溝のピッチが狭くなってしまうため、この状態で半導体インゴットの切断を再開すると、切出すウェーハ及び半導体インゴットの切断面の双方に修正不能な段差が生じてしまう問題があった。
【0006】
本発明は、前記事情に鑑みてなされたもので、その目的は、ワイヤソー形式の半導体スライス装置において、ワイヤ切断直後のローラの熱収縮を規制してワイヤの接続乃至交換を行えるようにした新規な半導体スライス装置のワイヤの接続乃至交換方法及びその装置を提供するにある。
【0007】
【課題を解決するための手段】
請求項1記載の発明は、互いに並設されたローラの外周面に所定の巻回ピッチでワイヤの嵌込み溝を形成すると共に、これらローラの嵌込み溝間に巻付けられたワイヤを前記ローラの正逆回転により所定範囲内で往復動させ、該ワイヤの往復部分に切削材を含むスラリーを供給しながら半導体インゴットを押付けてスライス切断する半導体スライス装置の運転方法において、
予め前記各ローラの軸受ハウンジングその他のローラ支持部内に、熱膨張抑制用の低温の熱交換媒体と、熱収縮抑制用の高温の熱交換媒体を切替弁により選択的に導入する通路を形成しておき、
通常のインゴット切断時には、前記通路に熱膨張を規制する低温の熱交換媒体を供給しながら前記ローラの正逆回転及びスラリー供給により半導体インゴットスライス切断が行われ、
一方前記ワイヤの切断時には、前記ローラの正逆転及びスラリーの供給を停止すると共に、前記切替弁を切り換えて前記通路に熱収縮を規制する高温の熱交換媒体を導入し、前記ワイヤの一対の切断箇所を前記半導体インゴットの切断に直接使用されない位置まで引出して接続し、
前記接続終了後に前記切替弁を切り換えて前記通路に前記低温の熱交換媒体を導入し、この状態で前記半導体インゴットの切込みを前記ワイヤに押し付け、前記スラリーの供給及び前記ローラの正逆回転を再開することを特徴とする。
【0008】
つまり、ワイヤ切断直後に、ローラの正逆転を停止、スラリーの供給を停止することにより、ワイヤの絡み付きの悪化と、ワイヤの切断部によるローラの損傷を防止し、さらに、熱交換媒体の通路に熱収縮を規制する熱交換媒体、例えば水,油等を供給することにより、軸受ハウジングの熱収縮に起因するローラの熱収縮を抑えてワイヤ嵌込み溝のピッチを一定に維持するのである。
【0009】
そして、ワイヤの一対の切断部を半導体インゴットの切断に直接関与することがない位置まで繰り出し接続し、この状態でこの状態で前記半導体インゴットの切込みを前記ワイヤに押し付けて、前記スラリーの供給及び前記ローラの正逆回転を再開することにより、段差のないスライス切断を可能にする。
【0010】
請求項2記載の発明は、互いに並設されたローラの外周面に所定の巻回ピッチでワイヤの嵌込み溝を形成すると共に、これらローラの嵌込み溝間に巻付けられたワイヤを前記ローラの正逆回転により所定範囲内で往復動させ、該ワイヤの往復部分に切削材を含むスラリーを供給しながら半導体インゴットを押付けてスライス切断する半導体スライス装置において、
前記各ローラの軸受ハウンジングその他のローラ支持部内に、熱膨張抑制用の低温の熱交換媒体と、熱収縮抑制用の高温の熱交換媒体を切替弁により選択的に導入する通路と、
前記ローラの端面を被検出面としてローラの熱変位を検出する測拒センサの出力に基づいて前記ワイヤの切断時を判定する手段とを具え、
通常のインゴット切断時には、前記通路に熱膨張を規制する低温の熱交換媒体を供給しながら前記ローラに正逆の回転駆動力を伝達して正逆回転及びスラリー供給により半導体インゴットスライス切断が行われ、
上記判定手段による判定結果に基づいてワイヤ切断された時点で、前記ローラの正逆転及びスラリーの供給を停止すると共に、前記切替弁を切り換えて前記通路に熱収縮を規制する高温の熱交換媒体を導入し、前記ワイヤの一対の切断箇所を前記半導体インゴットの切断に直接使用されない位置まで引出して接続し、
前記接続終了後に前記切替弁を切り換えて前記通路に前記低温の熱交換媒体を導入し、この状態で前記半導体インゴットの切込みを前記ワイヤに押し付け、前記スラリーの供給及び前記ローラに正逆の回転駆動力を伝達して正逆回転を再開するように構成したコントローラを具えたことを特徴とする。
すなわち、ワイヤ切断時、コントローラが検知手段による熱膨張・熱収縮に応じて切換弁の切換えを行うため、軸受ハウジングの熱収縮に起因するローラの熱収縮は切断直後の状態に維持される。
このため、請求項1に係る発明のように、ワイヤの接続、交換を行えば、切断を再開してもワイヤのピッチずれを抑制でき、切断不良のないウェーハが得られる。
又前記半導体スライス装置は、前記検知手段を、固定系に配設されその検知面から前記ローラの検出面までの距離の変化を前記熱膨張・熱収縮の変化量として検出してこれを前記コントローラに入力する非接触センサから構成するのがよい。
【0011】
このように非接触でローラの熱膨張・熱収縮を検知するようにすると、センシングの信頼性を維持でき、ローラの熱膨張・収縮に対する正しい制御を行うことができる。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施の形態を例示的に詳しく説明する。但し、この実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。
【0013】
図1に本発明の一形態に係る半導体スライス装置の構造図を、図2にローラの熱膨張を制御する制御系統のブロック図を、図3に半導体インゴットの切断招待とスラリー供給装置との関係を示す概略構成を示す。
【0014】
まず、図1、図2を参照してスライス装置の主要構成について詳述する。
固定系たる本体基板1の上部には、ヘッドローラ2とテールローラ3とが軸受部4を介して回転自在にかつ、互いに間隔を隔てて軸支されると共に、これらローラ2,3間ほぼ中央下部には、上記ヘッドローラ2及びテールローラ3と並行に駆動ローラ5が軸支されている。これらローラ2,3,5は、その外周面に、一端から他端へ所定螺旋ピッチで嵌込み溝7が形成されていて、これらローラ2,3,5の嵌込み溝7に1本のワイヤ6が巻き付けられており、このワイヤ6を介して上記ヘッドローラ2及びテールローラ3が同時に同一回転方向に回転するようになっている。
【0015】
前記ワイヤ6は、図2に示すように、研削材を含むスラリーと協同して、これに押し付けられた半導体インゴット12を砥粒のラッピング作用によって切断するものであり、耐摩耗、耐張力性に富み、しかも高硬度の線材、例えば、特殊ピアノ線によって構成されている。そしてこのワイヤ6の両端部は、それぞれヘッドローラ2,テールローラ3の外側へ延へ延びて固定系に支持された定滑車8及び動滑車9により一旦上方へ案内された後、別の定滑車(図示せず)で再び下方に折返され、その先端部と後端部とに取り付けられたウエイト(図示せず)の重さにより、ワイヤ6に不変の張力を作用させるようになっている。
【0016】
前記ワイヤ6の走行は、例えば、駆動ローラ5に正逆の回転駆動力を伝達してこれを所定範囲往復道させる駆動装置11によりなされ、また、前記ワイヤ6に対する半導体インゴット12の押付けは、ワイヤ6の上方に配設された半導体インゴット12の送り出し装置13によりなされるようになっている。
【0017】
さて、本発明の目的は、上記ワイヤ6が切断してから再開時までの間、ローラ2,3,5の熱収縮によるワイヤ6のピッチ狂いをなくし、これに起因したウェーハの段差発生を抑制することにある。
【0018】
そこでこの実施形態にあっては、前記ヘッドローラ2、テールローラ3及び駆動ローラ5の熱膨張・熱収縮に直接関与する部分、すなわち、図1に示すように、これらローラ2,3,5と熱伝達可能に接触する軸受部4内の軸受ハンジング4a内に、熱交換媒体、例えば水,油等の供給通路15a及び排出通路15bを形成し、この供給通路15a及び排出通路15bに対してそれぞれ切換弁(二方切換え弁)16,17を介して低温の熱交換媒体の供給通路18a及び排出通路18bと高温の熱交換媒体通路の供給通路19a及び排出通路19bとを切換え自在に連通して、通常時、すなわち、ワイヤ切断の生じない正常なインゴット切断時には、スラリーノズル20によるスラリーの供給とともに、各ローラ2,3,5の供給通路15a及び排出通路15bに対して低温の熱交換媒体の供給通路18a及び排出通路18bを連通するよう切換弁16,17を切換えてその熱膨張を規制するように構成され、また、異常時、すなわち、ワイヤ6の切断時は、各ローラ2,3,5の熱交換媒体の供給通路15a及び排出通路15bに対する低温の熱交換媒体の供給通路18aの連通を遮断して高温の熱交換媒体通路の供給通路19a及び排出通路19bを連通するよう切換弁16,17を切換えて各ローラ2,3,5熱収縮を規制するように構成される。
【0019】
この場合、上記正常時と異常時の切換えを正しく行い、かつ、切換え時、熱交換媒体の温度、流量を正しく設定するためには、切換弁16,17の切換え時期を正確に判定すると同時に、供給すべき熱交換媒体の温度を正確に検出し、流量を正確に設定する方が好ましい。
【0020】
このためこの発明の実施の形態にあっては、図1に示すように前記各ローラ2,3,5と一体の端面板21の端面21aを非検出面として固定系、例えば、前記基板1にその端面21aとの間の距離を各ローラ2,3,5の熱膨張又は、熱収縮時の変位として捉えることができるよう測距センサ22を取付け、この測距センサ22の出力をコントローラ(CPU等)23に入力するように構成すると共に、図3のブロック図に示すように低温の熱交換媒体の排出通路18bに対して出口温度を検出する温度センサ24を、高温の熱交換媒体の排出通路19bに対して出口温度を検出する温度センサ25を介設している。そして上記コントローラ23は、通常の半導体インゴット12の切断時において検出される端面板21の端面21aまでの距離Sを基準値(例えば0)として記憶するように構成すると共に、演算処理部を、その基準値と、現在、測距センサ22で検出された距離S1との+側の差が所定値を越えたときをワイヤ切断時と判定するように、また、基準値Sと、現在、測距センサ22で検出された距離S1との−側の差が所定値を未満のときを正常なインゴット切断時と判定するように構成され、さらに、上記各温度センサ24,25の検出する出口温度に基づいて各ローラ2,3,5の熱負荷を演算した後、その熱負荷に対する冷却装置26及び加熱装置27の能力を調節すると共に、各能力に応じた流量を演算して低温の熱交換媒体の供給装置28及び高温の熱交換媒体の供給装置29の供給量をそれぞれ調節するようになっている。なお、この場合、上記測距センサ22に光式のものを使用する場合は、端面21aに対してリフレクタ(反射板)を設け、また、制御精度及び省エネルギのためには、熱膨張・熱収縮規制のための熱交換媒体の供給量及び温度の制御は徐々に増加させる方が好ましい。
【0021】
本実施形態に係るワイヤ補修方法は、ワイヤ切断時、上記測距センサ22の検出値Sの変化に基づいて、上記コントローラ23により、前記ローラ駆動装置11を停止して半導体インゴット12の切り込みからワイヤ6を抜取ると共に、前記切換弁16,17の切換えを行って、各ローラ2,3,5の軸受部4の熱交換媒体の通路15に熱収縮を規制すべく高温の熱交換媒体を供給し、各ローラ2,3,5の熱膨張をワイヤ切断時の状態に規制しながら、手動又は前記ローラ駆動装置11の手動制御により、ワイヤ6を巻取ってワイヤ6の一対の切断箇所を、例えば、テールローラ3の外に引出して連結する。そして、その接続部の位置を半導体インゴット12の切断に直接使用されない位置まで引出した後、切断完了前の半導体インゴット12の各切込みを各ワイヤ列10に係合させて押付ける。その後、この状態でローラ駆動装置11によるワイヤ6の走行と、スラリー供給ノズル20によるスラリーの供給を行いつつ、ローラ駆動装置11によるワイヤ6の正逆転走行を行い、半導体インゴット12のスライス切断を完了する。
この場合、切断箇所が半導体インゴット12の切断に直接関与しない場所においてワイヤの損傷が発生したときは、ワイヤ6の切断部の引出しのため、特に、ワイヤ6を巻取る必要はないが、ワイヤ6の絡み付き等によりその状態が悪いときはワイヤ6交換し、また、各ローラ2,3,5の嵌込み溝7の状態が悪く、半導体インゴット12の切断に悪影響を与えてしまう虞の強い場合は、上記低温・高温の熱交換媒体通路18a,18b,19a,19bの全てを一旦遮断して、ローラ交換後、各ローラ2,3,5に対し高温の熱交換媒体の供給を行って切断直後の状態に戻すようにする。
【0022】
なお、上記コントローラで制御する場合は、上記測距センサ22からの信号を処理してワイヤ切断を判定したときに、ローラ駆動装置11を自動停止し、かつ、スラリー供給ノズル20にスラリーを供給するポンプ(図示せず)に対して停止信号を出力すると共に、手動ボタン等により半導体インゴットの切断が再開されたときには、ローラ駆動装置11及び上記スラリー供給ノズルへのスラリー供給ポンプを駆動するように、そして、半導体インゴット12の送り出し装置13を緩速起動して半導体インゴット12をワイヤ6に押圧するように構成すれば、一層、省力化を推進することが可能となる。
【0023】
よって本実施形態に係る方法及びその装置によれば、通常のインゴット切断時には、各ローラ2,3,5の熱交換媒体の供給通路15a,15bに熱膨張を規制する低温の熱交換媒体が供給されてワイヤ6のピッチが一定に維持され、通常運転時の半導体インゴット13のスライスは、さらに正確で品質の高いものとすることができ、また、ワイヤ切断時には、前記測距センサ22による熱収縮に応じて切換弁16,17の切換え、すなわち、熱収縮を規制する高温の熱交換媒体が供給されるので、ワイヤ10のピッチが切断前の状態と殆ど同じ状態に設定され、半導体インゴット12の切断を再開してもワイヤ6のピッチずれに起因したウェーハの段差形成が抑制されたものとなり、通常の半導体インゴット12の切断で得るウェーハと比べ遜色のないウェーハを得ることができる。
なお、この実施形態の説明にあって、軸受ハウジング4aに熱交換媒体の供給通路15a及び排出通路15bを形成したのは、これを熱源として各ローラ2,3,5が熱膨張するためである。従って、熱交換媒体の流量が大きく、充分である場合は、このような構成とせずに各ローラ2,3,5内に上記直接熱交換媒体の供給通路15a及び排出通路15bを形成し、これらに上記切換弁16,17を接続するように構成して構わない 。
【0024】
(実施例)
図4に本発明に係る半導体スライス装置の実施例を示す。
図示されるように前記各ローラ2,3,5と一体の端面板21の端面21aを非検出面として固定系、例えば、前記基板1にその端面21aとの間の距離を各ローラ2,3,5の熱膨張又は、熱収縮時の変位として捉えることができるよう測距センサ22を取付け、この測距センサ22の出力を上記コントローラ23に入力するように構成した。
この場合、前記軸受部4は、上記ローラ2,3,5の芯体30と内軸31とを連結して内軸31に内輪32を嵌合させて軸受33を多列配置すると共に、各軸受33の外輪34を筒状の外軸35の内面に嵌合し、外軸35を軸受ハウジング4aの内面に嵌合した。そして、軸受ハウジング4aの内面を径方向外側に窪ませて螺旋溝36を形成し、螺旋溝36に軸受ハンジング4a内に形成した2つのポート37,38にそれぞれ接続してこれを上記水,油等の熱交換媒体の供給路15a及び排出通路15bとし、この熱交換媒体の供給通路15a及び排出通路15bに対して上記切換弁(二方切換え弁)16,17を介して低温の熱交換媒体の供給通路18a及び排出通路18bと高温の熱交換媒体通路の供給通路19a及び排出通路19bとを切換え自在に連通した。
そして、コントローラ23により、ワイヤ切断時の制御を行い、ワイヤ6の切断後、上記方法により、半導体インゴットの切断を再開し、得られたウェーハの段差を測定したところ、段差は従来の0〜1/4まで減少し、不良率は0%となった。
【0025】
【発明の効果】
以上、説明したことから明かなように本発明によれば、ワイヤ切断後、半導体インゴットの切断を再開してもワイヤのピッチずれに起因したウェーハの段差形成を抑制することができ、通常の半導体インゴットの切断で得るウェーハと比べて遜色のない品質のウェーハを得ることができる、という優れた効果が発揮される。
【図面の簡単な説明】
【図1】本発明に係る半導体スライス装置の一実施形態を示す要部詳細図である。
【図2】本発明に係る半導体スライス装置の一実施形態を示す斜視図である。
【図3】本発明に係る半導体スライス装置の一実施形態を示すブロック図である。
【図4】本発明の一実施例を示す要部詳細断面図である。
【図5】従来のスライス装置の構成を説明するための概略図である。
【符号の説明】
2,3,5 ローラ
4 軸受部
6 ワイヤ
7 嵌込み溝
10 ワイヤ列
15a 熱交換媒体の供給通路
15b 熱交換媒体の排出通路
16,17 切換弁
18a 低温の熱交換媒体の供給通路
18b 低温の熱交換媒体の排出通路
19a 高温の熱交換媒体通路の供給通路
19b 低温の熱交換媒体の排出通路
22 測距センサ
23 コントローラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor slicing apparatus that presses and cuts a semiconductor ingot while supplying slurry to a wire, and more particularly to a method and apparatus for resuming operation of a semiconductor slicing apparatus during wire cutting.
[0002]
[Prior art]
As a slicing device for a single crystal ingot, a known inner peripheral slicer for slicing by moving the workpiece b of the single crystal ingot in a direction perpendicular to the axis with respect to the inner peripheral blade, and a wire on the outer peripheral surface as shown in FIG. Rollers b, c, and d each having a fitting groove a (see FIG. 3) formed in a spiral shape are disposed at the apex positions of the inverted triangles, and wires are inserted between the fitting grooves of these rollers b, c, and d. A row e is formed, and the semiconductor ingot h is pressed and the semiconductor ingot is sliced and cut by the lapping action of the abrasive grains while supplying the slurry g containing abrasive grains of the cutting material from the slurry supply nozzle f to the wire rows e ( Wire saw) is used, but the former inner-blade slicer has the advantage that it has less material loss than the latter wire saw and can be sliced and cut with high accuracy. However, due to the structure, the wafers have to be cut out one by one, and there is a weak point that they are not suitable for cutting large-diameter semiconductor ingots because of their low mass productivity. Therefore, in recent years, a wire saw type is being adopted as a slicing apparatus for a large-diameter semiconductor ingot.
[0003]
[Problems to be solved by the invention]
By the way, the wire of the wire saw is made of a high hardness wire rod, such as a special piano wire, which is rich in wear resistance and tension resistance, and the roller is a resin roller having a predetermined hardness to prevent the wire from being damaged. However, due to wear or fatigue of the wire over time, the wire may be cut and entangled with the roller when slicing the semiconductor ingot, or the cut groove may damage the fitting groove on the outer periphery of the roller. In some cases, the cutting of the wafer cannot be continued.
[0004]
In such a case, conventionally, after performing a detaching operation for detaching the ingot of the semiconductor ingot from the wire, the wire is manually or withdrawn, or the roller driving device is manually operated so that the cutting position of one of the rollers is set. Pull out to the outside as appropriate, connect the cut parts together, and then pull out again to a position where the connection part of the wires does not directly participate in the cutting of the semiconductor ingot. The exchange work of exchanging for something was done. Then, after such a wire repair process, the semiconductor ingot is sliced by resuming the semiconductor ingot by resuming the engagement of each notch of the semiconductor ingot corresponding to each row of wires. The recovery work was completed.
[0005]
However, when the time required from the start of the wire restoration to the resumption of cutting of the semiconductor ingot is extremely short, for example, when the cutting of the wire occurs in a place where it is not fitted to the roller, the wire is simply connected between the wires. When the wire repair process takes a long time (1 to 3 hours) except when the process can be completed, the roller that has been thermally expanded due to frictional heat with the roller bearing and the wire is cooled. As a result, the pitch of the wire fitting groove into which the wire is fitted becomes narrow, so that when the cutting of the semiconductor ingot is resumed in this state, an uncorrectable level difference occurs on both the wafer to be cut and the cut surface of the semiconductor ingot. There was a problem.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel wire slicing type semiconductor slicing device in which the thermal contraction of a roller immediately after cutting a wire is regulated so that the wire can be connected or replaced. It is an object to provide a method and apparatus for connecting or exchanging wires of a semiconductor slicing apparatus.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, a wire fitting groove is formed at a predetermined winding pitch on the outer peripheral surfaces of the rollers arranged in parallel with each other, and the wire wound between the fitting grooves of the rollers is provided on the roller. In the operation method of the semiconductor slicing apparatus, the semiconductor ingot is pressed by reciprocating within a predetermined range by forward / reverse rotation of the wire and pressing the semiconductor ingot while supplying the slurry containing the cutting material to the reciprocating portion of the wire.
A passage for selectively introducing a low-temperature heat exchange medium for suppressing thermal expansion and a high-temperature heat exchange medium for suppressing thermal contraction by a switching valve is formed in advance in the bearing housing and other roller support portions of the respective rollers. Every
During normal ingot cutting, semiconductor ingot slice cutting is performed by forward and reverse rotation of the roller and slurry supply while supplying a low-temperature heat exchange medium that regulates thermal expansion to the passage,
On the other hand, when the wire is cut , the forward / reverse rotation of the roller and the supply of slurry are stopped, and the switching valve is switched to introduce a high-temperature heat exchange medium that regulates thermal shrinkage into the passage, the cut part is connected with a drawer to a position that is not directly used for cutting the semiconductor ingot,
The connection termination after switching the switching valve to introduce a heat exchanging medium of the low temperature to the passage, Installing press cuts the semiconductor ingot to the wire in this state, forward and reverse rotation of the supply and the roller of the slurry It is characterized by restarting.
[0008]
In other words, immediately after the wire is cut, the forward / reverse rotation of the roller is stopped, and the slurry supply is stopped, thereby preventing the entanglement of the wire from getting worse and damaging the roller due to the wire cutting part. By supplying a heat exchange medium that regulates heat shrinkage, such as water or oil, the heat shrinkage of the roller due to the heat shrinkage of the bearing housing is suppressed, and the pitch of the wire fitting grooves is kept constant.
[0009]
Then, the pair of cutting portions of the wire are drawn out and connected to a position where they are not directly involved in the cutting of the semiconductor ingot, and in this state, the cutting of the semiconductor ingot is pressed against the wire to supply the slurry and By resuming forward / reverse rotation of the roller, slice cutting without a step is enabled.
[0010]
According to a second aspect of the present invention, a wire fitting groove is formed at a predetermined winding pitch on the outer peripheral surfaces of rollers arranged in parallel with each other, and the wire wound between the fitting grooves of the rollers is provided on the roller. In a semiconductor slicing apparatus that reciprocates within a predetermined range by forward and reverse rotation of the wire, and presses the semiconductor ingot while supplying slurry containing a cutting material to the reciprocating portion of the wire,
A path for selectively introducing a low-temperature heat exchange medium for suppressing thermal expansion and a high-temperature heat exchange medium for suppressing thermal shrinkage by a switching valve in the bearing housing and other roller support portions of each roller,
Means for determining when the wire is cut based on an output of a refusal sensor that detects thermal displacement of the roller using the end face of the roller as a detected surface;
During normal ingot cutting, a semiconductor ingot slice is cut by forward / reverse rotation and slurry supply by transmitting a forward / reverse rotational driving force to the roller while supplying a low-temperature heat exchange medium that regulates thermal expansion to the passage. ,
At the time when the wire is cut based on the determination result by the determination means, a high-temperature heat exchange medium that stops forward / reverse rotation of the roller and supply of the slurry and switches the switching valve to restrict thermal contraction in the passage is provided. Introducing and connecting a pair of cutting points of the wire to a position not directly used for cutting the semiconductor ingot,
After the connection is completed, the switching valve is switched to introduce the low-temperature heat exchange medium into the passage, and in this state, the notch of the semiconductor ingot is pressed against the wire, and the slurry is supplied and the roller is rotated forward and backward. It is characterized by comprising a controller configured to transmit force and resume forward and reverse rotation.
That is, when the wire is cut, the controller performs switching of the switching valve in accordance with the thermal expansion / contraction of the detection means, so that the thermal contraction of the roller due to the thermal contraction of the bearing housing is maintained in the state immediately after the cutting.
For this reason, if wires are connected and exchanged as in the first aspect of the present invention, the pitch deviation of the wires can be suppressed even when cutting is resumed, and a wafer free from cutting defects can be obtained.
The semiconductor slicing device detects the change in the distance from the detection surface to the detection surface of the roller as a change amount of the thermal expansion / contraction, and detects the change in the controller. It is good to comprise from the non-contact sensor which inputs into.
[0011]
By detecting the thermal expansion / contraction of the roller in a non-contact manner in this way, the reliability of the sensing can be maintained, and correct control for the thermal expansion / contraction of the roller can be performed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely described. It is just an example.
[0013]
FIG. 1 is a structural diagram of a semiconductor slicing device according to an embodiment of the present invention, FIG. 2 is a block diagram of a control system for controlling the thermal expansion of a roller, and FIG. 3 is a relationship between a semiconductor ingot cutting invitation and a slurry supply device. The schematic structure which shows is shown.
[0014]
First, the main configuration of the slicing apparatus will be described in detail with reference to FIGS.
A head roller 2 and a tail roller 3 are rotatably supported via a bearing 4 and spaced apart from each other at an upper portion of the main body substrate 1 which is a fixed system. A driving roller 5 is pivotally supported in the lower part in parallel with the head roller 2 and the tail roller 3. The rollers 2, 3 and 5 are formed with fitting grooves 7 on the outer peripheral surface thereof at a predetermined spiral pitch from one end to the other end, and one wire is inserted into the fitting grooves 7 of these rollers 2, 3 and 5. 6 is wound, and the head roller 2 and the tail roller 3 are simultaneously rotated in the same rotational direction via the wire 6.
[0015]
As shown in FIG. 2, the wire 6 cooperates with a slurry containing an abrasive and cuts the semiconductor ingot 12 pressed against the slurry by a lapping action of abrasive grains. It is composed of a rich and hard wire, for example, a special piano wire. Then, both ends of the wire 6 extend outwardly from the head roller 2 and the tail roller 3 and are once guided upward by a fixed pulley 8 and a moving pulley 9 supported by a fixed system, and then another fixed pulley. A constant tension is applied to the wire 6 by the weight of a weight (not shown) which is folded downward again (not shown) and attached to the front end portion and the rear end portion thereof.
[0016]
The traveling of the wire 6 is performed by, for example, a driving device 11 that transmits forward and reverse rotational driving force to the driving roller 5 to reciprocate the predetermined range, and the semiconductor ingot 12 is pressed against the wire 6. 6 is made by a feeding device 13 of the semiconductor ingot 12 arranged above the semiconductor 6.
[0017]
Now, the object of the present invention is to eliminate the pitch deviation of the wire 6 due to the thermal contraction of the rollers 2, 3 and 5 from the time when the wire 6 is cut to the time of resumption, and to suppress the occurrence of a wafer step due to this. There is to do.
[0018]
Therefore, in this embodiment, the head roller 2, the tail roller 3 and the drive roller 5 are directly related to the thermal expansion / contraction of the roller, that is, as shown in FIG. A supply passage 15a and a discharge passage 15b for a heat exchange medium, such as water and oil, are formed in the bearing housing 4a in the bearing portion 4 that is in contact with the heat transfer portion, and the supply passage 15a and the discharge passage 15b are respectively formed. Via a switching valve (two-way switching valve) 16, 17, the supply passage 18a and the discharge passage 18b of the low-temperature heat exchange medium and the supply passage 19a and the discharge passage 19b of the high-temperature heat exchange medium passage are connected in a switchable manner. During normal operation, that is, during normal ingot cutting without causing wire cutting, the slurry is supplied by the slurry nozzle 20 and the supply passages 15a of the rollers 2, 3 and 5 are supplied. The switching valves 16 and 17 are switched to allow the low-temperature heat exchange medium supply passage 18a and the discharge passage 18b to communicate with the discharge passage 15b, and the thermal expansion thereof is restricted. When the wire 6 is cut, the low temperature heat exchange medium supply passage 18a is disconnected from the heat exchange medium supply passage 15a and the discharge passage 15b of each of the rollers 2, 3 and 5 to supply the high temperature heat exchange medium passage. The switching valves 16 and 17 are switched so as to communicate the passage 19a and the discharge passage 19b, and the heat shrinkage of the rollers 2, 3, and 5 is restricted.
[0019]
In this case, in order to correctly perform the switching between the normal time and the abnormal time and correctly set the temperature and flow rate of the heat exchange medium at the time of switching, the switching timing of the switching valves 16 and 17 is accurately determined, It is preferable to accurately detect the temperature of the heat exchange medium to be supplied and set the flow rate accurately.
[0020]
For this reason, in the embodiment of the present invention, as shown in FIG. 1, the end face 21a of the end face plate 21 integral with the rollers 2, 3, and 5 is used as a non-detection face. A distance measuring sensor 22 is attached so that the distance between the end surface 21a can be grasped as thermal expansion or displacement at the time of thermal contraction of each of the rollers 2, 3 and 5, and the output of the distance measuring sensor 22 is sent to a controller (CPU Etc.) and a temperature sensor 24 for detecting the outlet temperature with respect to the discharge passage 18b for the low temperature heat exchange medium as shown in the block diagram of FIG. A temperature sensor 25 for detecting the outlet temperature is provided for the passage 19b. The controller 23 is configured to store the distance S to the end surface 21a of the end surface plate 21 detected when the normal semiconductor ingot 12 is cut as a reference value (for example, 0), and the arithmetic processing unit When the difference on the + side between the reference value and the distance S1 currently detected by the distance measuring sensor 22 exceeds a predetermined value, it is determined that the wire is disconnected, and the reference value S and the current distance measurement are determined. When the negative difference with the distance S1 detected by the sensor 22 is less than a predetermined value, it is determined that the ingot is cut normally. Further, the outlet temperature detected by each of the temperature sensors 24 and 25 is determined. After calculating the heat load of each of the rollers 2, 3, and 5 based on the above, the capacities of the cooling device 26 and the heating device 27 with respect to the heat loads are adjusted, and the flow rate corresponding to the capacities is calculated to calculate the low-temperature heat exchange medium. Supply It has become the supply amount of the supply device 29 of the location 28 and the high temperature of the heat exchange medium so as to adjust, respectively. In this case, when the optical sensor is used for the distance measuring sensor 22, a reflector (reflecting plate) is provided on the end surface 21a. In order to control accuracy and save energy, thermal expansion / heat It is preferable to gradually increase the supply amount and temperature control of the heat exchange medium for shrinkage regulation.
[0021]
Wire repair method according to the present embodiment, during wire cutting, on the basis of the change in the detection value S of the distance measuring sensor 22, the upper Symbol controller 23, the notch of the semiconductor ingot 12 to stop the roller driving device 11 The wire 6 is pulled out and the switching valves 16 and 17 are switched so that a high temperature heat exchange medium is applied to the heat exchange medium passage 15 of the bearing portion 4 of each of the rollers 2, 3 and 5 to restrict thermal contraction. Supplying and regulating the thermal expansion of each of the rollers 2, 3, 5 to the state at the time of cutting the wire, winding the wire 6 manually or by manual control of the roller driving device 11, so that a pair of cut portions of the wire 6 is formed. For example, it is pulled out of the tail roller 3 and connected. Then, after the position of the connecting portion is pulled out to a position that is not directly used for cutting the semiconductor ingot 12, each cut of the semiconductor ingot 12 before the cutting is completed is engaged with each wire row 10 and pressed. After that, in this state, the roller 6 is moved by the roller drive 11 and the slurry is supplied by the slurry supply nozzle 20, while the wire 6 is moved forward and backward by the roller drive 11 to complete the slice cutting of the semiconductor ingot 12. To do.
In this case, when the wire is damaged at a place where the cutting portion does not directly participate in the cutting of the semiconductor ingot 12, it is not particularly necessary to wind the wire 6 for drawing out the cut portion of the wire 6. When the state is bad due to entanglement or the like, the wire 6 is replaced, and the state of the fitting groove 7 of each of the rollers 2, 3, 5 is bad and the cutting of the semiconductor ingot 12 is likely to be adversely affected. After all of the low-temperature / high-temperature heat exchange medium passages 18a, 18b, 19a, 19b are cut off and the rollers are replaced, a high-temperature heat exchange medium is supplied to each of the rollers 2, 3, and 5 immediately after cutting. Return to the state of.
[0022]
When the control is performed by the controller, the roller driving device 11 is automatically stopped and the slurry is supplied to the slurry supply nozzle 20 when the wire cutting is determined by processing the signal from the distance measuring sensor 22. A stop signal is output to a pump (not shown), and when the cutting of the semiconductor ingot is resumed by a manual button or the like, the roller driving device 11 and the slurry supply pump to the slurry supply nozzle are driven so as to drive. If the semiconductor ingot 12 is started at a low speed to press the semiconductor ingot 12 against the wire 6, further labor saving can be promoted.
[0023]
Therefore, according to the method and the apparatus according to the present embodiment, at the time of normal ingot cutting, the low-temperature heat exchange medium that regulates thermal expansion is supplied to the heat exchange medium supply passages 15a and 15b of the rollers 2, 3, and 5. Thus, the pitch of the wire 6 is kept constant, and the slice of the semiconductor ingot 13 during normal operation can be made more accurate and of high quality, and when the wire is cut, the heat shrinkage by the distance measuring sensor 22 is achieved. Accordingly, the switching valves 16 and 17 are switched, that is, a high-temperature heat exchange medium that restricts heat shrinkage is supplied, so that the pitch of the wire 10 is set to be almost the same as that before cutting, and the semiconductor ingot 12 Even if the cutting is resumed, the formation of the step difference of the wafer due to the pitch deviation of the wire 6 is suppressed, which is compared with the wafer obtained by cutting the normal semiconductor ingot 12. It is possible to obtain a comparable-free wafer.
In the description of this embodiment, the reason why the heat exchange medium supply passage 15a and the discharge passage 15b are formed in the bearing housing 4a is that the rollers 2, 3, and 5 are thermally expanded using these as heat sources. . Accordingly, when the flow rate of the heat exchange medium is large and sufficient, the direct heat exchange medium supply passage 15a and the discharge passage 15b are formed in the rollers 2, 3, and 5 without using such a configuration. The switching valves 16 and 17 may be connected to each other.
[0024]
(Example)
FIG. 4 shows an embodiment of a semiconductor slicing device according to the present invention.
As shown in the drawing, the end face 21a of the end face plate 21 integral with each of the rollers 2, 3 and 5 is used as a non-detection face, and the distance between the end face 21a of the substrate 1 is set to the rollers 2, 3 and so on. 5, a distance measuring sensor 22 is attached so that it can be understood as a displacement at the time of thermal expansion or thermal contraction, and an output of the distance measuring sensor 22 is input to the controller 23.
In this case, the bearing portion 4 connects the core body 30 and the inner shaft 31 of the rollers 2, 3 and 5 and fits the inner ring 32 to the inner shaft 31 to arrange the bearings 33 in multiple rows. The outer ring 34 of the bearing 33 was fitted to the inner surface of the cylindrical outer shaft 35, and the outer shaft 35 was fitted to the inner surface of the bearing housing 4a. Then, the inner surface of the bearing housing 4a is recessed radially outward to form a spiral groove 36, which is connected to the two ports 37 and 38 formed in the bearing housing 4a in the spiral groove 36, respectively. A heat exchange medium supply passage 15a and a discharge passage 15b, and the low-temperature heat exchange medium via the switching valves (two-way switching valves) 16 and 17 with respect to the heat exchange medium supply passage 15a and the discharge passage 15b. The supply passage 18a and the discharge passage 18b are connected to the supply passage 19a and the discharge passage 19b of the high-temperature heat exchange medium passage in a switchable manner.
Then, the controller 23 performs control at the time of wire cutting. After the wire 6 is cut, the cutting of the semiconductor ingot is resumed by the above-described method, and the level difference of the obtained wafer is measured. / 4 and the defect rate became 0%.
[0025]
【The invention's effect】
As described above, according to the present invention, it is possible to suppress the formation of a wafer step due to the pitch deviation of the wire even after resuming the cutting of the semiconductor ingot after the wire is cut. An excellent effect is obtained that a wafer having a quality comparable to that of a wafer obtained by cutting an ingot can be obtained.
[Brief description of the drawings]
FIG. 1 is a detailed view showing a main part of an embodiment of a semiconductor slicing device according to the present invention.
FIG. 2 is a perspective view showing an embodiment of a semiconductor slicing device according to the present invention.
FIG. 3 is a block diagram showing an embodiment of a semiconductor slicing device according to the present invention.
FIG. 4 is a detailed cross-sectional view of a main part showing an embodiment of the present invention.
FIG. 5 is a schematic diagram for explaining the configuration of a conventional slicing apparatus.
[Explanation of symbols]
2, 3, 5 Roller 4 Bearing portion 6 Wire 7 Insertion groove 10 Wire row 15a Heat exchange medium supply passage 15b Heat exchange medium discharge passages 16, 17 Switching valve 18a Low temperature heat exchange medium supply passage 18b Low temperature heat Exchange medium discharge passage 19a High-temperature heat exchange medium passage supply passage 19b Low-temperature heat exchange medium discharge passage 22 Distance sensor 23 Controller

Claims (2)

互いに並設されたローラの外周面に所定の巻回ピッチでワイヤの嵌込み溝を形成すると共に、これらローラの嵌込み溝間に巻付けられたワイヤを前記ローラの正逆回転により所定範囲内で往復動させ、該ワイヤの往復部分に切削材を含むスラリーを供給しながら半導体インゴットを押付けてスライス切断する半導体スライス装置の運転方法において、
予め前記各ローラの軸受ハウンジングその他のローラ支持部内に、熱膨張抑制用の低温の熱交換媒体と、熱収縮抑制用の高温の熱交換媒体を切替弁により選択的に導入する通路を形成しておき、
通常のインゴット切断時には、前記通路に熱膨張を規制する低温の熱交換媒体を供給しながら前記ローラの正逆回転及びスラリー供給により半導体インゴットスライス切断が行われ、
一方前記ワイヤの切断時には、前記ローラの正逆転及びスラリーの供給を停止すると共に、前記切替弁を切り換えて前記通路に熱収縮を規制する高温の熱交換媒体を導入し、前記ワイヤの一対の切断箇所を前記半導体インゴットの切断に直接使用されない位置まで引出して接続し、
前記接続終了後に前記切替弁を切り換えて前記通路に前記低温の熱交換媒体を導入し、この状態で前記半導体インゴットの切込みを前記ワイヤに押し付け、前記スラリーの供給及び前記ローラの正逆回転を再開することを特徴とする半導体スライス装置のワイヤ切断時の運転再開方法。
Wire fitting grooves are formed at a predetermined winding pitch on the outer peripheral surfaces of the rollers arranged in parallel to each other, and the wire wound between the fitting grooves of the rollers is moved within a predetermined range by forward and reverse rotation of the rollers. In the operation method of the semiconductor slicing apparatus, the semiconductor ingot is pressed and sliced while supplying the slurry containing the cutting material to the reciprocating portion of the wire.
A passage for selectively introducing a low-temperature heat exchange medium for suppressing thermal expansion and a high-temperature heat exchange medium for suppressing thermal contraction by a switching valve is formed in advance in the bearing housing and other roller support portions of the respective rollers. Every
During normal ingot cutting, semiconductor ingot slice cutting is performed by forward and reverse rotation of the roller and slurry supply while supplying a low-temperature heat exchange medium that regulates thermal expansion to the passage,
On the other hand, when the wire is cut, the forward / reverse rotation of the roller and the supply of slurry are stopped, and the switching valve is switched to introduce a high-temperature heat exchange medium that regulates heat shrinkage into the passage, thereby cutting the pair of wires Pull out and connect the location to a position that is not directly used for cutting the semiconductor ingot,
After the connection is completed, the switching valve is switched to introduce the low-temperature heat exchange medium into the passage, and in this state, the notch of the semiconductor ingot is pressed against the wire, and the supply of the slurry and the forward / reverse rotation of the roller are resumed. A method for restarting operation of a semiconductor slicing apparatus during wire cutting.
互いに並設されたローラの外周面に所定の巻回ピッチでワイヤの嵌込み溝を形成すると共に、これらローラの嵌込み溝間に巻付けられたワイヤを前記ローラの正逆回転により所定範囲内で往復動させ、該ワイヤの往復部分に切削材を含むスラリーを供給しながら半導体インゴットを押付けてスライス切断する半導体スライス装置において、
前記各ローラの軸受ハウンジングその他のローラ支持部内に、熱膨張抑制用の低温の熱交換媒体と、熱収縮抑制用の高温の熱交換媒体を切替弁により選択的に導入する通路と、
前記ローラの端面を被検出面としてローラの熱変位を検出する測拒センサの出力に基づいて前記ワイヤの切断時を判定する手段とを具え、
通常のインゴット切断時には、前記通路に熱膨張を規制する低温の熱交換媒体を供給しながら前記ローラに正逆の回転駆動力を伝達して正逆回転及びスラリー供給により半導体インゴットスライス切断が行われ、
上記判定手段による判定結果に基づいてワイヤ切断された時点で、前記ローラの正逆転及びスラリーの供給を停止すると共に、前記切替弁を切り換えて前記通路に熱収縮を規制する高温の熱交換媒体を導入し、前記ワイヤの一対の切断箇所を前記半導体インゴットの切断に直接使用されない位置まで引出して接続し、
前記接続終了後に前記切替弁を切り換えて前記通路に前記低温の熱交換媒体を導入し、この状態で前記半導体インゴットの切込みを前記ワイヤに押し付け、前記スラリーの供給及び前記ローラに正逆の回転駆動力を伝達して正逆回転を再開するように構成したコントローラを具えたことを特徴とする半導体スライス装置。
Wire fitting grooves are formed at a predetermined winding pitch on the outer peripheral surfaces of the rollers arranged in parallel to each other, and the wire wound between the fitting grooves of the rollers is moved within a predetermined range by forward and reverse rotation of the rollers. In a semiconductor slicing device that cuts a slice by pressing a semiconductor ingot while supplying a slurry containing a cutting material to a reciprocating portion of the wire,
A path for selectively introducing a low-temperature heat exchange medium for suppressing thermal expansion and a high-temperature heat exchange medium for suppressing thermal shrinkage by a switching valve in the bearing housing and other roller support portions of each roller,
Means for determining when the wire is cut based on an output of a refusal sensor that detects thermal displacement of the roller using the end surface of the roller as a detected surface;
During normal ingot cutting, the semiconductor ingot slice is cut by forward / reverse rotation and slurry supply by transmitting a forward / reverse rotational driving force to the roller while supplying a low-temperature heat exchange medium that regulates thermal expansion to the passage. ,
At the time when the wire is cut based on the determination result by the determination means, a high-temperature heat exchange medium that stops forward / reverse rotation of the roller and supply of the slurry and switches the switching valve to restrict thermal contraction in the passage is provided. Introducing and connecting a pair of cutting points of the wire to a position not directly used for cutting the semiconductor ingot,
After the connection is completed, the switching valve is switched to introduce the low-temperature heat exchange medium into the passage, and in this state, the notch of the semiconductor ingot is pressed against the wire, and the slurry is supplied and the rollers are rotated forward and backward. A semiconductor slicing device comprising a controller configured to transmit force and resume forward and reverse rotation.
JP1588697A 1997-01-13 1997-01-13 Method and apparatus for restarting operation of semiconductor slicing apparatus during wire cutting Expired - Lifetime JP3658907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1588697A JP3658907B2 (en) 1997-01-13 1997-01-13 Method and apparatus for restarting operation of semiconductor slicing apparatus during wire cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1588697A JP3658907B2 (en) 1997-01-13 1997-01-13 Method and apparatus for restarting operation of semiconductor slicing apparatus during wire cutting

Publications (2)

Publication Number Publication Date
JPH10202497A JPH10202497A (en) 1998-08-04
JP3658907B2 true JP3658907B2 (en) 2005-06-15

Family

ID=11901282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1588697A Expired - Lifetime JP3658907B2 (en) 1997-01-13 1997-01-13 Method and apparatus for restarting operation of semiconductor slicing apparatus during wire cutting

Country Status (1)

Country Link
JP (1) JP3658907B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029955A (en) 2008-07-25 2010-02-12 Shin Etsu Handotai Co Ltd Method for resuming operation of wire saw and wire saw
CN102059751B (en) * 2011-01-17 2011-11-30 西安华晶电子技术股份有限公司 System and method for recycling and supplying mortar to multi-wire cutting machines
JP5494558B2 (en) * 2011-04-20 2014-05-14 信越半導体株式会社 Method for resuming operation of wire saw and wire saw
EP2826582B1 (en) * 2013-07-17 2016-04-06 Applied Materials Switzerland Sàrl Wire saw device and method of manufacturing thereof
KR101581373B1 (en) * 2014-07-21 2015-12-30 주식회사 엘지실트론 Wire guide system for ingot slicing and wire saw apparatus including the same

Also Published As

Publication number Publication date
JPH10202497A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
JP2885270B2 (en) Wire saw device and work cutting method
US20110088678A1 (en) Method for resuming operation of wire saw and wire saw
US6773333B2 (en) Method for cutting slices from a workpiece
JP4991229B2 (en) Cutting method and epitaxial wafer manufacturing method
US9079332B2 (en) Method for resuming operation of wire saw and wire saw
JP3658907B2 (en) Method and apparatus for restarting operation of semiconductor slicing apparatus during wire cutting
US6402589B1 (en) Wafer grinder and method of detecting grinding amount
KR20180125039A (en) Systems and methods for controlling surface profiles of wafers sliced in a wire saw
JPH10249700A (en) Cutting method of ingot by wire saw and device thereof
US6363968B1 (en) System for conserving a resource by flow interruption
JP4308463B2 (en) Wire saw
KR101230268B1 (en) Tension control system for wire saw machine
CN107039314B (en) Reflective solder strip tin coating and marking production system
JPH1170493A (en) Wire saw and using method thereof
JP3625685B2 (en) Lapping device and lapping method
JP2571488B2 (en) Method and apparatus for cutting workpiece by wire saw
US20030170948A1 (en) Method and apparatus for slicing semiconductor wafers
JP2005118969A (en) Method for stably polishing silicon wafer having high flatness
JP2000094296A (en) Heat exchanging device for wire saw
JP3075393B2 (en) Monitoring method of heat exchanger of wire saw
JPH09225932A (en) Control of temperatures of working liquid for wire saw and device therefor
JP2002283231A (en) Automatic polishing pressure control method in polishing device
JPH08300347A (en) Method and apparatus for slicing semiconductor single crystal rod
JPH06328106A (en) Method for controlling flow rate of coolant in cold rolling and device therefor
JPH10138230A (en) Wire saw

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term