JP3657327B2 - Far-infrared radiation device and dryer - Google Patents

Far-infrared radiation device and dryer Download PDF

Info

Publication number
JP3657327B2
JP3657327B2 JP26369895A JP26369895A JP3657327B2 JP 3657327 B2 JP3657327 B2 JP 3657327B2 JP 26369895 A JP26369895 A JP 26369895A JP 26369895 A JP26369895 A JP 26369895A JP 3657327 B2 JP3657327 B2 JP 3657327B2
Authority
JP
Japan
Prior art keywords
far
wind tunnel
hot air
infrared radiation
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26369895A
Other languages
Japanese (ja)
Other versions
JPH0979748A (en
Inventor
興太郎 久保田
勝 柏嵜
友彦 市川
和成 造賀
博之 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Satake Corp
Original Assignee
Shizuoka Seiki Co Ltd
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd, Satake Corp filed Critical Shizuoka Seiki Co Ltd
Priority to JP26369895A priority Critical patent/JP3657327B2/en
Publication of JPH0979748A publication Critical patent/JPH0979748A/en
Application granted granted Critical
Publication of JP3657327B2 publication Critical patent/JP3657327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱風を通過させる風胴を備えた遠赤外線放射装置と、これを用いた主として穀類の乾燥に用いる乾燥機に関する。
【0002】
【従来の技術】
循環型の穀類乾燥機(特開昭56−82372号公報、特開昭57−124680号公報等)では、上方にホッパー部を、下部に熱風乾燥路および循環のための送穀機、揚穀機を配置し、ホッパー部に定量の穀類を張り込んだ後、ホッパー部の下部から穀類を所定の流速で熱風乾燥路に通過させ、再びホッパー部に戻すという循環が繰り返される。熱風乾燥路では、穀粒表層部の水分が除去されると共に、ホッパー部で穀粒内部の水分を表層側に移動させて均一化するテンパリングが行われ、穀粒の水分が平衡を保ちながら徐々に減少される。これによって、急激な乾燥による穀粒の変質や胴割れが防止されている。
【0003】
熱風乾燥路にはバーナーと送風機からなる熱風供給装置から、乾燥した熱風が供給されるが、被乾燥物である穀類に損傷を与えないように、バーナー燃焼で作った高温熱を外気で薄めて適温にしている。また、乾燥用熱風の半分程度は穀類を乾燥させずにそのまま排出されてしまうので、エネルギー効率が低い。しかも、熱風を直接穀類に浴びせると、穀類に胴割れ等の被害が発生しやすいという欠点がある。
【0004】
一方、遠赤外線を利用する穀類乾燥方法もある。この方法では、遠赤外線放射装置の加熱された風胴筒表面から放射される遠赤外線を穀類に吸収させて乾燥するのであるが、電磁波が直接穀類に吸収されてほとんどの熱エネルギーが穀類の乾燥に用いられるので、エネルギー効率が良く、穀類の損傷も少ない。
【0005】
しかしながら、従来の遠赤外線放射装置における風胴筒は、バーナーと送風機などからなる熱風発生装置に接続されている熱風供給側の表面温度が高く、排風側は比較的低い。このため、穀類に照射される遠赤外線のエネルギー量が場所によってムラになり、乾燥ムラが生じるばかりか、一部高温部分では穀類に過剰なエネルギーが照射されるので、穀類の変質や胴割れ等の被害が発生することがあった。
【0006】
以上のことは、穀類の乾燥に限らず、急激な乾燥が適さない被乾燥物の乾燥一般について観測できることである。
【0007】
【発明が解決しようとする課題】
本発明は、遠赤外線の放射量が風胴筒の長手方向にほぼ均一な遠赤外線放射装置の提供およびこの遠赤外線放射装置を利用した乾燥ムラのない乾燥機の提供を課題とする。
【0008】
【課題を解決するための手段】
〔遠赤外線放射装置〕
一端を熱風供給側、他端を排風側とした風胴筒において、熱風供給側寄りの外周に外筒を非接触状に嵌挿し、これによって風胴筒の高温となる熱風供給側部分からの遠赤外線を外筒でいったん受け止め、外筒から調整された遠赤外線を改めて放射させることによって、遠赤外線放射装置全体として遠赤外線の放射量分布を均一化する。
【0009】
風胴筒の排風側寄りの内部に通風抵抗板を配置し、これによって、風胴筒内部の熱風の流れを調整し、風胴筒の表面部に対する熱風からの熱伝導をほぼ等しくし、遠赤外線放射装置全体として遠赤外線の放射量分布を均一化することもある。
遠赤外線の放射分布を均一化するために、外筒と通風抵抗板の双方を利用することは好ましい。
【0010】
〔乾燥機〕
被乾燥物の通路に前記の構成を備えた遠赤外線放射装置を配置し、穀粒が吸収する遠赤外線のエネルギーを乾燥に利用する。
