JP3657672B2 - Copper-based sintered alloy oil-impregnated bearing and manufacturing method thereof - Google Patents
Copper-based sintered alloy oil-impregnated bearing and manufacturing method thereof Download PDFInfo
- Publication number
- JP3657672B2 JP3657672B2 JP29920895A JP29920895A JP3657672B2 JP 3657672 B2 JP3657672 B2 JP 3657672B2 JP 29920895 A JP29920895 A JP 29920895A JP 29920895 A JP29920895 A JP 29920895A JP 3657672 B2 JP3657672 B2 JP 3657672B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- silver
- tin
- powder
- bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Sliding-Contact Bearings (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、中央に軸受部を形成した環状の圧粉成形焼結金属体からなるところの、潤滑油を含浸させた軸受に関し、なじみ性と低摩擦係数実現を内容とする軸受特性の向上をはかることを目的とする。
【0002】
【従来の技術】
回転軸に対する良好ななじみ性の実現に重点をおいた銅系の含油軸受は、銅粉と錫粉との混合粉、または青銅合金粉を原料粉としたものが中心であり、たとえばJIS SBK1218には、銅を主成分とし、これに錫を8〜11wt%と、黒鉛を2wt%以下を含有することが規定され、またJIS SBK2118においては、銅を主成分とし、これに錫を6〜10wt%、鉛を5wt%以下、さらに黒鉛を2wt%以下、亜鉛を1wt%以下をそれぞれ含有することが規定されている。
【0003】
また特公昭52−5002号においては、銅に対して錫とともに、鉛を2〜34wt%添加せしめ、これを摂氏350〜500度の低温雰囲気にて焼結させることが記載されている。 これらは、そのいずれもが適切な条件下において焼結をおこなうと、含油軸受として必要な強度と銅錫の均一な合金組織をもつ焼結体となり、優れたなじみ性と耐久性とを備えた軸受として実用に供せられている。
【0004】
さらに、なじみ性を高めるために、例えば銅に対する錫の添加量を調整することもおこなわれている。 すなわち軸受のなじみ性を向上させ、かつ低摩擦係数を得るためには、軸受摺動面のミクロ硬さを低下させて軸との凝着力を減少させればよいことがわかっている。 しかし例えば純銅粉のみを原料とした焼結含油軸受のように、全面のミクロ硬さが低い場合には、たとえ低荷重の使用条件であったとしても、負荷能力(軸受材が軸を支える能力)が不足して摩耗度の大きい軸受となってしまう。 したがって一般的に銅系含油軸受といわれる焼結材の錫の添加量が8〜11%であるのに対し、錫の添加量を2〜5.5%に低減してミクロ硬さの上昇を制御することにより、なじみ性を向上させるようにした技術も開発されている(特開平4−202637号)。
【0005】
【発明が解決しようとする課題】
しかしながら、上記した従来の技術による焼結含油軸受において、銅粉と錫粉との混合粉、または青銅合金粉を原料粉としたもの、あるいは銅に対する錫の添加量を調整したものにあっては、なじみ性と低摩擦係数の点において、必ずしも十分とはいえない。 また軟質の金属素地中に硬質粒子を点在させ、低摩擦係数と耐摩耗性の向上をはかるようにした技術についても、硬質部としてセラミック粉末を採用したものにおいては、金属素地との十分な接着強度が得られず、軸との摺動時、特に初期なじみ時の軽摩耗により容易に剥離し、かえって軸受性能を低下させる等、信頼性の面において大きな欠点があった。
【0006】
近時の携帯音響機器類をはじめとした各種の精密機器類における軸受の使用環境は、より厳しい使用条件下にあり、上記した従来の軸受は、そのいずれもが特性上において、必ずしも十分とはいえなくなってきており、なじみ性と低摩擦係数の面において、さらに優れた特性を備えた含油軸受の出現が望まれている。
【0007】
【課題を解決するための手段】
発明は上記した従来技術の難点を解決し、原料粉末の形態・組成・焼結条件を管理することにより、各組成を局在化して、均一な組織では得ることのできない、さらに優れたなじみ性と低摩擦係数による軸受特性を有する含油軸受を提供するものであって、具体的には、銅と錫の混合粉あるいは青銅合金粉を主原料とし、これを圧粉・焼結して得られた軸受において、上記主原料に対し、銀を銀粉あるいは銀錫または銅銀または銅銀錫の合金粉として、銅に対する銀と錫の添加量合計が2〜12重量%、銀と錫との重量比が1対8〜4対1、の範囲内において添加したことを特徴とする銅系焼結合金含油軸受に関する。
【0011】
さらに本発明は、銅と錫の混合粉あるいは青銅合金粉を主原料とし、これを圧粉・焼結して軸受を形成する場合において、上記主原料に対し、銀を銀粉あるいは銀錫または銅銀または銅銀錫の合金粉として、銅に対する銀と錫の添加量合計が2〜12重量%、銀と錫との重量比が1対8〜4対1、の範囲内において添加するようにしたことを特徴とする銅系焼結合金含油軸受の製造方法に関する。
【0012】
【作用】
軸受を圧粉・焼結する金属粉中に、軸受の主原料である銅と錫の混合粉あるいは青銅合金粉に対して、銀を銀粉あるいは銀錫合金粉あるいは銅銀合金粉または銅銀錫の合金粉の形で添加した場合、銀錫リッチ合金部が荷重を十分に支えることができ、しかも耐摩耗性を備えるとともに、銅リッチ部が摩擦係数の低い軸受摺動面を形成することができる。
【0013】
さらに要求される特性如何により、必要に応じて組成を変え、硬質部と軟質部との比率を変えることも可能となるほか、非金属粉を添加しないために、高い信頼性を保持することができる。
【0014】
【実施例】
以下において、本発明の具体的な内容を説明すると、軸受は金属粉、たとえば銅と錫の混合粉あるいは青銅合金粉を主原料とし、これらの原料粉中に銅・銀・錫を共に含有せしめる。 銅・銀・錫は、それぞれ粉末の状態として混合し、あるいはそれらの合金粉として添加するものとする。 上記の原料粉中には銀の粉末が添加され、この銀の粉末は、これを銀粉あるいは銀錫合金粉あるいは銅銀合金粉あるいは銅銀錫の合金粉の形として添加する。 この場合において、銅に対する銀と錫の添加量合計が2%未満であると、軸受材として必要な強度と硬度が得られず、負荷能力が不足して軸との摺動時の摩擦が大となるので好ましくはなく、反対に12%を越えると焼結時に発生する液相量が多くなり、その結果変形が大きくなること、またこれに加えて錫リッチ部の割合も多くなるために、全体としての硬度が上昇してなじみ性が悪くなること、等の点について問題を生ずるために好ましくはない。
【0015】
したがって銅に対する銀と錫の添加量の合計が2〜12重量%であって、しかも銀と錫との重量比が1対8〜4対1の範囲内にあるようにするのが最も理想的である。 上記した組成のものを既知の圧粉・焼結工程により加工することにより、本発明が予定する理想的な銅系焼結合金含油軸受を得ることができる。
【0016】
上記したように、青銅合金粉に銀の粉末を添加・混合して成型し、さらにこれを焼結すると、青銅合金中の錫が低温から優先的に銀に拡散、かつ合金化し、銅に対する錫の拡散状態が、銀粉を添加しない場合に比べて著しく抑制されることになる。 因にこの焼結体の各部の硬さをマイクロビッカースにて測定してみると、銅リッチの部分は軟らかく、その周囲の錫リッチの部分が硬い不均一な焼結組織が得られる。
【0017】
さらに軸受として使用される場合において、該軸受に要求される特性如何によっては、青銅合金粉の主原料に対する銀粉あるいは銀錫合金粉あるいは銅銀合金粉または銅銀錫合金粉の添加割合や、別の組成物質を添加する等の方法により、必要に応じて組成を変え、硬質部と軟質部との比率を変えることもできる。
【0018】
〔実験例〕
1.銅粉に、重量比1:1の銀−錫合金粉を2重量%添加した原料で、圧粉成形、焼結、サイジングをおこない、内径2mm、外径5mm、長さ3mmの軸受を作製した.
2.銅粉に、重量比1:1の銀−錫合金粉を4重量%添加し、実験例1と同様の形状の軸受を作製した.
3.銅粉に、重量比1:1の銀−錫合金粉を8重量%添加し、実験例1・2と同様の形状の軸受を作製した.
4.錫量9重量%の青銅合金粉に、銀粉を2.5重量%添加し、実験例1〜3と同様形状の軸受を作製した.
5.銅粉に、銀粉5重量%と錫粉3重量%を添加し、実験例1〜4と同様形状の軸受を作製した.
【0019】
〔比較例〕
1.銅粉のみを原料として、実験例1と同様形状の軸受を作製した.
2.銅粉に、5重量%の錫粉を添加して実験例1と同様形状の軸受を作製した.
3.銅粉に、10重量%の錫粉を添加して、実験例1と同様形状の軸受を作製した.
4.銅粉に、5重量%の銀粉を添加して実験例1と同様形状の軸受を作製した.
5.銅粉に10重量%の銀粉を添加して実験例1と同様形状の軸受を作製した.
【0020】
上記した実験例ならびに比較例の各軸受に対して、それぞれタービン油32cst相当を含浸させ、これらの試料について、周速2.83m/min.,荷重10kgf/平方センチメートルの条件にて60分間の軸受性能試験をおこなった結果を表1にあらわす。
【0021】
【表1】
【0022】
表1により明らかであるように、実験例のものは、すべてなじみ時間が短く、またなじみ後の摩擦係数が低く、しかも摩耗量が少ないのに対して、比較例のものは、なじみ性のよいとされる比較例1・4・5では摩耗が多く、反対に摩耗が少ないとされる比較例3(最も一般的な青銅軸受材)においては、なじみ性が悪い。 したがって本出願人によって公知にされた特開平4−202637号の内容であるところの、上記した比較例2に対比させてみても、本願の実験例1〜5に掲げた軸受は、そのいずれもがなじみ性と耐摩耗性の両立という点において著しく優れている。
【0023】
本願の発明は、上述したように、含油軸受における硬質部と軟質部との比率を変えることにより、使用条件、特に荷重と周速に応じて負荷能力となじみ性が最適となるように、軸受摺動面の特性を調整することができるために、なじみ時間が短く、しかもなじみ後の摩耗係数が低く、かつ摩耗が少ない高機能の携帯音響機器類等についての使用に適する軸受を得ることができる。
【0024】
【発明の効果】
本発明は上記した通り、金属粉を圧粉・焼結させて得られる軸受において、銅と錫の混合粉あるいは青銅合金粉を主原料とし、これを圧粉・焼結して得られた軸受において、上記主原料に対し、銀を銀粉あるいは銀錫または銅銀または銅銀錫の合金粉として添加するようにしたものであるために、銅に対する錫の拡散状態が銀粉を添加しない場合に比べて著しく抑制され、その結果銅リッチの部分は軟らかく、その周囲の錫リッチの部分が硬い不均一な焼結組織が得られる。
【0025】
しかもこの摺動面に形成された不均一な組織は金属相互の拡散、および合金化の促進と制御とにより得られたものであるために、さらにミクロ的にみれば、その組成および組織の変化は連続的であり、剥離等のおそれがなく、また初期なじみ時に若干剥離をおこすことがあっても金属であるために、軸受あるいは軸の金属に対して容易に再付着がおこなわれるので、安定した性能を発揮することができる。
【0026】
さらに最も重要なことは、銀錫リッチな三元合金部が十分に合金化しているために強度が強く、あるいは必要な強度が得られるまで焼結温度を高くしても、銅錫の合金化が抑制されるために、例えば含油軸受として用いた場合に、銀錫リッチ合金部が荷重を支えて、耐摩耗性を発揮するとともに、銅リッチ部が凝着力の弱い状態で広く分布して摩擦係数の低い摺動面を形成するという、安定かつ高性能の理想的な焼結含油軸受を得ることができる。
【0027】
また要求される特性に応じて自在に組織を変え、硬質部と軟質部との比率を変化させることも可能であるほか、非金属粉を添加しないために信頼性が高い等種々の有益な効果を奏する。[0001]
[Industrial application fields]
The present invention relates to a bearing impregnated with a lubricating oil, which is made of an annular powder compacted sintered metal body having a bearing portion formed in the center, and improves the bearing characteristics with the contents of realizing conformability and low friction coefficient. The purpose is to measure.
[0002]
[Prior art]
Copper-based oil-impregnated bearings that focus on the realization of good conformability to the rotating shaft are mainly made of mixed powder of copper powder and tin powder, or bronze alloy powder as raw material powder. For example, JIS SBK1218 Is defined to contain 8 to 11 wt% of tin and 2 wt% or less of graphite in JIS SBK2118. The main component of copper is 6 to 10 wt. %, Lead is 5 wt% or less, graphite is 2 wt% or less, and zinc is 1 wt% or less.
[0003]
Japanese Patent Publication No. 52-5002 describes that 2-34 wt% of lead is added to copper together with tin and sintered in a low temperature atmosphere of 350 to 500 degrees Celsius. All of these, when sintered under appropriate conditions, became a sintered body with the required strength as an oil-impregnated bearing and a uniform alloy structure of copper tin, and had excellent conformability and durability. It is used as a bearing.
[0004]
Furthermore, in order to improve the conformability, for example, the amount of tin added to copper is also adjusted. In other words, it has been found that in order to improve the conformability of the bearing and obtain a low friction coefficient, it is only necessary to reduce the microhardness of the bearing sliding surface to reduce the cohesive force with the shaft. However, if the entire surface is low in hardness, such as a sintered oil-impregnated bearing made only of pure copper powder, the load capacity (the ability of the bearing material to support the shaft), even under low load conditions. ) Is insufficient, resulting in a highly worn bearing. Therefore, while the amount of tin added to the sintered material, commonly referred to as a copper-based oil-impregnated bearing, is 8 to 11%, the amount of tin added is reduced to 2 to 5.5% to increase the micro hardness. A technique for improving the conformability by controlling is also developed (Japanese Patent Laid-Open No. 4-202737).
[0005]
[Problems to be solved by the invention]
However, in the above-described sintered oil-impregnated bearing according to the conventional technique, a mixed powder of copper powder and tin powder, or a bronze alloy powder as a raw material powder, or a powder in which the amount of tin added to copper is adjusted In terms of compatibility and low friction coefficient, it is not necessarily sufficient. In addition, with regard to the technology in which hard particles are interspersed in a soft metal base to improve the low friction coefficient and wear resistance, a ceramic powder as the hard part is sufficient for the metal base. Adhesive strength could not be obtained, and there was a major drawback in terms of reliability, such as easy peeling due to light wear during sliding with the shaft, especially during initial fitting, and in turn reducing bearing performance.
[0006]
The usage environment of bearings in various precision instruments such as portable audio equipment in recent times is under severer usage conditions, and none of the conventional bearings described above is necessarily sufficient in terms of characteristics. The appearance of oil-impregnated bearings with even better characteristics in terms of conformability and a low friction coefficient is desired.
[0007]
[Means for Solving the Problems]
The invention solves the drawbacks of the prior art described above, and manages the form, composition, and sintering conditions of the raw material powder to localize each composition, and it has even better conformability that cannot be obtained with a uniform structure. And an oil-impregnated bearing having bearing characteristics with a low friction coefficient. Specifically, it is obtained by using a mixed powder of copper and tin or a bronze alloy powder as a main raw material, and compacting and sintering it. In the above-mentioned bearing, the total amount of silver and tin added to copper is 2 to 12% by weight, and the weight of silver and tin with respect to the main raw material, with silver as silver powder or silver tin or copper silver or copper silver tin alloy powder. The present invention relates to a copper-based sintered alloy oil-impregnated bearing , wherein the ratio is added in the range of 1 to 8 to 4 to 1 .
[0011]
Furthermore, the present invention uses a mixed powder of copper and tin or a bronze alloy powder as a main raw material, and when this is compacted and sintered to form a bearing, silver is silver powder, silver tin or copper As an alloy powder of silver or copper-silver-tin, the total addition amount of silver and tin to copper is 2 to 12% by weight, and the weight ratio of silver and tin is added within the range of 1 to 8 to 4 to 1. The present invention relates to a method for producing a copper-based sintered alloy oil-impregnated bearing.
[0012]
[Action]
Silver powder, silver-tin alloy powder, copper-silver alloy powder, or copper-silver-tin is used in the metal powder that compacts and sinters the bearing, in contrast to the mixed powder of copper and tin or bronze alloy powder that is the main raw material of the bearing. When added in the form of alloy powder, the silver-tin-rich alloy part can sufficiently support the load, and also has wear resistance, and the copper-rich part can form a bearing sliding surface with a low friction coefficient. it can.
[0013]
Furthermore, depending on the required characteristics, it is possible to change the composition as necessary, and to change the ratio between the hard part and the soft part, and because it does not add non-metallic powder, it can maintain high reliability. it can.
[0014]
【Example】
The specific contents of the present invention will be described below. The bearing is mainly made of metal powder, for example, mixed powder of copper and tin or bronze alloy powder, and these raw material powders contain both copper, silver and tin. . Copper, silver, and tin are mixed as powders or added as alloy powders thereof. Silver powder is added to the raw material powder, and this silver powder is added in the form of silver powder, silver tin alloy powder, copper silver alloy powder, or copper silver tin alloy powder. In this case, if the total amount of silver and tin added to copper is less than 2%, the strength and hardness required for the bearing material cannot be obtained, the load capacity is insufficient, and the friction during sliding with the shaft is large. On the contrary, if it exceeds 12%, the amount of liquid phase generated during sintering increases, resulting in increased deformation, and in addition to this, the proportion of tin-rich portions also increases. This is not preferable because the hardness as a whole increases and the conformability deteriorates, causing problems with respect to the points.
[0015]
Therefore, it is most ideal that the total amount of silver and tin added to copper is 2 to 12% by weight and that the weight ratio of silver and tin is in the range of 1 to 8 to 4 to 1. It is. An ideal copper-based sintered alloy oil-impregnated bearing planned by the present invention can be obtained by processing the above-described composition by a known compacting / sintering process.
[0016]
As described above, silver powder is added to and mixed with bronze alloy powder, and when this is further sintered, tin in the bronze alloy diffuses and alloys preferentially from low temperature to silver, tin to copper The diffusion state is significantly suppressed as compared with the case where no silver powder is added. Incidentally, when the hardness of each part of the sintered body is measured by micro Vickers, a copper-rich portion is soft and a surrounding tin-rich portion is hard and an uneven sintered structure is obtained.
[0017]
Further, when used as a bearing, depending on the characteristics required for the bearing, the addition ratio of silver powder, silver tin alloy powder, copper silver alloy powder or copper silver tin alloy powder to the main raw material of bronze alloy powder, It is also possible to change the ratio of the hard part and the soft part by changing the composition as required by a method such as adding a composition material.
[0018]
[Experimental example]
1. Using a raw material obtained by adding 2% by weight of a silver-tin alloy powder having a weight ratio of 1: 1 to copper powder, compacting, sintering, and sizing were performed to produce a bearing having an inner diameter of 2 mm, an outer diameter of 5 mm, and a length of 3 mm. .
2. 4% by weight of a silver-tin alloy powder having a weight ratio of 1: 1 was added to the copper powder to produce a bearing having the same shape as in Experimental Example 1.
3. 8% by weight of silver-tin alloy powder with a weight ratio of 1: 1 was added to the copper powder to produce a bearing having the same shape as in Experimental Examples 1 and 2.
4). 2.5% by weight of silver powder was added to 9% by weight of bronze alloy powder, and a bearing having the same shape as in Experimental Examples 1 to 3 was produced.
5. To the copper powder, 5% by weight of silver powder and 3% by weight of tin powder were added, and bearings having the same shape as in Experimental Examples 1 to 4 were produced.
[0019]
[Comparative example]
1. A bearing having the same shape as in Experimental Example 1 was prepared using only copper powder as a raw material.
2. A bearing having the same shape as in Experimental Example 1 was prepared by adding 5 wt% tin powder to the copper powder.
3. A 10% by weight tin powder was added to the copper powder to produce a bearing having the same shape as in Experimental Example 1.
4). A bearing having the same shape as in Experimental Example 1 was prepared by adding 5% by weight of silver powder to the copper powder.
5. 10% by weight of silver powder was added to the copper powder to produce a bearing having the same shape as in Experimental Example 1.
[0020]
The bearings of the experimental example and the comparative example described above were impregnated with turbine oil equivalent to 32 cst, and the peripheral speed of these samples was 2.83 m / min. Table 1 shows the results of a bearing performance test for 60 minutes under the condition of a load of 10 kgf / square centimeter.
[0021]
[Table 1]
[0022]
As is apparent from Table 1, all of the experimental examples have a short familiar time, a low coefficient of friction after fitting, and a small amount of wear, whereas the comparative examples have good conformability. In Comparative Examples 1, 4 and 5, the wear is large, and on the contrary, in Comparative Example 3 (the most common bronze bearing material) in which wear is small, the conformability is poor. Therefore, even when compared with Comparative Example 2 described above, which is the content of Japanese Patent Laid-Open No. Hei 4-202737 made public by the present applicant, all of the bearings listed in Experimental Examples 1 to 5 of the present application. However, it is remarkably excellent in terms of both compatibility and wear resistance.
[0023]
As described above, the invention of the present application changes the ratio of the hard part and the soft part in the oil-impregnated bearing so that the load capacity and the conformability are optimized according to the use conditions, particularly the load and the peripheral speed. Since the characteristics of the sliding surface can be adjusted, it is possible to obtain a bearing suitable for use in a high-performance portable audio device or the like having a short fitting time, a low wear coefficient after fitting, and little wear. it can.
[0024]
【The invention's effect】
As described above, the present invention is a bearing obtained by compacting and sintering metal powder, and using a mixed powder of copper and tin or bronze alloy powder as a main raw material, and bearing obtained by compacting and sintering this. In the above main raw material, since silver is added as silver powder or silver tin or copper silver or copper silver tin alloy powder, the diffusion state of tin relative to copper is compared with the case where silver powder is not added. As a result, a copper-rich portion is soft, and the surrounding tin-rich portion is hard and a non-uniform sintered structure is obtained.
[0025]
Moreover, since the uneven structure formed on the sliding surface is obtained by diffusion between metals and the promotion and control of alloying, the change in composition and structure from a microscopic viewpoint. Is continuous, there is no risk of peeling, etc., and even if it may peel off slightly during the initial running-in, it is a metal, so it can be easily reattached to the bearing or shaft metal. Performance can be demonstrated.
[0026]
Most importantly, the copper-tin alloy is formed even if the sintering temperature is increased until the required strength is obtained because the silver-tin-rich ternary alloy is sufficiently alloyed. For example, when used as an oil-impregnated bearing, the silver-tin-rich alloy part supports the load and exhibits wear resistance, and the copper-rich part is widely distributed in a state where the adhesion force is weak and the friction is reduced. A stable and high-performance ideal sintered oil-impregnated bearing that forms a sliding surface with a low coefficient can be obtained.
[0027]
It is also possible to change the structure freely according to the required characteristics and change the ratio of hard part to soft part, and various beneficial effects such as high reliability because non-metallic powder is not added Play.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29920895A JP3657672B2 (en) | 1995-05-29 | 1995-10-23 | Copper-based sintered alloy oil-impregnated bearing and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-153863 | 1995-05-29 | ||
JP15386395 | 1995-05-29 | ||
JP29920895A JP3657672B2 (en) | 1995-05-29 | 1995-10-23 | Copper-based sintered alloy oil-impregnated bearing and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0949524A JPH0949524A (en) | 1997-02-18 |
JP3657672B2 true JP3657672B2 (en) | 2005-06-08 |
Family
ID=26482360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29920895A Expired - Fee Related JP3657672B2 (en) | 1995-05-29 | 1995-10-23 | Copper-based sintered alloy oil-impregnated bearing and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3657672B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001241445A (en) * | 2000-02-28 | 2001-09-07 | Daido Metal Co Ltd | Copper based sliding material, its manufacturing method, and slide bearing |
-
1995
- 1995-10-23 JP JP29920895A patent/JP3657672B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0949524A (en) | 1997-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4675563B2 (en) | Bearing and manufacturing method thereof | |
JP3859344B2 (en) | Sliding material, sliding member and method of manufacturing the sliding member | |
JP3782446B2 (en) | High-strength, high-temperature, self-lubricating composite material and manufacturing method thereof | |
JP2003089831A (en) | Copper-based sintered sliding material and multi-layer sintered sliding member | |
JPH01225749A (en) | Sintered material for oilless bearing and production thereof | |
GB2345095A (en) | Sliding bearing including a resin layer consisting of soft metal particles dispersed in a thermosetting resin | |
JP2008280613A (en) | Copper based sintered contact material and double-layered sintered contact member | |
JP3013946B2 (en) | Multi-layer composite sliding material with excellent seizure resistance | |
JP2010533756A (en) | Lead-free sintered lubricating material and sintered powder for its production | |
JP2918292B2 (en) | Sliding material | |
GB2333779A (en) | Composite metal powder for sintered bearing, and sintered oil-retaining bearing | |
JP3484444B2 (en) | Sliding member | |
GB2367062A (en) | Sliding material and lubricating composition | |
JP3657672B2 (en) | Copper-based sintered alloy oil-impregnated bearing and manufacturing method thereof | |
JP2001107162A (en) | Bronze series sintered alloy, bearing using the same and their producing method | |
JPH11293305A (en) | Slide material and double layered sintered slide member | |
JPH0488139A (en) | Sliding material | |
JPH01230740A (en) | Sintered alloy material for oiliness bearing and its manufacture | |
US3728089A (en) | Aluminum-silicon base sintered porous bearing metals | |
JPS63282221A (en) | Manufacture of composite sintered material | |
JPH08176698A (en) | Self-lubricating composite powder alloy | |
JP2004018940A (en) | Method for manufacturing ferrous sintered sliding member, and ferrous sintered sliding member | |
JPH11193427A (en) | Copper-base sintered bearing material and its production | |
JPH04191343A (en) | Self-lubricating sliding material | |
JP3838833B2 (en) | Al-Bi based sintered bearing alloy and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050310 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080318 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090318 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |