JP3658488B2 - Method for producing eutectic graphite cast iron - Google Patents

Method for producing eutectic graphite cast iron Download PDF

Info

Publication number
JP3658488B2
JP3658488B2 JP14443297A JP14443297A JP3658488B2 JP 3658488 B2 JP3658488 B2 JP 3658488B2 JP 14443297 A JP14443297 A JP 14443297A JP 14443297 A JP14443297 A JP 14443297A JP 3658488 B2 JP3658488 B2 JP 3658488B2
Authority
JP
Japan
Prior art keywords
cast iron
round bar
graphite
eutectic graphite
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14443297A
Other languages
Japanese (ja)
Other versions
JPH10298626A (en
Inventor
優伸 松廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP14443297A priority Critical patent/JP3658488B2/en
Publication of JPH10298626A publication Critical patent/JPH10298626A/en
Application granted granted Critical
Publication of JP3658488B2 publication Critical patent/JP3658488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、共晶黒鉛鋳鉄の製造方法に関するものであり、詳しくは砂型鋳造法による共晶黒鉛鋳鉄の製造方法に関するものである。
【0002】
【従来の技術】
従来の共晶黒鉛鋳鉄の製造方法として、普通鋳鉄の成分組成を有する鋳鉄溶湯を強脱硫、強脱酸して硫砿量を0.005〜0.001%にした後、砂型に注湯する方法がある(特公平5−14005号公報記載)。
【0003】
【発明が解決しようとする課題】
一般に普通鋳鉄の硫砿量は0.03〜0.1%であり、これを砂型に注湯すると、黒鉛が片状に晶出して片状黒鉛鋳鉄になるため、鋳鉄溶湯を強脱硫、強脱酸して硫砿量を0.005〜0.001%にした後、砂型に注湯しているが、均一な共晶黒鉛鋳鉄が得られないという問題点がある。
そこで、本発明は上記問題点を解消するためになされたものであり、均一な組織の共晶黒鉛鋳鉄を製造する方法を提供することを課題とする。
【0004】
【課題を解決するための手段】
本発明者は、上記課題を解決するために鋭意検討した結果、鋳鉄溶湯中のS量を調整し、かつ鋳鉄溶湯中にTiを含有させ、さらに、Fe−Si(50%)合金を接種することにより均一な組織の共晶黒鉛鋳鉄が得られることを見出し、本発明を完成するに至った。
【0005】
本発明の共晶黒鉛鋳鉄の製造方法は、重量%でC:2.6〜3.6%、Si:1.8〜2.4%、Mn:1.0%以下、P:0.2%以下、S:0.006〜0.02%、Ti:0.15〜0.30%、残部がFe及び不可避不純物からなる鋳鉄溶湯中に、重量%でSi:50%残部FeからなるFe−Si(50%)合金を0.2〜0.6%接種した後、砂型に注湯することを特徴とする。
【0006】
本発明の共晶黒鉛鋳鉄の製造方法によれば、鋳物中心部の破面の網目組織が、表面近傍部の破面の網目組織とほぼ同一に形成される。
【0007】
C量が2.6%より小さいと鋳物のチル化傾向が大きくなるため、下限を2.6%とし、C量が3.6%より大きいと凝固時に粗大な黒鉛が晶出して均一な組織の共晶黒鉛鋳鉄を得ることができないため、上限を3.6%とした。
Si量が1.8%より小さいとチル化傾向が大きくなるため、下限を1.8%とし、Si量が2.4%より大きいと凝固時に粗大な黒鉛が晶出して均一な組織の共晶黒鉛鋳鉄を得ることができないため、上限を2.4%とした。
Mn量が1.0%より大きいとチル化傾向が大きくなるため、Mn量の上限を1.0%とした。
P量が0.2%より大きいとステダイトを生成して被削性が低下するため、P量の上限を0.2%とした。
S量が0.006%より小さいと、チル化傾向が大きくなり共晶黒鉛鋳鉄の組織が不均一になるため、S量の下限を0.006%とし、S量が0.02%より大きいと共晶黒鉛が晶出しにいためS量の上限を0.02%とした。
Ti量が0.15%より小さいと共晶黒鉛が晶出しにくいため下限を0.15%とし、Ti量が0.30%より大きいと切削性及び湯流れ性が低下するため、上限を0.30%とした。
Fe−Si(50%)合金の接種量は、0.2重量%より少ないと共晶黒鉛鋳鉄の組織が不均一になるため下限を0.2重量%とし、0.6重量%より多くすると片状黒鉛が晶出するため上限を0.6重量%とした。
【0008】
【発明の実施の形態】
鋳鉄溶湯の溶製は、1450℃以上で20分以上行い、該鋳鉄溶湯の砂型への注湯は、1350−1450℃で行う。
砂型の種類は特に限定されず、CO鋳型、生砂型、ダイカル鋳型、フラン鋳型等を用いることができる。
【0009】
【実施例】
以下、本発明の実施例を説明する。
(実施例1)
重量%でC:3.17%、Si:2.05%、Mn:0.59%、P:0.03%、S:0.013%、Ti:0.17%残部がFeおよび不可避的不純物よりなる鋳鉄溶湯を低周波炉で溶製し、1480℃で30分保持した後、取鍋にて1460℃でFe−Si(50%)合金を0.4重量%接種し、次いで1420℃の注湯温度で生砂鋳型に注湯し、15φ丸捧と30φ丸棒とを鋳込んだ。
【0010】
15φ丸棒及び30φ丸棒における黒鉛形状、該両丸棒の表面近傍部の破面での網目数(個/cm)及び丸棒中心部の破面での網目数(個/cm)を表1に示す。表1中の黒鉛形状の欄のB,D,Eは、「黒鉛の形、分布の分類(AFS−ASTM)」におけるB形,D形,E形をそれぞれ示す。
【0011】
【表1】