被乾燥物の通路を横切る熱風乾燥路と組み合わせ、また、遠赤外線放射装置における風胴筒の排風を熱風乾燥路に接続することがある。
被乾燥物の通路に予備加熱部と乾燥部を備え、予備加熱部に遠赤外線放射装置を配置することがある。
【0011】
【発明の実施の形態】
図1〜図3は、竪型循環式の穀類乾燥機1の全体構造を示し、箱形の機体2の内部が上部の予備加熱部3と下部の乾燥部4に区画され、乾燥部4の下方にはスクリューコンベアなどの送穀機5が配置されている。機体2の外方には揚穀機6が配置されて、前記の送穀機5から送られた穀粒を再び予備加熱部3に送り上げるようになっている。
【0012】
予備加熱部3は、下部の中央部に遠赤外線放射装置7が機体2の前壁8と後壁9間に水平に横架され(図1)、その上方に前後方向の断面で逆V字形となる笠形に広がって配置された分流体10と左右の側壁から張出した案内体11によって、予備加熱部3の下部は2つのホッパー部12(a,b)に形成されている。分流体10は穀粒が抜け出ない程度の孔を全面に設けた多孔の鋼板、あるいは多孔のない鋼板で形成されている。
【0013】
予備加熱室3の上部は広く一体の空間で、前記揚穀機6の吐出口に連通しており、天井部に散穀体13が配置されている。散穀体13はモーターによって駆動回転される。
【0014】
乾燥部4は、予備加熱室3の下部に空間的に連続して形成されており、下部中央部に機体2の前壁8から後壁9に渡って横架された筒状の熱風路14とその下方両側に配置された筒状の排風路15(a,b)を有している。符号16,17は分流体である。
【0015】
熱風路14の下半部壁面18(a,b)と排風路15の内部側壁面19(a,b)は多孔の鋼板で形成され、熱風路14の下半部壁面18aと排風路15の内部側壁面19a、同様に下半部壁面18bと内部側壁面19bは狭い間隔をもって平行に配置され、熱風乾燥路20(a,b)を構成している。
熱風乾燥路20(a,b)は中央下方に向かって傾斜され、それぞれの下端に羽根車等の定量送りだし装置21が配置されている。
【0016】
乾燥部4の上部は広く一体の空間で、上方に遠赤外線放射装置7が露出されている。
乾燥部4の下方はホッパー形状に構成されて、その底部の中央に前記の送穀機5が配置されている。
【0017】
遠赤外線放射装置7は(図4)、風胴筒22と第1、第2の外筒23、24、通風抵抗板25およびバーナー26と送風機27からなる熱風発生装置28で構成されており、熱風発生装置28は機体2の外部に配置されると共に風胴筒22の一端に接続され、風胴筒22の他端(排風側)は風路29を通じて前記の熱風路14の一端(熱風供給側)に接続されている。また、第1、第2の外筒23,24は風胴筒22の熱風供給側寄りの外周に相互に非接触状に嵌挿され、第1の外筒23は第2の外筒24より長く、第2の外筒24は第1の外筒23の熱風供給側寄りに位置している。
【0018】
通風抵抗板25は風胴筒22の排風側寄りの内部に配置され、風胴筒内部の通風路断面の約20〜50%を遮断できる面積を備えている。
【0019】
風胴筒22、外筒23,24および通風抵抗板25はステンレスを素材としており、風胴筒22と外筒23,24には、加熱によって高い効率で遠赤外線を放射する素材(アルミナ系、シリカ系、チタニア系セラミックス)の粉末を顔料とした塗料(例えばオキツモ社製 高効率輻射塗料B−600)が塗布されている。この塗料は風胴筒22の表面温度が300〜600℃に加熱されると、その表面から波長が2.9〜5.0μmの遠赤外線をほぼ均一に放射する。そして、穀粒はこの領域の遠赤外線を良く吸収する特性がある。
【0020】
図1において、符号30は排風ファンであり、排風路15(a,b)の末端に取付けられている。
【0021】
稼働状態の穀粒乾燥機1では(図2)、予備加熱部3に張り込まれた穀粒が分流体10と案内体11に誘導されてホッパー部12(a,b)を徐々に下方へ移動する。この間および、ホッパー部12(a,b)を通過して乾燥部4の上部に堆積している間に、穀粒は遠赤外線放射装置7が放射している遠赤外線を吸収して、そのエネルギーにより穀粒の温度が内部から上昇する。
【0022】
遠赤外線放射装置7の熱風発生装置28は稼働しており、熱風が風胴筒22に供給される。このとき、風胴筒22は、風胴筒22を通過する熱風の熱量変化の関係で、どうしても熱風供給側が高く、排風側が低い表面温度分布となる。しかし、風胴筒22の熱風供給側外周には外筒23,24が嵌装されているので、外筒23,24が風胴筒22の高温部からの遠赤外線を受けとり、改めて自らが遠赤外線を放射する格好となる。また、外筒23,24は風胴筒22に対しておよび相互に非接触の状態、すなわち、空気層を有して嵌装されているので、風胴筒22の高温部からのエネルギーは拡散し、外筒23,24の表面温度は、風胴筒22の高温部よりも低くなる。
【0023】
このため、空気層の厚さや外筒23,24の長さを調節することで、この部分の遠赤外線放射量を風胴筒22の他の部分とほぼ同じ量に調整することができる。特に高温となる部分には、第1の外筒23に対する第2の外筒24のように外筒を相互に非接触で多重とすることで対処することができる。なお、多重とする外筒のそれぞれの長さは、温度調節に応じて任意に選定すれば良く、同じ長さの場合もあれば、風胴筒22に近い側の外筒(第1の外筒23)がそれよりも外側に嵌装される外筒(第2の外筒24)よりも短いこともある。
【0024】
風胴筒22の表面温度分布は、風胴筒22の排風側寄り内部に配置された通風抵抗板25によっても調整することができる。すなわち、通風抵抗板25によって風胴筒内部の熱風は、通風抵抗体25により乱流が生じ攪拌されて、風胴筒22の壁面に対する熱伝導時間が長くなるので、風胴筒22の表面温度を通風抵抗体25付近で上昇させることができる。
【0025】
なお、風胴筒22の表面温度分布の調整は、前記のように外筒23,24あるいは通風抵抗体25のそれぞれでもできるが、双方を組み合わせることが好ましい。
いずれにしても、外筒23,24、通風抵抗板25は風胴筒表面の温度を均一化するための手段である。
【0026】
乾燥部4に移動した穀粒は、分流体16,17にしたがって熱風乾燥路20(a,b)に誘導され、ここをゆっくりと下方へ移動する。この間に熱風路14から排風路15(a,b)へ熱風乾燥路20(a,b)を横断して吹き抜ける熱風(温度調整されている)によって水分が除去される。このとき、穀粒は遠赤外線放射装置7によって内部に至るまで予備加熱されて内部水分の移動が活発になっており、かつ、内部水分が表層部まで均一に移動しているので、熱風による乾燥効率は通常の場合よりも高い。また、穀粒毎にもムラの少ない乾燥が行われる。
【0027】
熱風路14には、遠赤外線放射装置7の風胴筒22から、遠赤外線放射装置7としての排風が風路29を通じて供給され、熱風乾燥路20の水分を含んだ排風は排風路15(a,b)を通じて排風ファン30に吸引され、外部に排出される。この方式は、遠赤外線放射装置7の廃熱を有効に利用できると共に熱風路14に供給する熱風の温度の調節量も少なくなるので、熱効率が通常の熱風乾燥に比較して高くなる。
【0028】
熱風乾燥路20(a,b)を通過した穀粒は、送穀機5の部分に集められ、送穀機5で揚穀機6に送られ、再び予備加熱部3に移送される。この循環が、所定の含水率になるまで行われる。
【0029】
この実施形態のように、機体2の上部に遠赤外線放射装置7による予備加熱部3を、下部に熱風乾燥路20を備えた乾燥部4を配置する構成にすると、既存の熱風乾燥機を利用してその貯穀室上部に遠赤外線放射装置7を配置するだけで済むため経済的である。また、遠赤外線放射装置7を貯穀室上部に配置すると、下方に鋼板等の遠赤外線の輻射に邪魔となる物が少なく、遠赤外線を効率良く利用することができる。
【0030】
なお、熱風乾燥を行わずに、遠赤外線の照射のみによって穀類(被乾燥物)を乾燥させることも可能である。
【0031】
図5〜図8は、遠赤外線放射装置7に関する他の実施形態を示し、風胴筒22の排風側に副筒31の一端が接続され、風胴筒22と平行に配置されている。副筒31の他端は風路29を介して熱風路14の一端に接続されている。
【0032】
この実施形態では、熱風発生装置28が前壁8側に位置するが(図6)、副筒31が発散する熱量を風胴筒22からの遠赤外線の作用に合わせて補助的に利用することができる。
副筒31も風胴筒22と同様にステンレス製で少なくとも外周面に高効率の遠赤外線放射塗料が塗布されることがある。
【0033】
図7には、副筒31を備えた遠赤外線放射装置7において、風胴筒22の内部に通風抵抗板25が見えている。また、図8には外筒23,24が見えている。以上は実施形態の例であって、熱風発生装置の熱源はバーナー以外の電熱を利用するものであっても良い。
【0034】
【発明の効果】
請求項1、請求項5に記載の構成によれば、外筒あるいは通風抵抗板によって、遠赤外線放射装置が発する遠赤外線の量を風胴筒の長手方向にほぼ均一とすることができる。
請求項2に記載の構成によれば、外筒と通風抵抗体との組み合わせによって、遠赤外線放射装置が発する遠赤外線の量を風胴筒の長手方向に、より精密に均一とすることができる。
【0035】
請求項3、請求項4に記載の構成によれば、風胴筒の高温部に対して簡単な構造で適切に対処することができ、遠赤外線放射装置が発する遠赤外線の量を風胴筒の長手方向にほぼ均一とすることができる。
請求項6の構成によれば、遠赤外線の放射量が増大され、穀粒に対して効率良く作用させることができる。
【0036】
請求項7に記載の構成によれば、副筒が発する熱量を風胴筒が発する遠赤外線の作用に補助的に作用させることができ、乾燥作業などを効率良く行うことができる。
請求項8に記載の構成によれば、被乾燥物を穏やかに乾燥して、熱風乾燥に比べ、被乾燥物を変質させたり、損傷してしまう危険が少ない。
【0037】
請求項9に記載の構成によれば、熱効率の良い乾燥機を得ることができる。
請求項10に記載の構成によれば、遠赤外線による被乾燥物の全体的な予備加熱と熱風乾燥による強制的な水分除去作用との組み合わせで、被乾燥物を効率良く乾燥することができる。
【図面の簡単な説明】
【図1】穀類乾燥装置の一部破断側面図
【図2】穀類乾燥装置の縦断面図
【図3】穀類乾燥装置の正面図
【図4】遠赤外線放射装置の側面図
【図5】遠赤外線放射装置の平面図(他の実施形態)
【図6】穀類乾燥装置の一部破断側面図(他の実施形態)
【図7】図5におけるA−A線に沿った矢視方向の断面図
【図8】図5におけるB−B線に沿った矢視方向の断面図
【符号の説明】
1 穀類乾燥機
2 機体
3 予備乾燥部
4 乾燥部
5 送穀機
6 揚穀機
7 遠赤外線放射装置
8 前壁
9 後壁
10 分流体
11 案内体
12(a,b) ホッパー部
13 散穀体
14 熱風路
15(a,b) 排風路
16 分流体
17 分流体
18(a,b) 下半部壁面
19(a,b) 内部側壁面
20(a,b) 熱風乾燥路
21 定量送り出し装置
22 風胴筒
23 第1の外筒
24 第2の外筒
25 通風抵抗板
26 バーナー
27 送風機
28 熱風発生装置
29 風路
30 排風ファン
31 副筒
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a far-infrared radiation device having a wind tunnel through which hot air passes, and a dryer mainly used for drying cereals using the far-infrared radiation device.
[0002]
[Prior art]
Circulation type grain dryers (Japanese Patent Laid-Open Nos. 56-82372, 57-124680, etc.) have a hopper portion at the top, a hot air drying path at the bottom, a threshing machine for circulation, and cerealing After the machine is placed and a certain amount of cereal is stuck in the hopper part, the cereal is passed through the hot air drying path from the lower part of the hopper part at a predetermined flow rate and returned to the hopper part again. In the hot air drying path, moisture in the surface layer of the grain is removed, and tempering is performed in the hopper to move the moisture inside the grain to the surface side to make it uniform, gradually keeping the moisture of the grain in equilibrium. Reduced to As a result, grain deterioration and shell cracking due to rapid drying are prevented.
[0003]
Dry hot air is supplied from a hot air supply device consisting of a burner and a blower to the hot air drying path, but the high-temperature heat produced by the burner combustion is diluted with the outside air so as not to damage the grains that are to be dried. The temperature is set appropriately. Moreover, since about half of the hot air for drying is discharged without drying the cereal, energy efficiency is low. In addition, when hot air is directly exposed to cereals, there is a disadvantage that damage such as torso cracking is likely to occur in cereals.
[0004]
On the other hand, there is a cereal drying method using far infrared rays. In this method, the far-infrared radiation radiated from the heated wind tunnel surface of the far-infrared radiation device is absorbed by the cereal and dried, but the electromagnetic waves are directly absorbed by the cereal and most of the thermal energy is dried by the cereal. Energy efficient and less cereal damage.
[0005]
However, the wind tunnel cylinder in the conventional far-infrared radiation device has a high surface temperature on the hot air supply side connected to the hot air generating device including a burner and a blower, and the exhaust air side is relatively low. For this reason, the amount of energy of far infrared rays irradiated to cereals becomes uneven depending on the location, resulting in uneven drying. There was a case of damage.
[0006]
The above is not limited to the drying of cereals, but can be observed for the general drying of dried objects that are not suitable for rapid drying.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a far-infrared radiation device in which the amount of far-infrared radiation is substantially uniform in the longitudinal direction of the wind tunnel, and to provide a dryer without drying unevenness using the far-infrared radiation device.
[0008]
[Means for Solving the Problems]
[Far infrared radiation equipment]
In the wind tunnel cylinder with one end as the hot air supply side and the other end as the exhaust air side, the outer cylinder is fitted in a non-contact manner on the outer periphery near the hot air supply side, thereby the hot wind supply side portion that becomes the high temperature of the wind tunnel cylinder The far-infrared radiation is once received by the outer cylinder, and the far-infrared radiation adjusted from the outer cylinder is emitted again, so that the far-infrared radiation device as a whole makes the far-infrared radiation distribution uniform.
[0009]
A ventilation resistance plate is arranged inside the wind tunnel near the exhaust side, thereby adjusting the flow of hot air inside the wind tunnel, making the heat conduction from the hot wind to the surface portion of the wind tunnel almost equal, The far-infrared radiation device as a whole may have a uniform far-infrared radiation distribution.
In order to make the far-infrared radiation distribution uniform, it is preferable to use both the outer cylinder and the ventilation resistance plate.
[0010]
〔Dryer〕
A far-infrared radiation device having the above-described configuration is disposed in the path of the object to be dried, and far-infrared energy absorbed by the grain is used for drying.
It may be combined with a hot air drying path that crosses the path of the object to be dried, and the wind tunnel exhaust in the far-infrared radiation device may be connected to the hot air drying path.
There are cases where a preheating unit and a drying unit are provided in a passage of an object to be dried, and a far-infrared radiation device is disposed in the preheating unit.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show the overall structure of the vertical circulation type grain dryer 1, and the inside of the box-shaped body 2 is divided into an upper preheating unit 3 and a lower drying unit 4. A cerealing machine 5 such as a screw conveyor is disposed below. A cerealing machine 6 is arranged outside the machine body 2 so that the grains sent from the cerealing machine 5 are fed back to the preheating unit 3 again.
[0012]
In the preheating unit 3, a far-infrared radiation device 7 is horizontally mounted between the front wall 8 and the rear wall 9 of the airframe 2 at the lower central part (FIG. 1), and is an inverted V-shaped cross section in the front-rear direction above it. The lower part of the preheating part 3 is formed in the two hopper parts 12 (a, b) by the separating fluid 10 that is spread out in the shape of the shade and the guide body 11 protruding from the left and right side walls. The separation fluid 10 is formed of a porous steel plate provided with holes on the entire surface so that grains do not escape, or a non-porous steel plate.
[0013]
The upper part of the preheating chamber 3 is a wide and integral space, communicates with the discharge port of the cerealing machine 6, and a grain body 13 is arranged on the ceiling. The milled grain 13 is driven and rotated by a motor.
[0014]
The drying unit 4 is formed spatially continuously in the lower part of the preheating chamber 3, and has a cylindrical hot air passage 14 that is horizontally installed from the front wall 8 to the rear wall 9 of the machine body 2 in the lower center part. And cylindrical exhaust passages 15 (a, b) disposed on both lower sides thereof. Reference numerals 16 and 17 are separation fluids.
[0015]
The lower half wall surface 18 (a, b) of the hot air passage 14 and the inner side wall surface 19 (a, b) of the exhaust air passage 15 are formed of porous steel plates, and the lower half wall surface 18 a of the hot air passage 14 and the exhaust air passage are formed. Fifteen inner side wall surfaces 19a, similarly, the lower half wall surface 18b and the inner side wall surface 19b are arranged in parallel with a narrow space to constitute a hot air drying path 20 (a, b).
The hot-air drying path 20 (a, b) is inclined downward in the center, and a fixed amount feeding device 21 such as an impeller is disposed at each lower end.
[0016]
The upper part of the drying unit 4 is a wide and integral space, and the far-infrared radiation device 7 is exposed upward.
The lower part of the drying unit 4 is configured in a hopper shape, and the cereal feeder 5 is arranged in the center of the bottom part.
[0017]
The far-infrared radiation device 7 (FIG. 4) includes a wind tunnel cylinder 22 and first and second outer cylinders 23 and 24, a ventilation resistance plate 25, and a hot air generator 28 composed of a burner 26 and a blower 27. The hot air generating device 28 is disposed outside the airframe 2 and connected to one end of the wind tunnel cylinder 22, and the other end (exhaust air side) of the wind tunnel cylinder 22 is connected to one end (hot air) of the hot air path 14 through the air path 29. Connected to the supply side). Further, the first and second outer cylinders 23 and 24 are fitted into the outer periphery of the wind tunnel cylinder 22 near the hot air supply side in a non-contact manner, and the first outer cylinder 23 is inserted from the second outer cylinder 24. The second outer cylinder 24 is long and is located closer to the hot air supply side of the first outer cylinder 23.
[0018]
The ventilation resistance plate 25 is disposed inside the wind tunnel cylinder 22 near the exhaust side, and has an area capable of blocking about 20 to 50% of the cross section of the ventilation path inside the wind tunnel cylinder.
[0019]
The wind tunnel cylinder 22, the outer cylinders 23 and 24 and the ventilation resistance plate 25 are made of stainless steel. The wind tunnel cylinder 22 and the outer cylinders 23 and 24 are made of a material (alumina-based, A paint (for example, high-efficiency radiation paint B-600 manufactured by Okitsumo Co., Ltd.) using a powder of silica-based or titania-based ceramics as a pigment is applied. When the surface temperature of the wind tunnel cylinder 22 is heated to 300 to 600 ° C., the paint emits far-infrared rays having a wavelength of 2.9 to 5.0 μm from the surface almost uniformly. And the grain has the characteristic of absorbing far infrared rays in this region well.
[0020]
In FIG. 1, the code | symbol 30 is an exhaust fan, and is attached to the terminal of the exhaust path 15 (a, b).
[0021]
In the grain dryer 1 in an operating state (FIG. 2), the grain stuck to the preheating unit 3 is guided to the separation fluid 10 and the guide body 11 and gradually moves down the hopper unit 12 (a, b). Moving. During this time and while passing through the hopper part 12 (a, b) and being deposited on the upper part of the drying part 4, the grain absorbs the far-infrared radiation emitted by the far-infrared radiation device 7, and its energy This raises the grain temperature from the inside.
[0022]
The hot air generator 28 of the far-infrared radiation device 7 is operating, and hot air is supplied to the wind tunnel cylinder 22. At this time, the wind tunnel cylinder 22 has a surface temperature distribution that is inevitably high on the hot air supply side and low on the exhaust side because of the change in the amount of heat of the hot air passing through the wind tunnel cylinder 22. However, since the outer cylinders 23 and 24 are fitted on the outer periphery of the wind tunnel cylinder 22 on the hot air supply side, the outer cylinders 23 and 24 receive far infrared rays from the high-temperature portion of the wind tunnel cylinder 22 and they themselves become far away. It looks like it emits infrared rays. Further, since the outer cylinders 23 and 24 are fitted to the wind tunnel cylinder 22 in a non-contact state with each other, that is, with an air layer, energy from the high temperature portion of the wind tunnel cylinder 22 is diffused. However, the surface temperature of the outer cylinders 23 and 24 is lower than the high temperature portion of the wind tunnel cylinder 22.
[0023]
For this reason, by adjusting the thickness of the air layer and the length of the outer cylinders 23, 24, the far-infrared radiation amount of this part can be adjusted to substantially the same amount as the other parts of the wind tunnel cylinder 22. In particular, it is possible to cope with a portion that becomes high temperature by multiplexing the outer cylinders in a non-contact manner like the second outer cylinder 24 with respect to the first outer cylinder 23. Note that the lengths of the multiple outer cylinders may be arbitrarily selected according to the temperature adjustment. In some cases, the lengths of the outer cylinders may be the same as those of the wind tunnel cylinder 22 (the first outer cylinder). The cylinder 23) may be shorter than the outer cylinder (the second outer cylinder 24) fitted outside.
[0024]
The surface temperature distribution of the wind tunnel cylinder 22 can also be adjusted by the ventilation resistance plate 25 disposed inside the wind tunnel cylinder 22 near the exhaust side. That is, the hot air inside the wind tunnel cylinder is turbulent and stirred by the ventilation resistor 25 by the ventilation resistance plate 25, and the heat conduction time with respect to the wall surface of the wind tunnel cylinder 22 becomes longer, so the surface temperature of the wind tunnel cylinder 22 is increased. It can be raised in the vicinity of the ventilation resistor 25.
[0025]
The surface temperature distribution of the wind tunnel cylinder 22 can be adjusted by the outer cylinders 23 and 24 or the ventilation resistor 25 as described above, but it is preferable to combine both.
In any case, the outer cylinders 23 and 24 and the ventilation resistance plate 25 are means for equalizing the temperature of the wind tunnel cylinder surface.
[0026]
The grains that have moved to the drying unit 4 are guided to the hot-air drying path 20 (a, b) according to the separation fluids 16 and 17 and slowly move downward there. During this time, moisture is removed by hot air (temperature-adjusted) blown from the hot air passage 14 across the hot air drying passage 20 (a, b) to the exhaust air passage 15 (a, b). At this time, the grain is preheated to the inside by the far-infrared radiation device 7 so that the movement of the internal moisture is active, and the internal moisture is uniformly moved to the surface layer portion, so that it is dried by hot air. Efficiency is higher than usual. Moreover, drying with little unevenness is performed for every grain.
[0027]
Exhaust air as the far-infrared radiation device 7 is supplied to the hot air passage 14 from the wind tunnel cylinder 22 of the far-infrared radiation device 7 through the air passage 29, and the exhaust air containing moisture in the hot air drying passage 20 is exhausted. 15 (a, b) is sucked into the exhaust fan 30 and discharged to the outside. In this method, the waste heat of the far-infrared radiation device 7 can be used effectively, and the amount of adjustment of the temperature of the hot air supplied to the hot air passage 14 is reduced, so that the thermal efficiency is higher than that of normal hot air drying.
[0028]
The grains that have passed through the hot-air drying path 20 (a, b) are collected in the portion of the grain feeder 5, sent to the grain raising machine 6 by the grain feeder 5, and transferred again to the preheating unit 3. This circulation is performed until a predetermined moisture content is reached.
[0029]
As in this embodiment, when the preheating unit 3 by the far-infrared radiation device 7 is arranged at the upper part of the airframe 2 and the drying unit 4 having the hot air drying path 20 is arranged at the lower part, an existing hot air dryer is used. And since it is only necessary to arrange the far-infrared radiation device 7 in the upper part of the storage room, it is economical. Moreover, when the far-infrared radiation device 7 is arranged in the upper part of the storage room, there are few things that obstruct far-infrared radiation such as a steel plate below, and far-infrared radiation can be used efficiently.
[0030]
In addition, it is also possible to dry cereals (to-be-dried object) only by irradiation of far infrared rays, without performing hot air drying.
[0031]
5 to 8 show other embodiments relating to the far-infrared radiation device 7, and one end of the sub-cylinder 31 is connected to the wind exhaust side of the wind tunnel cylinder 22 and is arranged in parallel with the wind tunnel cylinder 22. The other end of the sub cylinder 31 is connected to one end of the hot air passage 14 through the air passage 29.
[0032]
In this embodiment, the hot air generator 28 is located on the front wall 8 side (FIG. 6), but the amount of heat emitted from the sub-cylinder 31 is used in an auxiliary manner in accordance with the action of far-infrared rays from the wind tunnel cylinder 22. Can do.
The sub-cylinder 31 is also made of stainless steel like the wind tunnel cylinder 22, and a highly efficient far-infrared radiation paint may be applied to at least the outer peripheral surface.
[0033]
In FIG. 7, in the far-infrared radiation device 7 including the sub cylinder 31, the ventilation resistance plate 25 is visible inside the wind tunnel cylinder 22. Moreover, the outer cylinders 23 and 24 are visible in FIG. The above is an example of the embodiment, and the heat source of the hot air generator may use electric heat other than the burner.
[0034]
【The invention's effect】
According to the configurations of the first and fifth aspects, the amount of far infrared rays emitted from the far infrared radiation device can be made substantially uniform in the longitudinal direction of the wind tunnel cylinder by the outer cylinder or the ventilation resistance plate.
According to the structure of Claim 2, the amount of far infrared rays emitted from the far-infrared radiation device can be made more precise and uniform in the longitudinal direction of the wind tunnel cylinder by the combination of the outer cylinder and the ventilation resistor. .
[0035]
According to the configurations of claims 3 and 4, the high temperature portion of the wind tunnel can be appropriately dealt with with a simple structure, and the amount of far infrared rays emitted by the far infrared radiation device can be reduced. It can be made substantially uniform in the longitudinal direction.
According to the structure of Claim 6, the amount of radiation | emission of far infrared rays is increased and it can be made to act efficiently with respect to a grain.
[0036]
According to the structure of Claim 7, the calorie | heat amount which a subcylinder emits can be made to act supplementarily to the effect | action of the far infrared rays which a wind tunnel cylinder emits, and a drying operation etc. can be performed efficiently.
According to the structure of Claim 8, a to-be-dried material is dried gently and there is little danger that a to-be-dried material will be denatured or damaged compared with hot air drying.
[0037]
According to the structure of Claim 9, a heat efficient dryer can be obtained.
According to the structure of Claim 10, a to-be-dried object can be efficiently dried with the combination of the general preheating of the to-be-dried object by far infrared rays, and the forced water removal effect | action by hot-air drying.
[Brief description of the drawings]
[Fig. 1] Partially cutaway side view of the grain drying device [Fig. 2] Longitudinal sectional view of the grain drying device [Fig. 3] Front view of the grain drying device [Fig. 4] Side view of the far infrared radiation device [Fig. Plan view of infrared radiation device (another embodiment)
FIG. 6 is a partially cutaway side view of a grain drying apparatus (another embodiment).
7 is a cross-sectional view taken along the line AA in FIG. 5; FIG. 8 is a cross-sectional view taken along the line BB in FIG. 5;
DESCRIPTION OF SYMBOLS 1 Grain dryer 2 Machine 3 Pre-drying part 4 Drying part 5 Graining machine 6 Graining machine 7 Far-infrared radiation device 8 Front wall 9 Rear wall 10 Fluid 11 Guide body 12 (a, b) Hopper part 13 Flour body 14 Hot air passage 15 (a, b) Exhaust air passage 16 Divided fluid 17 Divided fluid 18 (a, b) Lower half wall surface 19 (a, b) Internal side wall surface 20 (a, b) Hot air drying passage 21 Quantitative delivery device 22 wind tunnel 23 first outer cylinder 24 second outer cylinder 25 ventilation resistance plate 26 burner 27 blower 28 hot air generator 29 air passage 30 exhaust fan 31 sub-cylinder

Claims (10)

一端を熱風供給側、他端を排風側とした風胴筒と風胴筒の熱風供給側寄りの外周に非接触状に嵌挿された外筒を備え、外筒を温度均一化手段としていることを特徴とした遠赤外線放射装置。A wind tunnel cylinder having one end as a hot air supply side and the other end as a discharge side, and an outer cylinder fitted in a non-contact manner on the outer periphery of the wind tunnel near the hot air supply side, the outer cylinder serving as a temperature equalizing means Far-infrared radiation device characterized by having 一端を熱風供給側、他端を排風側とした風胴筒と風胴筒の熱風供給側寄りの外周に非接触状に嵌挿された外筒および風胴筒の排風側寄りの内部に配置された通風抵抗板を備え、外筒と通風抵抗板を温度均一化手段としていることを特徴とした遠赤外線放射装置。A wind tunnel cylinder with one end as the hot air supply side and the other end as the exhaust air side, an outer cylinder fitted in a non-contact manner on the outer periphery of the wind tunnel near the hot air supply side, and the inside of the wind tunnel cylinder near the exhaust air side A far-infrared radiation device comprising a ventilation resistance plate disposed in the outer tube and the temperature of the outer cylinder and the ventilation resistance plate as temperature uniforming means. 外筒が、風胴筒の熱風供給側寄りの外周に相互に非接触状に多重に嵌装されたものであることを特徴とする請求項1または請求項2に記載された遠赤外線放射装置。The far-infrared radiation device according to claim 1 or 2, wherein the outer cylinder is multiplely fitted in a non-contact manner on the outer periphery of the wind tunnel near the hot air supply side. . 外筒が、風胴筒本体の熱風供給側寄りの外周に非接触状に嵌装された第1の外筒と、第1の外筒の熱風供給側寄りの外周に非接触状に嵌装された第2の外筒を備えていることを特徴とする請求項1〜請求項3のいずれか一つに記載された遠赤外線放射装置。A first outer cylinder fitted in a non-contact manner on the outer periphery of the wind tunnel main body near the hot air supply side, and a non-contact fit in the outer periphery of the first outer cylinder near the hot air supply side The far-infrared radiation device according to any one of claims 1 to 3, further comprising a second outer cylinder. 一端を熱風供給側、他端を排風側とした風胴筒と風胴筒の排風側寄りの内部に配置された通風抵抗板とからなり、通風抵抗板を温度均一化手段としていることを特徴とした遠赤外線放射装置。It consists of a wind tunnel cylinder with one end on the hot air supply side and the other end on the exhaust side, and a ventilation resistance plate placed inside the wind tunnel near the exhaust side, and the ventilation resistance plate is used as a means for temperature equalization. Far-infrared radiation device characterized by. 少なくとも風胴筒の外面に、高い効率で遠赤外線を放射する塗料が塗布されていることを特徴とした請求項1〜請求項5のいずれか一つに記載の遠赤外線放射装置。The far-infrared radiation device according to any one of claims 1 to 5, wherein a paint that emits far-infrared radiation with high efficiency is applied to at least an outer surface of the wind tunnel. 風胴筒の排風側に副筒が接続され、風胴筒と平行に配置されていることを特徴とした請求項1〜請求項6のいずれか一つに記載された遠赤外線放射装置。The far-infrared radiation device according to any one of claims 1 to 6, wherein a sub-cylinder is connected to the exhaust side of the wind tunnel and is arranged in parallel with the wind tunnel. 被乾燥物の通路に請求項1〜請求項7に記載するいずれか一つの遠赤外線放射装置が配置されていることを特徴とした乾燥機。A dryer according to any one of claims 1 to 7, wherein the far-infrared radiation device according to any one of claims 1 to 7 is disposed in a path of an object to be dried. 被乾燥物の通路に請求項1〜請求項7に記載するいずれか一つの遠赤外線放射装置が配置されると共に、被乾燥物の通路を横切る熱風乾燥路が形成されており、遠赤外線放射装置における風胴筒の熱風供給側に熱風発生装置が接続され、風胴筒の排風側が熱風乾燥路に接続されていることを特徴とした乾燥機。The far-infrared radiation device according to any one of claims 1 to 7 is disposed in a path of the object to be dried, and a hot air drying path is formed across the path of the object to be dried. A hot air generator is connected to the hot air supply side of the wind tunnel cylinder, and the exhaust air side of the wind tunnel cylinder is connected to the hot air drying path. 被乾燥物の通路に予備加熱部と乾燥部を備え、予備加熱部は前後方向の断面で逆V字型となる笠形に広がって配置された分流体と左右の側壁から張出した案内体とで形成されたホッパー部を有し、笠形をした分流体の内側に請求項1〜7のいずれか一つに記載の遠赤外線放射装置が配置され、乾燥部に熱風乾燥路が形成されていることを特徴とした乾燥機。A preheating unit and a drying unit are provided in the path of the object to be dried, and the preheating unit is composed of a fluid separated from the front and rear cross-sectionally arranged in an inverted V shape and a guide body extending from the left and right side walls. The far-infrared radiation device according to any one of claims 1 to 7 is disposed inside the shaded fluid having a formed hopper portion, and a hot air drying path is formed in the drying portion. A dryer characterized by.
JP26369895A 1995-09-19 1995-09-19 Far-infrared radiation device and dryer Expired - Lifetime JP3657327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26369895A JP3657327B2 (en) 1995-09-19 1995-09-19 Far-infrared radiation device and dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26369895A JP3657327B2 (en) 1995-09-19 1995-09-19 Far-infrared radiation device and dryer

Publications (2)

Publication Number Publication Date
JPH0979748A JPH0979748A (en) 1997-03-28
JP3657327B2 true JP3657327B2 (en) 2005-06-08

Family

ID=17393100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26369895A Expired - Lifetime JP3657327B2 (en) 1995-09-19 1995-09-19 Far-infrared radiation device and dryer

Country Status (1)

Country Link
JP (1) JP3657327B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918219A (en) * 2017-03-16 2017-07-04 苏州捷赛机械股份有限公司 Drying machine hot blast guide frame
CN109966765A (en) * 2019-05-06 2019-07-05 内蒙古恒光大药业股份有限公司 A kind of vacuum belt drier

Also Published As

Publication number Publication date
JPH0979748A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
JP3657327B2 (en) Far-infrared radiation device and dryer
JP3865030B2 (en) Grain drying equipment
CN107024105A (en) Grain drier
KR101459827B1 (en) The drying machine for agricultural and marine products
JP3835636B2 (en) Far infrared grain dryer
WO1988008949A1 (en) Method and apparatus for drying planar material, e.g., veneer sheet
JP4010556B2 (en) Grain dryer
JP3494530B6 (en) Grain dryer
JP3811694B2 (en) Grain dryer
JP2568913B2 (en) Grain far-infrared hot air dryer
JP3043572B2 (en) Far-infrared grain dryer
KR0129801B1 (en) Method and apparatus for low temperature dry
JP2005114238A (en) Circulation type grain dryer
CN212339857U (en) Built-in heating temperature control structure of mesh belt type dryer
JP2552961Y2 (en) Dehumidifying grain drying equipment
KR20030013876A (en) A dryer for using and original infrared rays
JP2002147957A (en) Grain drier
JP2003130543A (en) Grain drying method and grain dryer
JP4804214B2 (en) Grain drying equipment
JPH0522834B2 (en)
JPH0869857A (en) Ultraviolet ray and infrared ray radiating device
JP2005009732A (en) Grain far-infrared dryer
JP3332789B2 (en) Grain far-infrared dryer
JP4874760B2 (en) Far-infrared grain dryer
JP2557406Y2 (en) Grain dryer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term