Figure 0003658488
【0012】
表1から明らかなように、15φ丸棒及び30φ丸棒にはD形黒鉛(共晶黒鉛)が晶出した。図1は、15φ丸棒の表面近傍部の破面の光学顕微鏡写真(3%ナイタール腐食、100倍)であり、微細なD型黒鉛(共晶黒鉛)を有する共晶黒鉛鋳鉄を示す。
15φ丸棒の表面近傍部の網目数は212個/cmであり、丸棒中心部の網目数は188個/cmであり、30φ丸棒の表面近傍部の網目数は208個/cmであり、丸棒中心部の網目数は168個/cmであった。
【0013】
(比較例1)
実施例に対してS量が多い鋳鉄溶湯から鋳込んだ場合を比較するために、重量%でC:3.14%、Si:2.08%、Mn:0.59%、P:0.03%、S:0.048%、Ti:0.18%残部がFeおよび不可避的不純物よりなる溶湯を低周波炉で溶製し、1450℃以上で20分以上保持した後、Fe−Si(50%)合金を該溶湯に対して0.4重量%接種し、次いで1420℃の注湯温度で生砂鋳型に注湯して15φ丸棒及び30φ丸棒を鋳込んだ。
(比較例2)
実施例に対してTi量が少ない鋳鉄溶湯から鋳込んだ場合を比較するために、重量%でC:3.24%、Si:2.12%、Mn:0.58%、P:0.04%、S:0.012%、Ti:0.13%残部がFeおよび不可避的不純物よりなる溶湯を低周波炉で溶製し、1450℃以上で20分以上保持した後、Fe−Si(50%)合金を該溶湯に対して0.4重量%接種し、次いで1420℃の注湯温度で生砂鋳型に注湯して15φ丸棒及び30φ丸棒を鋳込んだ。
(比較例3)
実施例に対して接種処理を施さない場合を比較するために、重量%でC:3.19%、Si:2.04%、Mn:0.59%、P:0.03%、S:0.012%、Ti:0.18%残部がFeおよび不可避的不純物よりなる鋳鉄溶湯を低周波炉で溶製し、1480℃で30分保持した後、接種処理を施すことなく、1420℃の注湯温度で生砂鋳型に注湯し、次いで15φ丸棒と30φ丸棒とを鋳込んだ。
【0014】
比較例1〜3の鋳造条件及び各比較例で鋳造した15φ丸棒及び30φ丸棒の黒鉛形状、比較例3で鋳造した丸棒の表面近傍部の破面での網目数(個/cm)及び丸棒中心部の破面での網目数(個/cm)を表1に併記する。
表1より、比較例1及び比較例2は、15φ丸棒ではいずれもD形黒鉛(共晶黒鉛)が晶出したが、30φ丸棒ではいずれもD形黒鉛(共晶黒鉛)の他、B形黒鉛及びE形黒鉛が晶出した。
比較例3で鋳造した15φ丸棒及び30φ丸棒には共晶黒鉛(D型黒鉛)が晶出したが、15φ丸棒の表面近傍部の網目数は204個/cmであり、丸棒中心部の網目数は156個/cmであり、30φ丸棒の表面近傍部の網目数は196個/cmであり、丸棒中心部の網目数は92個/cmであった。比較例1〜3は、実施例1に比べ、丸棒表面近傍部の網目数と丸棒中心部の網目数との差が大きく、組織が不均一であった。
【0015】
【発明の効果】
本発明の共晶黒鉛鋳鉄の製造方法によれば、重量%でC:2.6〜3.6%、Si:1.8〜2.4%、Mn:1.0%以下、P:0.2%以下、S:0.006〜0.02%、Ti:0.15〜0.30%、残部がFe及び不可避不純物からなる鋳鉄溶湯中に、重量%でSi:50%残部FeからなるFe−Si(50%)合金を0.2〜0.6重量%接種した後、砂型に注湯するので、鋳物の表面近傍部の網目数と鋳物中心部の網目数との差が小さくなり、均一な組織の共晶黒鉛鋳鉄が得られ、鋳物品質が安定化する。
【図面の簡単な説明】
【図1】本発明の製造方法によって製造した共晶黒鉛鋳鉄の金属組織を示す顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing eutectic graphite cast iron, and more particularly to a method for producing eutectic graphite cast iron by a sand mold casting method.
[0002]
[Prior art]
As a conventional method for producing eutectic graphite cast iron, a cast iron melt having the composition of ordinary cast iron is strongly desulfurized and strongly deoxidized to a sulfur content of 0.005 to 0.001%, and then poured into a sand mold. There is a method (described in Japanese Patent Publication No. 5-14005).
[0003]
[Problems to be solved by the invention]
Generally, the amount of molten iron in ordinary cast iron is 0.03 to 0.1%. When this is poured into a sand mold, the graphite crystallizes into flakes and turns into flake graphite cast iron. After deoxidizing to a sulfur content of 0.005 to 0.001%, pouring into a sand mold, there is a problem that uniform eutectic graphite cast iron cannot be obtained.
Therefore, the present invention has been made to solve the above problems, and an object thereof is to provide a method for producing eutectic graphite cast iron having a uniform structure.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor adjusts the amount of S in the cast iron melt, contains Ti in the cast iron melt, and further inoculates an Fe—Si (50%) alloy. As a result, it has been found that eutectic graphite cast iron having a uniform structure can be obtained, and the present invention has been completed.
[0005]
The method for producing eutectic graphite cast iron of the present invention is as follows: C: 2.6-3.6% by weight, Si: 1.8-2.4%, Mn: 1.0% or less, P: 0.2 %: S: 0.006 to 0.02%, Ti: 0.15 to 0.30%, Fe is composed of Fe: Fe: 50% by weight in a cast iron melt composed of Fe and inevitable impurities. It is characterized by pouring into a sand mold after inoculating 0.2-0.6% of -Si (50%) alloy.
[0006]
According to the method for producing eutectic graphite cast iron of the present invention, the network structure of the fracture surface at the center of the casting is formed substantially the same as the network structure of the fracture surface near the surface.
[0007]
If the amount of C is less than 2.6%, the chilling tendency of the casting increases. Therefore, the lower limit is set to 2.6%, and if the amount of C is more than 3.6%, coarse graphite is crystallized during solidification and has a uniform structure. The eutectic graphite cast iron cannot be obtained, so the upper limit was made 3.6%.
When the Si content is less than 1.8%, the tendency to chill increases. Therefore, the lower limit is set to 1.8%, and when the Si content is greater than 2.4%, coarse graphite crystallizes during solidification and the uniform structure is shared. Since no crystal graphite cast iron can be obtained, the upper limit was made 2.4%.
If the amount of Mn is greater than 1.0%, the tendency to chill increases, so the upper limit of the amount of Mn is set to 1.0%.
If the amount of P is more than 0.2%, steadite is generated and machinability is lowered, so the upper limit of the amount of P is set to 0.2%.
If the amount of S is less than 0.006%, the tendency to chill is increased and the structure of eutectic graphite cast iron becomes non-uniform, so the lower limit of the amount of S is set to 0.006% and the amount of S is greater than 0.02%. The upper limit of the amount of S was set to 0.02% because eutectic graphite was unable to crystallize.
If the Ti content is less than 0.15%, eutectic graphite is difficult to crystallize, so the lower limit is set to 0.15%. If the Ti content is greater than 0.30%, the machinability and the molten metal flowability decrease, so the upper limit is set to 0. 30%.
If the Fe-Si (50%) alloy inoculation amount is less than 0.2% by weight, the structure of eutectic graphite cast iron becomes non-uniform, so the lower limit is 0.2% by weight, and if it is more than 0.6% by weight Since the flake graphite crystallizes, the upper limit was set to 0.6% by weight.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Melting of the cast iron melt is performed at 1450 ° C. or more for 20 minutes or more, and pouring of the cast iron melt into the sand mold is performed at 1350 to 1450 ° C.
The type of the sand mold is not particularly limited, and a CO 2 mold, a fresh sand mold, a dical mold, a furan mold, and the like can be used.
[0009]
【Example】
Examples of the present invention will be described below.
(Example 1)
C: 3.17% by weight, Si: 2.05%, Mn: 0.59%, P: 0.03%, S: 0.013%, Ti: 0.17% The balance is Fe and inevitable A molten cast iron made of impurities is melted in a low-frequency furnace and held at 1480 ° C. for 30 minutes, then in a ladle, 0.4% by weight of Fe—Si (50%) alloy is inoculated at 1460 ° C., and then 1420 ° C. Was poured into a green sand mold at a casting temperature of 15 mm and cast 15φ round bar and 30φ round bar.
[0010]
Graphite shape in 15φ round bar and 30φ round bar, number of meshes at the fracture surface in the vicinity of the surface of both round bars (number / cm 2 ), and number of meshes at the fracture surface at the center of round bar (numbers / cm 2 ) Is shown in Table 1. B, D, and E in the column of graphite shape in Table 1 respectively indicate B type, D type, and E type in “graphite shape and distribution classification (AFS-ASTM)”.
[0011]
[Table 1]
Figure 0003658488
[0012]
As apparent from Table 1, D-type graphite (eutectic graphite) was crystallized on the 15φ round bar and the 30φ round bar. FIG. 1 is an optical micrograph (3% nital corrosion, 100 times) of a fracture surface near the surface of a 15φ round bar, showing eutectic graphite cast iron having fine D-type graphite (eutectic graphite).
The number of meshes near the surface of the 15φ round bar is 212 / cm 2 , the number of meshes at the center of the round bar is 188 / cm 2 , and the number of meshes near the surface of the 30φ round bar is 208 / cm 2. 2 and the number of meshes at the center of the round bar was 168 / cm 2 .
[0013]
(Comparative Example 1)
In order to compare the case of casting from a cast iron melt with a large amount of S relative to the examples, C: 3.14%, Si: 2.08%, Mn: 0.59%, P: 0.00% by weight. 03%, S: 0.048%, Ti: 0.18% A molten metal consisting of Fe and inevitable impurities is melted in a low frequency furnace and held at 1450 ° C. or higher for 20 minutes or longer. 50%) alloy was inoculated into the molten metal in an amount of 0.4% by weight, and then poured into a fresh sand mold at a pouring temperature of 1420 ° C. to cast 15φ round bars and 30φ round bars.
(Comparative Example 2)
In order to compare the case of casting from a cast iron melt with a small amount of Ti compared to the examples, C: 3.24%, Si: 2.12%, Mn: 0.58%, P: 0.00% by weight. 04%, S: 0.012%, Ti: 0.13% A molten metal comprising Fe and unavoidable impurities is melted in a low-frequency furnace, held at 1450 ° C. or higher for 20 minutes or longer, and then Fe—Si ( 50%) alloy was inoculated into the molten metal in an amount of 0.4% by weight, and then poured into a fresh sand mold at a pouring temperature of 1420 ° C. to cast 15φ round bars and 30φ round bars.
(Comparative Example 3)
In order to compare the case where the inoculation treatment is not performed on the examples, C: 3.19%, Si: 2.04%, Mn: 0.59%, P: 0.03%, S: Cast iron melt consisting of 0.012%, Ti: 0.18% balance Fe and inevitable impurities in a low frequency furnace, held at 1480 ° C. for 30 minutes, and then subjected to inoculation treatment at 1420 ° C. The green sand mold was poured at the pouring temperature, and then 15φ round bar and 30φ round bar were cast.
[0014]
The casting conditions of Comparative Examples 1 to 3, the graphite shape of the 15φ round bar and 30φ round bar cast in each comparative example, the number of meshes at the fracture surface near the surface of the round bar cast in Comparative Example 3 (pieces / cm 2 ) And the number of meshes (pieces / cm 2 ) at the fracture surface at the center of the round bar are also shown in Table 1.
From Table 1, in Comparative Example 1 and Comparative Example 2, D-type graphite (eutectic graphite) was crystallized in the 15φ round bar, but in addition to D-type graphite (eutectic graphite) in the 30φ round bar, B-type graphite and E-type graphite were crystallized.
Eutectic graphite (D-type graphite) was crystallized on the 15φ round bar and 30φ round bar cast in Comparative Example 3, but the number of meshes in the vicinity of the surface of the 15φ round bar was 204 pieces / cm 2. The number of meshes at the center was 156 / cm 2 , the number of meshes near the surface of the 30φ round bar was 196 / cm 2 , and the number of meshes at the center of the round bar was 92 / cm 2 . In Comparative Examples 1 to 3, the difference between the number of meshes in the vicinity of the round bar surface and the number of meshes in the central part of the round bar was larger than that in Example 1, and the structure was not uniform.
[0015]
【The invention's effect】
According to the method for producing eutectic graphite cast iron of the present invention, C: 2.6 to 3.6%, Si: 1.8 to 2.4%, Mn: 1.0% or less, P: 0% by weight. .2% or less, S: 0.006 to 0.02%, Ti: 0.15 to 0.30%, in the cast iron melt consisting of Fe and inevitable impurities, and by weight% Si: 50% balance Fe After inoculating 0.2 to 0.6% by weight of Fe-Si (50%) alloy, the sand mold is poured, so the difference between the number of meshes near the surface of the casting and the number of meshes at the center of the casting is small. Thus, eutectic graphite cast iron having a uniform structure is obtained, and the casting quality is stabilized.
[Brief description of the drawings]
FIG. 1 is a photomicrograph showing the metal structure of eutectic graphite cast iron produced by the production method of the present invention.

Claims (1)

重量%でC:2.6〜3.6%、Si:1.8〜2.4%、Mn:1.0%以下、P:0.2%以下、S:0.006〜0.02%、Ti:0.15〜0.30%、残部がFe及び不可避不純物からなる鋳鉄溶湯中に、重量%でSi:50%残部FeからなるFe−Si(50%)合金を0.2〜0.6%接種した後、砂型に注湯することを特徴とする共晶黒鉛鋳鉄の製造方法。C: 2.6-3.6% by weight, Si: 1.8-2.4%, Mn: 1.0% or less, P: 0.2% or less, S: 0.006-0.02 %, Ti: 0.15 to 0.30%, and the balance is Fe-Si (50%) alloy consisting of Fe: 50% balance Fe: 0.2% by weight in a cast iron melt composed of Fe and inevitable impurities. A method for producing eutectic graphite cast iron, characterized in that after 0.6% inoculation, a sand mold is poured.
JP14443297A 1997-04-25 1997-04-25 Method for producing eutectic graphite cast iron Expired - Fee Related JP3658488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14443297A JP3658488B2 (en) 1997-04-25 1997-04-25 Method for producing eutectic graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14443297A JP3658488B2 (en) 1997-04-25 1997-04-25 Method for producing eutectic graphite cast iron

Publications (2)

Publication Number Publication Date
JPH10298626A JPH10298626A (en) 1998-11-10
JP3658488B2 true JP3658488B2 (en) 2005-06-08

Family

ID=15362071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14443297A Expired - Fee Related JP3658488B2 (en) 1997-04-25 1997-04-25 Method for producing eutectic graphite cast iron

Country Status (1)

Country Link
JP (1) JP3658488B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303238C (en) * 2001-02-14 2007-03-07 冯美才 Process for preparing cast iron
JP5548856B2 (en) * 2010-03-29 2014-07-16 株式会社富田鋳工所 Ferritic cast iron with excellent heat resistance

Also Published As

Publication number Publication date
JPH10298626A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
JP2003521582A (en) Steel grain refining method, steel grain refining alloy and method for producing grain refining alloy
EP3443130B1 (en) Gray cast iron inoculant
JP3658488B2 (en) Method for producing eutectic graphite cast iron
CN108950120A (en) A kind of cast iron silicon-lanthanum-strontium inovulant and preparation method thereof
CN112501477A (en) Micro-carbon low-sulfur high-aluminum iron-free aluminum-magnesium-calcium alloy deoxidizer and preparation method and application thereof
JP3939014B2 (en) High strength cast iron
JP3696844B2 (en) Aluminum alloy with excellent semi-melt formability
JP2634707B2 (en) Manufacturing method of spheroidal graphite cast iron
JPS586922A (en) Production of as-cast spheroidal graphite cast iron of pearlite case
Guzik et al. The method of inoculation of high-quality grey cast iron intended for massive castings for bottom and distance plates as well counterweights manufactured as vertical castings
JP2961448B2 (en) Method for finely dispersing MnS in high S content steel
JP3021736B2 (en) Electromagnetic material and manufacturing method thereof
JP3842906B2 (en) Cast iron having fine graphite on ferrite ground and manufacturing method thereof
CN113265595B (en) Continuous casting billet for low-alloy seamless tube and production method thereof
JPH03271312A (en) Agent and method for reform-treating molten cast iron
JP3659799B2 (en) Manufacturing method of high strength cast iron
JP2000256722A (en) Inoculant for spheroidal graphite cast iron and production thereof
SU1503993A1 (en) Method of producing castings of nodular cast iron
SU616042A1 (en) Ingot making method
JPH10158777A (en) Production of high strength cast iron, and high strength cast iron
JPH10330817A (en) Eutectic graphite case iron and production thereof
JPS6330379B2 (en)
US1985553A (en) Process of making cast iron
KR100404765B1 (en) Fabrication method of micro-alloyed ferritic cast iron with finely distributed graphite
JPS63104772A (en) Production of thick spheroidal graphite cast iron

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees