JP3656395B2 - 3D fiber structure - Google Patents

3D fiber structure Download PDF

Info

Publication number
JP3656395B2
JP3656395B2 JP06678098A JP6678098A JP3656395B2 JP 3656395 B2 JP3656395 B2 JP 3656395B2 JP 06678098 A JP06678098 A JP 06678098A JP 6678098 A JP6678098 A JP 6678098A JP 3656395 B2 JP3656395 B2 JP 3656395B2
Authority
JP
Japan
Prior art keywords
thickness direction
yarn
fiber structure
dimensional fiber
substrate portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06678098A
Other languages
Japanese (ja)
Other versions
JPH11269755A (en
Inventor
義治 安居
藤夫 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP06678098A priority Critical patent/JP3656395B2/en
Publication of JPH11269755A publication Critical patent/JPH11269755A/en
Application granted granted Critical
Publication of JP3656395B2 publication Critical patent/JP3656395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は三次元繊維構造体に係り、詳しくは補強リブを有する板状の三次元繊維構造体に関するものである。
【0002】
【従来の技術】
繊維強化複合材(FRP複合材)は軽量の構造材料として広く使用されている。複合材用補強基材として三次元織物(三次元繊維構造体)がある。この三次元織物を骨格材として、樹脂あるいは無機物をマトリックスとした複合材はロケット、航空機、自動車、船舶及び建築物の構造材として幅広い用途が期待されている。
【0003】
そして、航空機の胴体等に使用されるスティフナー付プレートを、三次元繊維構造体を骨格材とした耐衝撃性に優れた三次元繊維構造体複合材で製作することが考えられている。例えば、NASA(米国航空宇宙局)の報告書NASA/TP−97−206234には、図16(a)に示すように、ユニ・ウィーブ織物(Uni-Weave fabric)を複数枚積層して形成したT字状の補強リブ70と、図16(b)に示すように、ユニ・ウィーブ織物を複数枚積層して形成した平板71とを結合糸で縫い合わせて製造した三次元繊維構造体W(図16(c)に図示)が開示されている。補強リブ70及び基板71はそれぞれ配向角が0°、45°、−45°及び90°のユニ・ウィーブ織物を複数枚積層して面内4軸とし、結合糸を含めて5軸構成となっている。
【0004】
特開平1−207465号公報には、平板部上に断面T字状やI字状の突条部が複数本形成された異形断面の三次元織物と、その製造方法が開示されている。この三次元織物は、三次元織物の断面形状に対応して多数本の長さ方向糸を複数行、複数列に配列し、幅方向糸を隣接する長さ方向糸群の行間に、長さ方向糸と直交する状態で幅方向に往復させながら挿入する工程と、垂直方向糸を長さ方向糸の列間に長さ方向糸と直交する状態で上下方向に往復させながら挿入する工程とを繰り返して製造される。
【0005】
特開平3−286841号公報には、平板状のプリプレグと、ほぼL字状に屈曲させた2枚のプリプレグを接合してほぼT字状に形成したプリプレグとを図16と同様に接合した状態でファイバで縫合する複合材構造物の製造方法が開示されている。
【0006】
特開平6−184906号公報には、複数の板状部が接続部において屈曲状態で連続する形状に形成された三次元繊維構造体が開示されている。この三次元繊維構造体は隣接する板状部の接続部の強度を高めるため、両板状部に跨がって連続する糸をその構成要素として持っている。この三次元繊維構造体は屈曲状態で連続する板状部を構成するように、糸の配列方向が異なる糸層が所定数積層形成された積層糸群を厚さ方向糸で結合して構成する。また、二つの三次元繊維構造体を合体して異なる断面形状の三次元繊維構造体を製造する方法が開示されている。例えば、コ字形の三次元繊維構造体を背中合わせに合体させてH状断面の三次元繊維構造体を製造することが開示されている。
【0007】
また、特開平4−289243号公報には、複数の板状部がT字状に接合された接合部を有する形状に形成され、各板状部がその厚さ方向の成分を含む少なくとも3軸で構成され、隣接する板状部の接合部と交差する方向に延びるとともに各板状部の厚さ方向と直交する面に沿って配列され、かつ接合部を挟む両板状部に跨って連続する糸をその構成要素として持つ三次元織物(三次元繊維構造体)が開示されている。この三次元織物は図17に示すように、多数の規制部材72に貫通された状態で断面L字状に形成された積層糸群73,74と、平板状の積層糸群75を組み合わせ、各積層糸群73〜75を貫通する規制部材72を順次厚さ方向糸zと順次置換して積層糸群73〜75を結合することにより形成される。
【0008】
【発明が解決しようとする課題】
特開平1−207465号公報に開示された三次元織物は、平板部や突条部が面内2軸で厚さ方向の糸を含めても3軸構成で、かつ屈曲状態で連続する面に跨って配列される糸がないため、複合材を形成した時の物性が不十分となる。
【0009】
その他の従来技術の三次元繊維構造体(三次元織物)は、各板状部が少なくとも面内3軸で構成され、かつ屈曲状態で連続する面に跨って配列される糸が存在する。従って、特開平1−207465号公報に開示された三次元織物を骨格材とした複合材より物性(特に強度や耐衝撃性)の優れた複合材を形成することができる。
【0010】
しかし、前記従来の三次元繊維構造体は、平板部と補強リブとを結合する結合糸(厚さ方向糸)は、いずれも平板部の厚さ方向と平行に配列されるため、平板部及び補強リブの平面が対向する位置においてのみ両者を貫いて結合に寄与する。従って、補強リブの屈曲部と平板部とが対向する箇所、即ち、図17において鎖線で囲んだ領域では、両者を貫いて結合に寄与する結合糸が存在しない。その結果、複合材を製造したときに、応力集中が生じやすい箇所の強度が不十分となり、それを補うため三次元繊維構造体全体の強度を高める必要が生じて、三次元繊維構造体が厚くなるという問題がある。
【0011】
本発明は前記の問題点に鑑みてなされたものであって、その目的は基板部と補強リブとが厚さ方向糸により結合された三次元繊維構造体の、補強リブと基板部との接続部の強度を大きくして、同じ要求物性であれば複合材を薄くできる三次元繊維構造体を提供することにある。
【0012】
【課題を解決するための手段】
前記の目的を達成するため、請求項1に記載の発明では、三次元繊維構造体で構成された基板部と、三次元繊維構造体で構成された補強リブとが厚さ方向糸により結合された三次元繊維構造体であって、前記補強リブはほぼ直角に屈曲された状態で連続する板状部を有し、前記板状部の一つが前記基板部に垂直となるように基板部に結合されるとともに、前記補強リブと前記基板部とを結合する厚さ方向糸は、前記補強リブと前記基板部との平面部が対応する位置においては、前記基板部の厚さ方向と平行に配列され、前記補強リブの屈曲部と対応する位置においては、前記基板部の厚さ方向に対して交差する状態で屈曲部及び基板部を貫通するように配列されている。
【0013】
請求項2に記載の発明では、請求項1に記載の発明において、前記補強リブは少なくとも前記基板部との結合部付近がT字状に形成されている。
請求項3に記載の発明では、請求項1又は請求項2に記載の発明において、前記基板部及び前記補強リブは、それぞれ複数の糸層を積層して形成された面内3軸以上の配向となる積層糸群と、その厚さ方向に配列された厚さ方向糸とを含む少なくとも4軸で構成されている。
【0014】
請求項4に記載の発明では、請求項3に記載の発明において、前記基板部、補強リブ及び厚さ方向糸が全てカーボン糸で形成されている。
請求項1に記載の発明の三次元繊維構造体では、補強リブの屈曲部と対応する位置において、基板部の厚さ方向に対して交差する状態で屈曲部及び基板部を貫通するように配列された厚さ方向糸が存在する。従って、補強リブに横方向からの力が作用したとき、前記厚さ方向糸がその力を担うため、強度が高くなる。
【0015】
請求項2に記載の発明では、請求項1に記載の発明において、補強リブは少なくとも基板部との結合部付近がT字状に形成されているため、横方向のどちら側から力が作用しても曲げに対して良好な強度を確保できる。
【0016】
請求項3に記載の発明では、請求項1又は請求項2に記載の発明において、基板部及び補強リブは、それぞれ複数の糸層を積層して形成された面内3軸以上の配向となる積層糸群と、その厚さ方向に配列された厚さ方向糸とを含む少なくとも4軸で構成されているため、物性(特に強度や耐衝撃性)の優れた複合材を得ることができる。
【0017】
請求項4に記載の発明では、請求項3に記載の発明において、前記基板部、補強リブ及び厚さ方向糸が全てカーボン糸で形成されているため、他の材質製の糸やカーボン糸と他の材質製の糸とを組み合わせて使用した場合に比較して、複合材としたときの物性が向上する。
【0018】
【発明の実施の形態】
(第1の実施の形態)
以下、本発明を具体化した第1の実施の形態を図1〜図12に従って説明する。図1及び図2に示すように、三次元繊維構造体Wは基板部1と補強リブ2とが厚さ方向糸zにより結合されて構成されている。基板部1は平板状に形成され、補強リブ2は基板部1との結合部付近がT字状となる断面形状に形成されている。この実施の形態では補強リブ2はL字状断面の三次元繊維構造体WLを接合して、全体の断面形状がT字状に形成されている。補強リブ2はほぼ直角に屈曲された状態で連続する板状部2a,2b,2cを有し、板状部2a,2b,2cのうちの一つの板状部2aが基板部1に垂直となるように基板部1に結合されている。補強リブ2は互いに平行に複数(この実施の形態では2個)設けられている。
【0019】
基板部1及び補強リブ2は、それぞれ複数の糸層(x糸層、y糸層及びバイアス糸層)を積層して形成された面内4軸の配向となる積層糸群3と、その厚さ方向に配列された厚さ方向糸zとを含む5軸の三次元繊維構造体で構成されている。図3(a)〜(d)はL字状断面の三次元繊維構造体WLの積層糸群3を構成する各糸層の糸の配列を示す模式図である。
【0020】
図3(b)に示すように、x糸層は三次元繊維構造体の厚さ方向と直交する面内において、幅方向又は長さ方向の一方(この実施の形態では幅方向)に沿って配列された第1の面内配列糸xからなり、1本の糸が折り返し状に配列されて形成されている。図3(a)に示すように、y糸層はx糸層と平行な面内で第1の面内配列糸xと直交する方向に配列された第2の面内配列糸yからなり、1本の糸が折り返し状に配列されて形成されている。図3(c),(d)に示すように、バイアス糸層はx糸層と平行な面内で両面内配列糸x,yに対して所定の角度(この実施の形態では45°及び−45°)で交差するように折り返し状に平行に配列されたバイアス糸B1 ,B2 からなる。バイアス糸B1 ,B2 は屈曲部4と交差する状態で両板状部2a,2bに跨がって連続するように配列されている。また、基板部1を構成するx糸層、y糸層及びバイアス糸層も同様に構成されている。即ち、基板部1及び補強リブ2は、配向角が90°の第1の面内配列糸xと、配向角が0°の第2の面内配列糸yと、配向角が45°のバイアス糸B1 と、配向角が−45°のバイアス糸B2 とで積層糸群3が構成されている。なお、配向角とは糸が三次元繊維構造体Wの長手方向となす角度を意味する。
【0021】
図1に示すように、補強リブ2と基板部1とはその平面部が対応する位置においては、厚さ方向糸zが基板部1の厚さ方向と平行に配列されている。また、補強リブ2の屈曲部4と対応する位置においては、厚さ方向糸zは基板部1の厚さ方向に対して交差する状態で、屈曲部4及び基板部1を貫通するように配列されている。基板部1の厚さ方向と交差するように配列される厚さ方向糸zが基板部1となす角度θは、40°〜70°の範囲が好ましい。厚さ方向糸zは基板部1の表面側(補強リブ2が接合される面と同じ側)で折り返すように底面側から挿入されるとともに、表面側において幅方向に配列された抜け止め糸(図示せず)により抜け止めされている。厚さ方向糸zが抜け止め糸と共同で各糸層を締め付けることにより、各糸層が結合されている。
【0022】
なお、各糸を構成する繊維の材質としては複合材の用途に応じてカーボン繊維、ガラス繊維、セラミック繊維、ポリアラミド繊維等種々のものが使用される。この実施の形態においては、各糸としてカーボン糸が使用されている。カーボン糸にはカーボン繊維のロービング(トウ)が使用されている。ロービング(トウ)とは細い単繊維のフィラメントを多数本束ねた実質無撚りの繊維束を意味する。
【0023】
前記のように構成された三次元繊維構造体Wは繊維強化複合材の強化材(骨格材)として使用され、マトリックスとして樹脂や無機物が使用される。例えば、カーボン/カーボン複合材を構成する場合は、三次元繊維構造体Wに樹脂を含浸、硬化させた後、焼成して製作する。
【0024】
前記のように構成された三次元繊維構造体Wを骨格材とした複合材の補強リブに横方向からの荷重(力)が作用した場合、補強リブ2の屈曲部4(コーナ部)に大きな応力が作用する。第2の面内配列糸y及びバイアス糸B1 ,B2 が屈曲部4と交差する方向に延びるとともに両板状部2a,2b、2a,2cに跨がって配列されているため、それらの糸が屈曲部4に作用する応力に耐える方向の力を分担するように有効に寄与する。また、屈曲部4及び基板部1を貫通するように配列された厚さ方向糸zも、屈曲部4に作用する応力に補強リブに作用する力が作用したとき、前記厚さ方向糸zがその力に耐える方向の力を分担するため、複合材の強度が向上する。
【0025】
次に前記のように構成された三次元繊維構造体Wの製造方法の一例を説明する。三次元繊維構造体Wを製造する場合、図4に示すようなほぼL字状の枠体5を使用して、本願出願人が先に提案した方法(特開平9−137336号公報)でL字状の三次元織物(三次元繊維構造体)を2体製作する。また、四角形状の枠体を使用して基板部1となる平板状の積層糸群3を1体製作する。
【0026】
L字状の枠体5は厚さ方向糸zの挿入区域と対応する領域6を囲むように形成された本体5aと、本体5aの外側に取り外し可能に所定ピッチで立設された多数の規制部材としてのピン7と、枠体5のコーナ部に取り外し可能にねじ(図示せず)により固定された支持バー8とから構成されている。支持バー8の角部にもピン7が取り外し可能に嵌合されている。四角形状の枠体は四角形の枠体本体に、所定ピッチでピンが取り外し可能に立設されている。
【0027】
積層糸群3に厚さ方向糸zを挿入する厚さ方向糸挿入装置は、特開平8−218249号公報、特開平9−137336号公報で本願出願人が提案した装置と基本的に同様に構成されている。次に厚さ方向糸挿入装置を図6に従って説明する。図6は厚さ方向糸挿入装置9の概略部分平面図である。
【0028】
厚さ方向糸挿入装置9は積層糸群3が配列された枠体5を取付け部材10を介して一対の支持ブラケット11間(片側のみ図示)に支持し、厚さ方向糸zを1列ずつ同時に挿入するようになっている。取付け部材10はボルトにより枠体5に固定されるとともに、支持ブラケット11の支持片12にボルト13により固定されるようになっている。
【0029】
厚さ方向糸挿入装置9のベースプレート14の前側(図6の下側)には支持テーブル15が図6の左右方向に移動可能に配設され、支持テーブル15上に支持ブラケット11が立設されている。支持テーブル15は図示しない送り装置により所定ピッチずつ移動されるようになっている。なお、図6に示す支持テーブル15の位置は、厚さ方向糸zの挿入がほとんど終了に近づいた時点における位置である。
【0030】
ベースプレート14には支持テーブル15より後側に一対のブラケット16(一方のみ図示)が立設され、両ブラケット16間には一対のガイドロッド17が支持テーブル15の移動方向と平行に架設されている。ガイドロッド17には支持プレート18が摺動可能に支持されている。支持プレート18はブラケット16に固定されたエアシリンダ19のピストンロッド19aに連結され、エアシリンダ19の作動により所定の距離を往復移動可能となっている。
【0031】
支持プレート18の前後両端には一対の支持ブラケット20が立設され、支持ブラケット20間に平行に架設されたガイドロッド(図示せず)に移動体21が摺動可能に支持されている。移動体21の前端には針支持体22が固定され、針支持体22の前部に厚さ方向糸挿入針(以下、単に挿入針という)23がピン7の配列ピッチと対応する所定ピッチで1列に水平に固定されている。針支持体22は前側の支持ブラケット20に形成された孔(図示せず)を貫通する状態で配設されている。
【0032】
移動体21はモータ24により駆動されるボールネジ機構25の作動により、針支持体22とともに待機位置と作用位置とに移動される。挿入針23は待機位置では支持ブラケット11に支持された積層糸群3と係合不能となり、作用位置では針孔23a(図11に図示)が積層糸群3の反対側となる位置まで積層糸群3を貫通する。
【0033】
支持ブラケット20には上下一対の支持ロッド26が支持ブラケット20を貫通した状態で摺動可能に支持されている。支持プレート18には後側の支持ブラケット20寄りに、ブラケット27を介してエアシリンダ28が前後方向に延びるように固定されている。両支持ロッド26は後端側が連結板29を介して互いに連結され、連結板29がエアシリンダ28のピストンロッド28aに連結されている。両支持ロッド26の前端には穿孔針支持体30が固定され、穿孔針支持体30には穿孔針31が挿入針23と対応した所定ピッチで1列に固定されている。穿孔針31の列はエアシリンダ19の作動時における支持プレート18の移動距離と等しい間隔を保って挿入針23の列と平行に配置されている。エアシリンダ28の作動により穿孔針支持体30は穿孔針31が支持ブラケット11に支持された積層糸群3と係合不能な待機位置と、積層糸群3を貫通する作用位置とに移動される。
【0034】
ベースプレート14上には前側の支持ブラケット20の近傍にエアシリンダ32が前後方向に延びるように配設され、そのピストンロッド32aの先端にブラケット33を介して押圧部材34が固定されている。押圧部材34は挿入針23列の配列方向に沿って延びる断面L字状に形成され、挿入針23あるいは穿孔針31の通過を許容する櫛歯部を備え、挿入針23あるいは穿孔針31を挟んだ状態で積層糸群3を押圧可能となっている。
【0035】
押圧部材34は支持ブラケット11に支持された積層糸群3に対して挿入針23及び穿孔針31の待機位置側に配設され、挿入針23列の挿入位置近傍において挿入針23列の移動方向に沿って移動可能に配設されている。エアシリンダ32の作動により押圧部材34は支持ブラケット11に支持された積層糸群3と係合して積層糸群3を挿入針23列の前進側へ押圧する作用位置と、積層糸群3と係合不能な待機位置とに移動される。
【0036】
支持ブラケット11に支持された積層糸群3を挟んで押圧部材34と反対側には、一対のプレスブロック35,36が配設されている。両プレスブロック35,36は積層糸群3との接触部の幅がピン7の配列ピッチより広く形成され、各プレスブロック35,36は積層糸群3の上方において別個に揺動可能に支持された一対のレバー(図示せず)の先端にそれぞれ固定されている。両プレスブロック35,36は押圧部材34と対向する位置でかつ、挿入針23又は穿孔針31の進入を許容する隙間が生じるように互いに近接して配設されている。そして、図示しないエアシリンダの作動による前記各レバーの揺動により、各プレスブロック35,36が積層糸群3を針列の後退側へ押圧する作用位置と、積層糸群3と係合不能な待機位置とに移動される。
【0037】
積層糸群3の支持位置の下方には挿入針23列が積層糸群3を貫通する位置と対応する位置に、抜け止め糸挿通用針(以下、単に抜け止め糸針という)37が挿入針23列の配列方向に沿って移動可能に配設されている(図11にその一部を図示)。抜け止め糸針37は先端にベラを有し、図示しない駆動装置により往復動されて、作用位置に配置されたときの挿入針23列に連なる厚さ方向糸zのループを貫通する作用位置と、積層糸群3と対応する位置から退避した待機位置とに配置されるようになっている。
【0038】
なお、図示の都合上、図1及び図2に示す概略図と、図4、図10及び図11等とでは、厚さ方向糸zの挿入ピッチと、枠体に立設されたピン7のピッチや本数、あるいは三次元繊維構造体Wの長さと幅との比等が異なる。
【0039】
次に前記のように構成された枠体5及び厚さ方向糸挿入装置9を使用して補強リブ2を有する三次元繊維構造体Wを製造する手順を説明する。
枠体5を支持ブラケットに固定した状態で、第1の面内配列糸x、第2の面内配列糸y及びバイアス糸B1 ,B2 がそれぞれピン7と係合する状態で折り返すようにして、図3(a)〜(d)に示すようにそれぞれ配列される。そして、図5に示すように、枠体5の外側にx糸層、y糸層及びバイアス糸層が所定の複数層積層された積層糸群3が形成される。また、四角形状の枠体上に第1の面内配列糸x、第2の面内配列糸y及びバイアス糸B1 ,B2 がそれぞれピンと係合する状態で折り返すようにして配列され、x糸層、y糸層及びバイアス糸層が所定の複数層積層された平板状の積層糸群3が形成される。
【0040】
なお、積層糸群3の密度を高めるとともに厚さを調整するため、各糸層の配列が完了するたび、あるいは適宜の糸層が形成された時点毎に、糸層が上から押圧部材で押圧されて積層糸群3が圧縮される。
【0041】
次に厚さ方向糸挿入装置9を使用して、L字状の両積層糸群3に厚さ方向糸zが公知の方法で挿入される。ただし、厚さ方向糸zはハンドリングを可能にする程度の粗い間隔で予備的に挿入される。そして、図7に示すように、厚さ方向糸zが粗く挿入されたL字状の三次元繊維構造体WLが2体作成される。
【0042】
次に2体の三次元繊維構造体WLを接合させて、ほぼT字状の三次元繊維構造体WTを形成する。このとき、二つの枠体5に挿通されているピン7の一部を共通化して、図8に示すように、2個の枠体5で三次元繊維構造体を支持した状態で、2体の三次元繊維構造体WLの接合部に、正規の密度で厚さ方向糸zが挿入される。L字状の積層糸群3に厚さ方向糸zを挿入するときと、T字状の三次元繊維構造体WTに厚さ方向糸zを挿入するときとで、枠体5を支持するのに異なる形状の支持片12が使用される。
【0043】
なお、一部のピン7を共通化する際、図7に示すように、一方の枠体5のピン7としてパイプを使用し、他方の枠体5のピン7として先端が尖ったピンを使用し、尖ったピン7をパイプ製のピン7に当接させて押し出すと、作業が容易になる。
【0044】
次にT字状の三次元繊維構造体WTの端部を基板部1に接合するサイズに合わせて所定の位置で切断して枠体5から取り外すと、図9に示すように、基板部1との接合部に粗いピッチで厚さ方向糸zが挿入されたT字状の三次元繊維構造体WTが得られる。なお、三次元繊維構造体WTを切断する際に積層糸群3を構成する糸が乱れないように、切断部近傍の厚さ方向糸zの挿入密度を高めておくのが好ましい。
【0045】
次に図10(a)に示すように、平板状の積層糸群3が形成された枠体38に治具39,40を使用して、T字状の三次元繊維構造体WTを基板部1に対する補強リブ2の所定の接合位置に取り付ける。治具39はほぼ門型に形成されるとともに、その両端にボルト挿通孔(図示せず)が形成された取付部39aを備えている。また、治具40を介して三次元繊維構造体WTの中央の板状部2aを挟持する挟持部39bが所定間隔で形成されている。治具40は図11に示すように、三次元繊維構造体WTとほぼ同じ長さの平板で形成されている。そして、図10(a)に示すように、各三次元繊維構造体WTはそれぞれ一対の治具40に挟まれた状態で治具39の挟持部39bに挟持される。治具39は六角穴付きボルト41により枠体38に固定される。
【0046】
次に枠体38を厚さ方向糸挿入装置9の支持ブラケット11に固定して、厚さ方向糸zの挿入を行う。図11は厚さ方向糸zの挿入状態を示す模式斜視図である。このとき、T字状の三次元繊維構造体WTあるいはL字状の積層糸群3への厚さ方向糸zの挿入時に使用されたプレスブロック35,36と異なる形状のプレスブロック42,43が使用される。図11に示すように、プレスブロック42,43には積層糸群3と対向する側に、T字状の三次元繊維構造体WT及び治具40と干渉しないための凹部44が形成されている。
【0047】
そして、支持テーブル15が挿入開始位置に配置され、挿入針23、穿孔針31、押圧部材34及びプレスブロック42,43が待機位置に配置された状態から積層糸群3及びT字状の三次元繊維構造体WTの積層糸群3との接合部への厚さ方向糸zの挿入作業が開始される。
【0048】
先ずエアシリンダ32が作動されて押圧部材34が作用位置に配置される。次に両プレスブロック42,43が作用位置に配置され、押圧部材34及び両プレスブロック42,43により積層糸群3は穿孔針31列と対応する箇所が圧縮状態に保持される。その状態でエアシリンダ28が作動されて穿孔針31が積層糸群3を貫通する位置まで前進した後、元の位置まで後退する。穿孔針31は押圧部材34及び両プレスブロック42,43にガイドされながら移動し、穿孔針31が多少曲がっていても穿孔針31は積層糸群3に対して垂直に挿通される。積層糸群3は押圧部材34及び両プレスブロック42,43によって押圧されているため、穿孔針31の前進時に各糸の配列が乱れることはない。積層糸群3を構成する繊維が押圧部材34及び両プレスブロック42,43の圧縮作用によりある程度密に配置された状態にあるため、穿孔針31の抜き跡に孔が形成される。
【0049】
次にエアシリンダ19が突出作動されて支持プレート18とともに穿孔針31列及び挿入針23列が移動され、挿入針23列が穿孔針31の抜き跡の孔と対向する位置に配置される。その状態でプレスブロック42が待機位置に配置された後、モータ24が作動され、挿入針23が前進して作用位置に配置される。挿入針23は針孔23aが積層糸群3の前方に出るまで積層糸群3に挿通される。挿入針23が前進端に達した後、モータ24が逆転されて挿入針23がわずかに後退させられる。その結果、積層糸群3から針孔23aに連なる厚さ方向糸zが抜け止め糸針37の通過を許容するループを形成した状態となる。
【0050】
次に抜け止め糸針37が作動され、抜け止め糸(図示せず)が前記ループに挿通される。その後、モータ24が逆転されて挿入針23が後退し、積層糸群3から離脱して待機位置に配置される。また、プレスブロック42が再び作用位置に配置される。この状態で張力調整部(図示せず)の作用により厚さ方向糸zが引き戻され、積層糸群3内に挿入された厚さ方向糸zが抜け止め糸により抜け止めされた状態で締付けられる。次にエアシリンダ19が作動され、支持プレート18とともに穿孔針31列及び挿入針23列が初期位置に戻される。また、エアシリンダ32が作動されて押圧部材34が待機位置に配置され、プレスブロック42,43も待機位置に配置される。以上により厚さ方向糸zの1回の挿入サイクルが完了する。そして、平板状の積層糸群3及びT字状の三次元繊維構造体WTの積層糸群3との接合部に対して、T字状の三次元繊維構造体WTの屈曲部4と対応する位置を除いた幅方向全域にわたって厚さ方向糸zが1列分挿入される。
【0051】
なお、図11では挿入針23及び穿孔針31の各ピッチが模式的に等ピッチに図示されているが、屈曲部4と対応する位置では、挿入針23及び穿孔針31は針支持体22及び穿孔針支持体30から取り外されている。
【0052】
次に支持テーブル15が厚さ方向糸zの挿入ピッチ分移動され、穿孔針31が積層糸群3への次回の厚さ方向糸挿入位置と対向する状態となる。以下、前記と同様にして順次厚さ方向糸zの挿入サイクルが実行される。そして、図10(b)に示すように、平板状の積層糸群3とT字状の三次元繊維構造体WTとが、その屈曲部4と対応する位置を除いた箇所において厚さ方向糸zで結合された三次元繊維構造体が形成される。
【0053】
次に基板部1及び補強リブ2の屈曲部4と対応する位置への厚さ方向糸zの挿入が行われる。このとき、図12に示すように、治具39,40を取り外し、枠体38を支持する支持ブラケット11と支持テーブル15の間に規制治具45を挟んだ状態で、支持ブラケット11を支持テーブル15に固定する。規制治具45は枠体38の角度を厚さ方向糸zの挿入角度と対応するように規制する役割を果たす。そして、屈曲部4と対応する位置に基板部1の厚さ方向に対して交差する状態で、厚さ方向糸zを屈曲部4及び基板部1を貫通するように挿入する。なお、治具39,40を取り付けたままで、厚さ方向糸zの挿入を行ってもよい。図12の角度で厚さ方向糸zの挿入を行った後、規制治具45を180°反転させた状態で支持ブラケット11を支持し、図12の状態に対して、枠体38が支持テーブル15と垂直な面に対して対称となる状態で、再び屈曲部4と対応する位置に厚さ方向糸zを挿入する。そして、厚さ方向糸zの挿入が終了した後、各ピン7が枠体38から取り外されて、基板部1の周縁が所定の位置で切断されて三次元繊維構造体Wの製造が完了する。
【0054】
この実施の形態では以下の効果を有する。
(1) 三次元繊維構造体Wの補強リブ2の屈曲部4と対応する位置においては、厚さ方向糸zが基板部1の厚さ方向に対して交差する状態で屈曲部4及び基板部1を貫通するように配列されている。従って、補強リブ2を単に接着あるいは一体成形した場合に比較して、基板部1と補強リブ2とが厚さ方向糸zにより結合された三次元繊維構造体Wの、補強リブ2と基板部1との接続部の強度が大きくなり、同じ要求物性であれば三次元繊維構造体Wを骨格材とした複合材を薄くできる。
【0055】
(2) 厚さ方向糸zによって結合される積層糸群3を構成する各糸層の糸が、ピン7(規制部材)を基準として折り返し状に配列されるため、糸を緊張した状態で配列でき、かつその状態で厚さ方向糸zが挿入される。従って、クロス(平面上の織物)を積層してステッチ縫いで各クロスを結合した三次元繊維構造体に比較して、糸の真直度が良好で高品質(物性が良い)の三次元繊維構造体Wが得られる。
【0056】
(3) 補強リブ2は少なくとも基板部1との結合部付近がT字状に形成されているため、横方向のどちら側から力が作用しても曲げに対して良好な強度を確保できる。
【0057】
(4) 三次元繊維構造体Wは基板部1及び補強リブ2とも、それぞれ複数の糸層を積層して形成された面内3軸以上(面内4軸)の配向となる積層糸群3と、その厚さ方向に配列された厚さ方向糸zとを含む4軸以上(5軸)で構成されている。従って、物性(特に強度や耐衝撃性)の優れた複合材を得ることができる。
【0058】
(5) 補強リブ2と基板部1とを一体にして製織する方法では面内3軸以上の三次元織物を製造するには、機構が非常に複雑になり、効率良く三次元織物を製造するのが難しい。しかし、複数の糸層を積層して形成された面内3軸以上(面内4軸)の配向となる積層糸群3を厚さ方向糸zで結合した、三次元繊維構造体Wの場合は、面内4軸であっても、比較的容易に製造できる。
【0059】
(6) 基板部1、補強リブ2及び厚さ方向糸zが全てカーボン糸で形成されているため、他の材質製の糸やカーボン糸と他の材質製の糸とを組み合わせて使用した場合に比較して、複合材としたときの物性が向上する。例えば、糸としてガラス繊維製の糸を使用すると、カーボン糸に比較して重量が大きくなる。また、ポリアラミド繊維は吸水率が大きく、複合材を形成する際に物性低下の要因となる。
【0060】
(7) 三次元繊維構造体Wを構成するバイアス糸B1 ,B2 が、第1及び第2の面内配列糸x,yに対してほぼ±45°の角度で交差するように配列されている。従って、他の角度で配列した場合に比較して、斜め方向からの力に対して最も有効に機能する。
【0061】
(8) 各糸層を構成する糸として、少なくとも当該糸層内で連続した1本の糸が使用されているため、各糸を適切な張力を付与した状態で配列するのが容易となり、複合材としたときの物性の向上に寄与する。
【0062】
(9) 厚さ方向糸zの挿入時に、枠体3に保持された積層糸群3が、押圧部材34により位置決めされた状態で、押圧部材34と、プレスブロック42,43とにより押圧される。従って、押圧部材34がガイドとしての役割を果たし、穿孔針31による積層糸群3の所定位置への孔の形成が容易になる。
【0063】
(10) 補強リブ2用のT字状の三次元繊維構造体WTを製作する際、厚さ方向糸zがハンドリングを可能にする程度の粗い間隔で予備的に挿入されたL字状の三次元繊維構造体WLを2体製作して、それを組み合わせた後、正規のピッチで厚さ方向糸zを挿入する。従って、予備的な厚さ方向糸zの挿入を行わずにL字状の積層糸群3を接合して、厚さ方向糸zの挿入を行う場合に比較して、T字状の三次元繊維構造体WTの製作、及び基板部1との接合のための厚さ方向糸zの挿入作業が容易になる。
【0064】
(第2の実施の形態)
次に第2の実施の形態を図13に従って説明する。この実施の形態では基板部1と補強リブ2用のT字状の三次元繊維構造体WTとを結合する厚さ方向糸zの挿入方法が前記実施の形態と異なっている。前記実施の形態と同一部分は同一符号を付して詳しい説明は省略する。
【0065】
前記実施の形態ではT字状の三次元繊維構造体WTの長手方向と直交する方向に一列ずつ、厚さ方向糸zが順次挿入されたが、この実施の形態ではT字状の三次元繊維構造体WTの長手方向と平行に一列ずつ、厚さ方向糸zが順次挿入される。三次元繊維構造体WTを挟持する治具40は三次元繊維構造体WTより長く形成され、その両端が枠体38のピン7の間を通って積層糸群3の幅より外側に配置された状態で治具39の挟持部39bに挟持される。そして、プレスブロック42,43を使用せず、治具40及び押圧部材34によって、積層糸群3及び三次元繊維構造体WTの押圧が行われる。また、治具39は取付部39aを突設せずに、治具39の支柱の底部にネジ穴(図示せず)が形成され、枠体38側に形成されたボルト挿通孔(図示せず)を貫通するボルトにより、枠体38に固定されるようになっている。
【0066】
従って、この実施の形態においても、前記実施の形態の(1)〜(10)の効果が得られる。また、前記実施の形態の厚さ方向糸挿入装置9に比較して、プレスブロック42,43を省略できるため、構造が簡単になるとともに、挿入工程数も少なくなって、厚さ方向糸zの挿入に必要な時間の短縮が図れる。
【0067】
なお、実施の形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 補強リブ2の形状は三次元繊維構造体Wの長手方向あるいは幅方向と平行に延びる構成に限らず、図14に示すように、基板部1との接合部がT字状で、かつ全体として格子に形成されたものであってもよい。このような補強リブ2を備えた三次元繊維構造体Wを形成する場合は、先ず、第1の実施の形態と同様にして所定の長さのT字状の三次元繊維構造体WTを製作する。次に、その一部を切断して、図15に示す形状の三次元繊維構造体WTを製作する。また、同様にして、図15に示す形状の三次元繊維構造体WTと組み合わせることにより、図14に示す形状の三次元繊維構造体WTが構成される三次元繊維構造体WTを所定の長さのT字状の三次元繊維構造体WTの一部を切断して形成する。そして、適切な治具を使用して基板部1に接合した状態で支持して、厚さ方向糸zを挿入することにより、三次元繊維構造体Wが得られる。
【0068】
○ 三次元繊維構造体Wを構成する基板部1及び補強リブ2は、それぞれ複数の糸層を積層して形成された面内3軸以上の配向となる積層糸群3と、その厚さ方向に配列された厚さ方向糸zとを含む少なくとも4軸で構成されていればよい。例えば、配向角が0°、60°及び−60°に配列した糸で面内3軸の積層糸群3を構成したり、面内4軸の積層糸群3を構成する場合にバイアス糸B1 ,B2 の配向角を±45°以外の配向角としてもよい。
【0069】
○ 補強リブ2の形状は基板部1から垂直に突出する部分が単純な平板に限らず、先端側がT字状やL字状であってもよい。また、基板部1との接合部がT字状に限らず、L字状としてもよい。
【0070】
○ 厚さ方向糸zの配列は抜け止め糸と共同で各糸層を締め付ける配列のものに限らず、例えば特開平6−184906号公報に開示された繊維構造体のように、チェーンステッチ方式で厚さ方向糸z自身が抜け止め機能を果たすように各糸層を貫通して締め付ける構成としてもよい。また、厚さ方向糸zが積層糸群3の表側から裏側へ挿通される工程と、裏側から表側へ挿通される工程とが交互に繰り返された配列方法としてもよい。
【0071】
○ 基板部1は必ずしも平板に限らず、曲率の小さな円弧面であってもよい。
○ 積層糸群3の厚さや繊維の種類によっては穿孔針31による孔開けを行わずに、直接挿入針23を挿入して厚さ方向糸zを挿入してもよい。この場合は穿孔針31及びその駆動装置が不要な分、厚さ方向糸挿入装置9の構成が簡単になる。
【0072】
○ 基板部1の幅が広い場合は、厚さ方向糸zの挿入を1列同時に行わずに、複数回に分けて行ってもよい。
○ 積層糸群3に対して挿入針23の突出側に配置されるプレスブロック42,43は2個一組に限らず、1個でもよい。1個とする場合はプレスブロックが作用位置に配置された状態で挿入針23が積層糸群3に挿通されたとき、挿入針23の突出側における厚さ方向糸zのループの形成に支障を来さない側に配置する。
【0073】
○ 基板部1及び補強リブ2を積層糸群3を厚さ方向糸zで結合した三次元繊維構造体で形成する代わりに、クロス(好ましくはユニ・ウィーブ織物)を複数枚積層して形成したものを厚さ方向糸zで結合した三次元繊維構造体で形成してもよい。また、基板部1及び補強リブ2の一方をクロスから形成した三次元繊維構造体で形成し、他方を積層糸群3から形成した三次元繊維構造体で形成してもよい。
【0074】
前記各実施の形態から把握できる請求項記載以外の技術的思想(発明)について、以下にその効果とともに記載する。
(1) 請求項3に記載の発明において、前記積層糸群は互いに直交する状態で配列される第1及び第2の面内配列糸と、前記第1及び第2の面内配列糸に対してほぼ±45°の角度で交差するように配列されているバイアス糸とにより面内4軸で構成されている。この場合、バイアス糸を他の角度で配列した場合に比較して、斜め方向からの力に対して最も有効に機能し、複合材としたときの物性が向上する。
【0075】
(2) 三次元繊維構造体で構成された基板部と、三次元繊維構造体で構成されるとともに基板部との結合部がほぼT字状となる補強リブとが厚さ方向糸により結合された三次元繊維構造体の製造方法において、
L字状に形成された積層糸群を2体形成するとともにハンドリングが可能な程度の粗さで予備的に厚さ方向糸を挿入し、その後、2体を接合するとともに接合部に正規のピッチで厚さ方向糸zを挿入したT字状の三次元繊維構造体を形成し、その三次元繊維構造体を基板部を構成する平板状の積層糸群の所定位置に、治具を使用して配置した状態に保持し、補強リブの屈曲部と対応する位置以外の箇所に所定ピッチで厚さ方向糸を挿入し、その後、補強リブの屈曲部と対応する位置に基板部の厚さ方向に対して交差する状態で屈曲部及び基板部を貫通するように厚さ方向糸を挿入する三次元繊維構造体の製造方法。この場合、基板部との結合部がほぼT字状となる補強リブを有する三次元繊維構造体を、全体を同時に製織する方法に比較的して簡単に製造できる。
【0076】
【発明の効果】
以上詳述したように請求項1〜請求項4に記載の発明によれば、基板部と補強リブとが厚さ方向糸により結合された三次元繊維構造体の、補強リブと基板部との接続部の強度が大きくなり、同じ要求物性であれば三次元繊維構造体を骨格材とした複合材を薄くできる。
【0077】
請求項2に記載の発明によれば、補強リブは少なくとも基板部との結合部付近がT字状に形成されているため、横方向のどちら側から力が作用しても曲げに対して良好な強度を確保できる。
【0078】
請求項3に記載の発明では、基板部及び補強リブは、それぞれ複数の糸層を積層して形成された面内3軸以上の配向となる積層糸群と、その厚さ方向に配列された厚さ方向糸とを含む少なくとも4軸で構成されているため、物性(特に強度や耐衝撃性)の優れた複合材を得ることができる。
【0079】
請求項4に記載の発明では、基板部、補強リブ及び厚さ方向糸が全てカーボン糸で形成されているため、他の糸やカーボン糸と他の糸とを組み合わせて使用した場合に比較して、複合材としたときの物性が向上する。
【図面の簡単な説明】
【図1】 (a)は第1の実施の形態の三次元繊維構造体の模式断面図、(b)は(a)の部分拡大図。
【図2】 同じく模式斜視図。
【図3】 積層糸群を構成する糸の配列状態を示す模式斜視図。
【図4】 積層糸群の形成に使用する枠体の概略斜視図。
【図5】 枠体上に積層糸群を形成した状態の概略斜視図。
【図6】 厚さ方向糸挿入装置の概略部分平面図。
【図7】 L字状三次元繊維構造体の支持状態を示す模式端面図。
【図8】 T字状三次元繊維構造体の支持状態を示す模式端面図。
【図9】 T字状三次元繊維構造体の模式図。
【図10】 (a)はT字状三次元繊維構造体の支持治具を示す模式断面図、(b)は同じく厚さ方向糸挿入後の状態を示す模式断面図。
【図11】 厚さ方向糸挿入装置の作用を説明する模式斜視図。
【図12】 厚さ方向糸挿入装置の作用を説明する一部破断模式側面図。
【図13】 別の実施の形態の治具の作用を説明する模式斜視図。
【図14】 別の三次元繊維構造体の模式斜視図。
【図15】 同じく製作途中の補強リブを示す模式斜視図。
【図16】 従来の三次元織物の製造方法を示す模式斜視図。
【図17】 別の従来の三次元織物の製造方法を示す模式断面図。
【符号の説明】
1…基板部、2…補強リブ、2a,2b,2z…板状部、3…積層糸群、4…屈曲部、x…第1の面内配列糸、y…第2の面内配列糸、z…厚さ方向糸、B1 ,B2 …バイアス糸、W,WT…三次元繊維構造体。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-dimensional fiber structure, and more particularly to a plate-like three-dimensional fiber structure having reinforcing ribs.
[0002]
[Prior art]
Fiber reinforced composite materials (FRP composite materials) are widely used as lightweight structural materials. There is a three-dimensional fabric (three-dimensional fiber structure) as a reinforcing base material for composite materials. A composite material using this three-dimensional woven fabric as a skeleton material and a resin or an inorganic material as a matrix is expected to be used widely as a structural material for rockets, aircraft, automobiles, ships, and buildings.
[0003]
Then, it is considered that a plate with a stiffener used for an aircraft fuselage or the like is made of a three-dimensional fiber structure composite material having a three-dimensional fiber structure and having excellent impact resistance. For example, in NASA (National Aeronautics and Space Administration) report NASA / TP-97-206234, as shown in FIG. 16 (a), a plurality of Uni-Weave fabrics were laminated. A three-dimensional fiber structure W manufactured by stitching T-shaped reinforcing ribs 70 and a flat plate 71 formed by laminating a plurality of uni-weave fabrics as shown in FIG. 16 (c)). The reinforcing rib 70 and the substrate 71 are each composed of a plurality of uni-weave fabrics having orientation angles of 0 °, 45 °, −45 °, and 90 ° to form a 4-axis in-plane structure, and a 5-axis structure including a binding yarn. ing.
[0004]
Japanese Patent Application Laid-Open No. 1-207465 discloses a three-dimensional woven fabric having a modified cross-section in which a plurality of ridges having a T-shaped or I-shaped cross section are formed on a flat plate portion, and a manufacturing method thereof. This three-dimensional woven fabric has a plurality of longitudinal threads arranged in multiple rows and multiple columns corresponding to the cross-sectional shape of the three-dimensional fabric, and the widthwise yarns are arranged between adjacent longitudinal yarn groups in the longitudinal direction. Repeat the process of inserting while reciprocating in the width direction in a state orthogonal to the yarn, and inserting the vertical thread while reciprocating in the vertical direction in a state orthogonal to the length direction thread between rows of the lengthwise threads. Manufactured.
[0005]
In JP-A-3-286411, a flat prepreg and a prepreg formed by joining two prepregs bent substantially in an L shape to form a substantially T shape are joined in the same manner as in FIG. Discloses a method for manufacturing a composite structure that is stitched with a fiber.
[0006]
Japanese Patent Application Laid-Open No. 6-184906 discloses a three-dimensional fiber structure in which a plurality of plate-like portions are formed in a continuous shape in a bent state at a connection portion. In order to increase the strength of the connecting portion between adjacent plate-like portions, this three-dimensional fiber structure has a continuous thread as a constituent element across both plate-like portions. This three-dimensional fiber structure is formed by joining together a group of laminated yarns in which a predetermined number of yarn layers having different yarn arrangement directions are laminated with thickness direction yarns so as to form a plate-like portion that is continuous in a bent state. Also disclosed is a method of manufacturing two-dimensional fiber structures having different cross-sectional shapes by combining two three-dimensional fiber structures. For example, it is disclosed that a U-shaped three-dimensional fiber structure is combined back to back to produce a three-dimensional fiber structure having an H-shaped cross section.
[0007]
Japanese Patent Laid-Open No. 4-289243 discloses at least three axes in which a plurality of plate-like portions are formed in a shape having a joined portion joined in a T shape, and each plate-like portion includes a component in its thickness direction. Continuing across both plate-like parts that are arranged along a plane orthogonal to the thickness direction of each plate-like part and that extend in a direction intersecting the joint part of adjacent plate-like parts, and sandwiching the joint part A three-dimensional woven fabric (three-dimensional fiber structure) having a thread to be used as a constituent element is disclosed. As shown in FIG. 17, this three-dimensional woven fabric is a combination of laminated yarn groups 73 and 74 formed in an L-shaped section in a state of being penetrated by a large number of regulating members 72 and a flat laminated yarn group 75, and each laminated yarn group. It is formed by joining the laminated yarn groups 73 to 75 by sequentially replacing the regulating members 72 penetrating 73 to 75 with the thickness direction yarn z.
[0008]
[Problems to be solved by the invention]
The three-dimensional woven fabric disclosed in JP-A-1-207465 has a three-axis configuration in which the flat plate portion and the protruding portion include two-axis in-plane and a thread in the thickness direction, and a continuous surface in a bent state. Since there is no yarn arranged across, physical properties when the composite material is formed become insufficient.
[0009]
In other prior art three-dimensional fiber structures (three-dimensional woven fabrics), there exist yarns in which each plate-like portion is constituted by at least three in-plane axes and arranged across a continuous surface in a bent state. Therefore, it is possible to form a composite material having excellent physical properties (particularly strength and impact resistance) as compared with a composite material using a three-dimensional woven fabric disclosed in JP-A-1-207465 as a skeleton material.
[0010]
However, in the conventional three-dimensional fiber structure, since the binding yarns (thickness direction yarns) that join the flat plate portion and the reinforcing rib are all arranged in parallel with the thickness direction of the flat plate portion, Only at the position where the planes of the reinforcing ribs are opposed to each other, they penetrate both and contribute to the coupling. Therefore, in a portion where the bent portion of the reinforcing rib and the flat plate portion are opposed to each other, that is, in a region surrounded by a chain line in FIG. As a result, when the composite material is manufactured, the strength of the portion where stress concentration tends to occur becomes insufficient, and it is necessary to increase the strength of the entire three-dimensional fiber structure to compensate for it, and the three-dimensional fiber structure becomes thicker. There is a problem of becoming.
[0011]
The present invention has been made in view of the above-mentioned problems, and its purpose is to connect a reinforcing rib and a substrate portion of a three-dimensional fiber structure in which the substrate portion and the reinforcing rib are joined by a thread in the thickness direction. An object of the present invention is to provide a three-dimensional fiber structure in which the strength of the part is increased and the composite material can be thinned with the same required physical properties.
[0012]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, in the invention according to claim 1, the base plate portion constituted by the three-dimensional fiber structure and the reinforcing rib constituted by the three-dimensional fiber structure are coupled by the thickness direction yarn. The reinforcing rib has a plate-like portion that is bent substantially at a right angle, and one of the plate-like portions is perpendicular to the substrate portion. The thickness direction yarns that are combined and connect the reinforcing rib and the substrate portion are: In the position where the plane portions of the reinforcing rib and the substrate portion correspond, they are arranged in parallel with the thickness direction of the substrate portion, At positions corresponding to the bent portions of the reinforcing ribs, the reinforcing ribs are arranged so as to penetrate the bent portion and the substrate portion in a state intersecting with the thickness direction of the substrate portion.
[0013]
According to a second aspect of the present invention, in the first aspect of the present invention, the reinforcing rib is formed in a T shape at least in the vicinity of the coupling portion with the substrate portion.
According to a third aspect of the present invention, in the first or second aspect of the present invention, the substrate portion and the reinforcing rib each have an in-plane triaxial orientation formed by laminating a plurality of yarn layers. And at least four axes including a thickness direction yarn arranged in the thickness direction.
[0014]
According to a fourth aspect of the present invention, in the third aspect of the present invention, the substrate portion, the reinforcing rib, and the thickness direction yarn are all formed of carbon yarn.
In the three-dimensional fiber structure according to the first aspect of the present invention, at a position corresponding to the bending portion of the reinforcing rib, the three-dimensional fiber structure is arranged so as to penetrate the bending portion and the substrate portion while intersecting the thickness direction of the substrate portion. There is a thickness direction thread. Accordingly, when a force from the lateral direction acts on the reinforcing rib, the thickness direction yarn bears the force, and thus the strength is increased.
[0015]
In the invention described in claim 2, in the invention described in claim 1, since the reinforcing rib is formed in a T shape at least in the vicinity of the coupling portion with the substrate portion, a force acts from either side in the lateral direction. Even so, a good strength against bending can be secured.
[0016]
In the invention according to claim 3, in the invention according to claim 1 or 2, the substrate portion and the reinforcing rib each have an in-plane triaxial orientation formed by laminating a plurality of yarn layers. Since it is composed of at least four axes including the laminated yarn group and the thickness direction yarn arranged in the thickness direction, a composite material having excellent physical properties (particularly strength and impact resistance) can be obtained.
[0017]
In the invention of claim 4, in the invention of claim 3, since the substrate portion, the reinforcing rib and the thickness direction yarn are all formed of carbon yarn, Compared with a combination of yarns made of other materials, the physical properties of the composite material are improved.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 1 and 2, the three-dimensional fiber structure W is configured by joining a substrate portion 1 and a reinforcing rib 2 with a thickness direction thread z. The substrate portion 1 is formed in a flat plate shape, and the reinforcing rib 2 is formed in a cross-sectional shape in which the vicinity of the joint portion with the substrate portion 1 is T-shaped. In this embodiment, the reinforcing rib 2 is joined to a three-dimensional fiber structure WL having an L-shaped cross section, and the entire cross-sectional shape is formed in a T shape. The reinforcing rib 2 has plate-like portions 2 a, 2 b, 2 c that are bent substantially at a right angle, and one of the plate-like portions 2 a, 2 b, 2 c is perpendicular to the substrate portion 1. It couple | bonds with the board | substrate part 1 so that it may become. A plurality of reinforcing ribs 2 (two in this embodiment) are provided in parallel with each other.
[0019]
The substrate portion 1 and the reinforcing rib 2 are each a laminated yarn group 3 formed by laminating a plurality of yarn layers (x yarn layer, y yarn layer, and bias yarn layer) and having an in-plane 4-axis orientation, and its thickness. It is composed of a five-axis three-dimensional fiber structure including thickness direction yarns z arranged in the direction. FIGS. 3A to 3D are schematic views showing the arrangement of yarns in each yarn layer constituting the laminated yarn group 3 of the three-dimensional fiber structure WL having an L-shaped cross section.
[0020]
As shown in FIG. 3B, the x-yarn layer is along one of the width direction and the length direction (in the width direction in this embodiment) in a plane orthogonal to the thickness direction of the three-dimensional fiber structure. It consists of the arranged first in-plane arranged yarn x, and one yarn is arranged in a folded shape. As shown in FIG. 3 (a), the y yarn layer is composed of second in-plane arrangement yarns y arranged in a direction perpendicular to the first in-plane arrangement yarn x in a plane parallel to the x yarn layer, One thread is formed in a folded shape. As shown in FIGS. 3C and 3D, the bias yarn layer has a predetermined angle with respect to the double-sided array yarns x and y in a plane parallel to the x yarn layer (in this embodiment, 45 ° and − 45 °), and the bias yarns B1 and B2 are arranged in parallel in a folded shape so as to intersect each other. The bias yarns B1 and B2 are arranged so as to extend over both plate-like portions 2a and 2b while intersecting with the bent portion 4. In addition, the x yarn layer, the y yarn layer, and the bias yarn layer constituting the substrate unit 1 are similarly configured. In other words, the substrate portion 1 and the reinforcing rib 2 have a first in-plane array yarn x with an orientation angle of 90 °, a second in-plane array yarn y with an orientation angle of 0 °, and a bias with an orientation angle of 45 °. The laminated yarn group 3 is composed of the yarn B1 and the bias yarn B2 having an orientation angle of -45 °. The orientation angle means the angle formed by the yarn with the longitudinal direction of the three-dimensional fiber structure W.
[0021]
As shown in FIG. 1, the thickness direction thread z is arranged in parallel with the thickness direction of the board | substrate part 1 in the position where the plane part corresponds to the reinforcement rib 2 and the board | substrate part 1. As shown in FIG. Further, at a position corresponding to the bent portion 4 of the reinforcing rib 2, the thickness direction thread z is arranged so as to penetrate the bent portion 4 and the substrate portion 1 in a state intersecting with the thickness direction of the substrate portion 1. Has been. The angle θ formed by the thickness direction thread z arranged so as to intersect the thickness direction of the substrate portion 1 and the substrate portion 1 is preferably in the range of 40 ° to 70 °. The thickness direction thread z is inserted from the bottom surface side so as to be folded back on the surface side of the substrate portion 1 (the same side as the surface to which the reinforcing rib 2 is joined), and the retaining threads ( (Not shown). The thread layers are joined together by the thickness direction thread z fastening the thread layers together with the retaining thread.
[0022]
Various materials such as carbon fiber, glass fiber, ceramic fiber, and polyaramid fiber are used as the material of the fibers constituting each yarn depending on the use of the composite material. In this embodiment, carbon yarn is used as each yarn. Carbon fiber roving (tow) is used for the carbon yarn. Roving (tow) means a substantially untwisted fiber bundle in which a large number of thin filaments are bundled.
[0023]
The three-dimensional fiber structure W configured as described above is used as a reinforcing material (skeleton material) of a fiber-reinforced composite material, and a resin or an inorganic material is used as a matrix. For example, in the case of constituting a carbon / carbon composite material, the three-dimensional fiber structure W is impregnated with resin and cured, and then fired and manufactured.
[0024]
When a load (force) from the lateral direction is applied to the reinforcing rib of the composite material using the three-dimensional fiber structure W configured as described above as a skeleton material, the bending portion 4 (corner portion) of the reinforcing rib 2 is large. Stress acts. Since the second in-plane array yarn y and the bias yarns B1 and B2 extend in the direction intersecting the bent portion 4 and are arranged across the plate-like portions 2a, 2b, 2a, and 2c, these yarns Effectively contributes to share the force in the direction to withstand the stress acting on the bent portion 4. Further, the thickness direction thread z arranged so as to penetrate through the bent portion 4 and the substrate portion 1 also has the thickness direction thread z when the force acting on the reinforcing rib acts on the stress acting on the bent portion 4. Since the force in a direction to withstand the force is shared, the strength of the composite material is improved.
[0025]
Next, an example of a method for manufacturing the three-dimensional fiber structure W configured as described above will be described. When manufacturing the three-dimensional fiber structure W, a substantially L-shaped frame 5 as shown in FIG. 4 is used, and the method previously proposed by the applicant of the present application (Japanese Patent Laid-Open No. 9-137336) Two pieces of three-dimensional woven fabric (three-dimensional fiber structure) are manufactured. Further, one flat laminated yarn group 3 to be the substrate portion 1 is manufactured using a rectangular frame.
[0026]
The L-shaped frame 5 has a main body 5a formed so as to surround a region 6 corresponding to the insertion area of the thickness direction thread z, and a number of restrictions erected on the outer side of the main body 5a at a predetermined pitch. It is comprised from the pin 7 as a member, and the support bar 8 fixed to the corner part of the frame 5 by the screw (not shown) so that removal was possible. The pin 7 is also detachably fitted to the corner portion of the support bar 8. The quadrangular frame is erected on the quadrangular frame body so that pins can be removed at a predetermined pitch.
[0027]
The thickness direction yarn inserting device for inserting the thickness direction yarn z into the laminated yarn group 3 has basically the same configuration as the device proposed by the present applicant in Japanese Patent Laid-Open Nos. 8-218249 and 9-137336. Has been. Next, the thickness direction thread insertion device will be described with reference to FIG. FIG. 6 is a schematic partial plan view of the thickness direction thread insertion device 9.
[0028]
The thickness direction yarn inserting device 9 supports the frame 5 in which the laminated yarn groups 3 are arranged between the pair of support brackets 11 (only one side is shown) via the attachment member 10 and simultaneously the thickness direction yarns z one row at a time. It is supposed to be inserted. The attachment member 10 is fixed to the frame body 5 by bolts, and is fixed to the support piece 12 of the support bracket 11 by bolts 13.
[0029]
A support table 15 is disposed on the front side (lower side in FIG. 6) of the base plate 14 of the thickness direction thread insertion device 9 so as to be movable in the left-right direction in FIG. 6, and the support bracket 11 is erected on the support table 15. ing. The support table 15 is moved by a predetermined pitch by a feeding device (not shown). Note that the position of the support table 15 shown in FIG. 6 is the position at the time when the insertion of the thickness direction thread z is almost finished.
[0030]
A pair of brackets 16 (only one is shown) is erected on the rear side of the support table 15 on the base plate 14, and a pair of guide rods 17 are installed between the brackets 16 in parallel with the moving direction of the support table 15. . A support plate 18 is slidably supported on the guide rod 17. The support plate 18 is connected to a piston rod 19 a of an air cylinder 19 fixed to the bracket 16, and can reciprocate a predetermined distance by the operation of the air cylinder 19.
[0031]
A pair of support brackets 20 are erected at both front and rear ends of the support plate 18, and a movable body 21 is slidably supported by guide rods (not shown) that are installed in parallel between the support brackets 20. A needle support 22 is fixed to the front end of the movable body 21, and a thickness direction thread insertion needle (hereinafter simply referred to as an insertion needle) 23 has a predetermined pitch corresponding to the arrangement pitch of the pins 7 at the front portion of the needle support 22. It is fixed horizontally in one row. The needle support 22 is arranged in a state of penetrating a hole (not shown) formed in the front support bracket 20.
[0032]
The moving body 21 is moved to the standby position and the operating position together with the needle support 22 by the operation of the ball screw mechanism 25 driven by the motor 24. The insertion needle 23 cannot be engaged with the laminated yarn group 3 supported by the support bracket 11 at the standby position, and the laminated yarn group 3 is moved to a position where the needle hole 23a (shown in FIG. To penetrate.
[0033]
A pair of upper and lower support rods 26 are slidably supported on the support bracket 20 while penetrating the support bracket 20. An air cylinder 28 is fixed to the support plate 18 near the rear support bracket 20 via a bracket 27 so as to extend in the front-rear direction. Both support rods 26 are connected to each other via a connecting plate 29 on the rear end side, and the connecting plate 29 is connected to a piston rod 28 a of an air cylinder 28. A piercing needle support 30 is fixed to the front ends of both support rods 26, and piercing needles 31 are fixed to the piercing needle support 30 in one row at a predetermined pitch corresponding to the insertion needle 23. The rows of the piercing needles 31 are arranged in parallel with the rows of the insertion needles 23 while maintaining an interval equal to the moving distance of the support plate 18 when the air cylinder 19 is operated. By the operation of the air cylinder 28, the piercing needle support 30 is moved to a standby position where the piercing needle 31 cannot be engaged with the laminated yarn group 3 supported by the support bracket 11 and an operating position penetrating the laminated yarn group 3.
[0034]
On the base plate 14, an air cylinder 32 is disposed in the vicinity of the front support bracket 20 so as to extend in the front-rear direction, and a pressing member 34 is fixed to the tip of the piston rod 32a via a bracket 33. The pressing member 34 is formed in an L-shaped cross section extending along the direction in which the insertion needles 23 are arranged, and includes a comb tooth portion that allows the insertion needle 23 or the perforation needle 31 to pass therethrough. In this state, the laminated yarn group 3 can be pressed.
[0035]
The pressing member 34 is disposed on the standby position side of the insertion needle 23 and the punching needle 31 with respect to the laminated yarn group 3 supported by the support bracket 11, and in the movement direction of the insertion needle 23 row in the vicinity of the insertion position of the insertion needle 23 row. It is arranged to be movable along. When the air cylinder 32 is actuated, the pressing member 34 is engaged with the laminated yarn group 3 supported by the support bracket 11 to press the laminated yarn group 3 toward the advance side of the insertion needle 23 row, and the laminated yarn group 3 cannot be engaged. To the proper standby position.
[0036]
A pair of press blocks 35, 36 are disposed on the opposite side of the pressing member 34 across the laminated yarn group 3 supported by the support bracket 11. Both press blocks 35 and 36 are formed such that the width of the contact portion with the laminated yarn group 3 is wider than the arrangement pitch of the pins 7, and each press block 35 and 36 is supported above the laminated yarn group 3 so as to be swingable separately. Are fixed to the tip of each lever (not shown). Both press blocks 35, 36 are arranged close to each other at a position facing the pressing member 34 so as to create a gap that allows the insertion needle 23 or the piercing needle 31 to enter. An operation position in which each press block 35, 36 presses the laminated yarn group 3 toward the retracted side of the needle row by the swing of each lever by an air cylinder (not shown), and a standby position where the laminated yarn group 3 cannot be engaged. And moved to.
[0037]
Below the position where the laminated yarn group 3 is supported, a retaining thread insertion needle (hereinafter simply referred to as retaining thread needle) 37 is inserted at a position corresponding to the position where the inserting needle 23 row penetrates the laminated thread group 3. Are arranged so as to be movable along the arrangement direction (a part of which is shown in FIG. 11). The retaining thread needle 37 has a spatula at the tip, is reciprocated by a driving device (not shown), and has a working position that penetrates a loop of the thickness direction thread z connected to the row of insertion needles 23 when arranged at the working position. In addition, it is arranged at the standby position retracted from the position corresponding to the laminated yarn group 3.
[0038]
For the convenience of illustration, in the schematic diagrams shown in FIGS. 1 and 2 and FIGS. 4, 10 and 11, etc., the insertion pitch of the thickness direction thread z and the pin 7 erected on the frame body The pitch, the number, or the ratio between the length and width of the three-dimensional fiber structure W are different.
[0039]
Next, a procedure for manufacturing the three-dimensional fiber structure W having the reinforcing rib 2 using the frame body 5 and the thickness direction thread insertion device 9 configured as described above will be described.
With the frame 5 fixed to the support bracket, the first in-plane array yarn x, the second in-plane array yarn y, and the bias yarns B1 and B2 are folded in a state of engaging with the pins 7, respectively. They are arranged as shown in FIGS. Then, as shown in FIG. 5, a laminated yarn group 3 in which a plurality of predetermined layers of x yarn layers, y yarn layers, and bias yarn layers are laminated outside the frame body 5 is formed. Further, the first in-plane array yarn x, the second in-plane array yarn y, and the bias yarns B1 and B2 are arranged on the quadrangular frame so as to be folded in a state of being engaged with the pins, and the x yarn layer Then, a flat laminated yarn group 3 in which a predetermined number of y yarn layers and bias yarn layers are laminated is formed.
[0040]
In addition, in order to increase the density of the laminated yarn group 3 and adjust the thickness, the yarn layer is pressed from above by the pressing member every time the arrangement of the yarn layers is completed or every time an appropriate yarn layer is formed. Thus, the laminated yarn group 3 is compressed.
[0041]
Next, using the thickness direction yarn inserting device 9, the thickness direction yarn z is inserted into the L-shaped laminated yarn group 3 by a known method. However, the thickness direction thread z is preliminarily inserted at such a rough interval as to allow handling. Then, as shown in FIG. 7, two L-shaped three-dimensional fiber structures WL into which the thickness direction thread z is inserted roughly are created.
[0042]
Next, two three-dimensional fiber structures WL are joined to form a substantially T-shaped three-dimensional fiber structure WT. At this time, a part of the pin 7 inserted into the two frame bodies 5 is made common, and as shown in FIG. The thickness direction yarn z is inserted at a regular density into the joint portion of the three-dimensional fiber structure WL. To support the frame 5 when inserting the thickness direction thread z into the L-shaped laminated yarn group 3 and when inserting the thickness direction thread z into the T-shaped three-dimensional fiber structure WT. Different shaped support pieces 12 are used.
[0043]
When some of the pins 7 are used in common, as shown in FIG. 7, a pipe is used as the pin 7 of one frame 5 and a pin with a sharp tip is used as the pin 7 of the other frame 5 If the sharp pin 7 is pushed against the pipe-made pin 7 and pushed out, the operation becomes easy.
[0044]
Next, when the end portion of the T-shaped three-dimensional fiber structure WT is cut at a predetermined position according to the size to be bonded to the substrate portion 1 and removed from the frame body 5, as shown in FIG. Thus, a T-shaped three-dimensional fiber structure WT in which the thickness direction thread z is inserted at a rough pitch at the joint portion is obtained. In addition, it is preferable to increase the insertion density of the thickness direction yarn z in the vicinity of the cut portion so that the yarn constituting the laminated yarn group 3 is not disturbed when the three-dimensional fiber structure WT is cut.
[0045]
Next, as shown in FIG. 10 (a), jigs 39 and 40 are used for the frame body 38 on which the flat laminated yarn group 3 is formed, so that the T-shaped three-dimensional fiber structure WT is attached to the substrate portion 1. It attaches to the predetermined joining position of the reinforcement rib 2 with respect to. The jig 39 is formed in a substantially gate shape, and includes a mounting portion 39a having bolt insertion holes (not shown) formed at both ends thereof. In addition, sandwiching portions 39b that sandwich the central plate-like portion 2a of the three-dimensional fiber structure WT via the jig 40 are formed at predetermined intervals. As shown in FIG. 11, the jig 40 is formed of a flat plate having substantially the same length as the three-dimensional fiber structure WT. Then, as shown in FIG. 10A, each three-dimensional fiber structure WT is sandwiched between the sandwiching portions 39 b of the jig 39 while being sandwiched between the pair of jigs 40. The jig 39 is fixed to the frame body 38 by a hexagon socket head bolt 41.
[0046]
Next, the frame 38 is fixed to the support bracket 11 of the thickness direction thread insertion device 9, and the thickness direction thread z is inserted. FIG. 11 is a schematic perspective view showing an insertion state of the thickness direction thread z. At this time, press blocks 42 and 43 having shapes different from the press blocks 35 and 36 used when inserting the thickness direction yarn z into the T-shaped three-dimensional fiber structure WT or the L-shaped laminated yarn group 3 are used. Is done. As shown in FIG. 11, in the press blocks 42 and 43, concave portions 44 for preventing interference with the T-shaped three-dimensional fiber structure WT and the jig 40 are formed on the side facing the laminated yarn group 3.
[0047]
Then, the laminated yarn group 3 and the T-shaped three-dimensional fiber from the state in which the support table 15 is disposed at the insertion start position and the insertion needle 23, the punch needle 31, the pressing member 34, and the press blocks 42, 43 are disposed at the standby position. Insertion of the thickness direction thread z into the joint portion of the structure WT with the laminated yarn group 3 is started.
[0048]
First, the air cylinder 32 is operated and the pressing member 34 is arranged at the operating position. Next, both the press blocks 42 and 43 are disposed at the operating position, and the pressing member 34 and the two press blocks 42 and 43 hold the laminated yarn group 3 in a compressed state at a position corresponding to the row of perforated needles 31. In this state, the air cylinder 28 is actuated to advance the punch needle 31 to a position penetrating the laminated yarn group 3, and then retract to the original position. The piercing needle 31 moves while being guided by the pressing member 34 and the press blocks 42, 43, and the piercing needle 31 is inserted perpendicularly to the laminated yarn group 3 even if the piercing needle 31 is slightly bent. Since the laminated yarn group 3 is pressed by the pressing member 34 and the press blocks 42 and 43, the arrangement of the yarns is not disturbed when the punch needle 31 is advanced. Since the fibers constituting the laminated yarn group 3 are in a state of being densely arranged to some extent by the compression action of the pressing member 34 and the press blocks 42 and 43, a hole is formed in the trace of the punch needle 31.
[0049]
Next, the air cylinder 19 is protruded to move the 31 rows of the piercing needles and the 23 rows of the insertion needles together with the support plate 18, and the 23 rows of the insertion needles are arranged at positions facing the holes of the traces of the piercing needles 31. In this state, after the press block 42 is disposed at the standby position, the motor 24 is operated, and the insertion needle 23 is advanced and disposed at the operating position. The insertion needle 23 is inserted into the laminated yarn group 3 until the needle hole 23a comes out in front of the laminated yarn group 3. After the insertion needle 23 reaches the forward end, the motor 24 is reversed to slightly retract the insertion needle 23. As a result, the thread in the thickness direction z continuous from the laminated yarn group 3 to the needle hole 23a forms a loop that allows the retaining yarn needle 37 to pass therethrough.
[0050]
Next, the retaining thread needle 37 is actuated, and a retaining thread (not shown) is inserted through the loop. Thereafter, the motor 24 is reversely rotated, the insertion needle 23 is retracted, and is separated from the laminated yarn group 3 and is placed at the standby position. Further, the press block 42 is again arranged at the operating position. In this state, the thickness direction yarn z is pulled back by the action of a tension adjusting section (not shown), and the thickness direction yarn z inserted into the laminated yarn group 3 is tightened in a state in which the thickness direction yarn z is retained by the retaining yarn. Next, the air cylinder 19 is actuated, and the perforation needle 31 row and the insertion needle 23 row together with the support plate 18 are returned to the initial positions. Further, the air cylinder 32 is operated, the pressing member 34 is disposed at the standby position, and the press blocks 42 and 43 are also disposed at the standby position. Thus, one insertion cycle of the thickness direction yarn z is completed. And the position corresponding to the bending part 4 of the T-shaped three-dimensional fiber structure WT with respect to the joint part with the laminated thread group 3 of the flat-shaped laminated yarn group 3 and the T-shaped three-dimensional fiber structure WT. One row of thickness direction yarns z is inserted over the entire width direction.
[0051]
In FIG. 11, the pitches of the insertion needle 23 and the perforation needle 31 are schematically shown as equal pitches. However, at a position corresponding to the bent portion 4, the insertion needle 23 and the perforation needle 31 are the needle support 22 and It has been removed from the piercing needle support 30.
[0052]
Next, the support table 15 is moved by the insertion pitch of the thickness direction yarn z, and the punch needle 31 is in a state of facing the next thickness direction yarn insertion position into the laminated yarn group 3. Thereafter, the insertion cycle of the thickness direction yarn z is sequentially executed in the same manner as described above. Then, as shown in FIG. 10 (b), the thickness direction yarn z at a place where the flat laminated yarn group 3 and the T-shaped three-dimensional fiber structure WT are excluded from the positions corresponding to the bent portions 4. A three-dimensional fiber structure bonded with is formed.
[0053]
Next, the thickness direction thread z is inserted into a position corresponding to the bent portion 4 of the substrate portion 1 and the reinforcing rib 2. At this time, as shown in FIG. 12, the jigs 39 and 40 are removed, and the support bracket 11 is attached to the support table with the restriction jig 45 sandwiched between the support bracket 11 and the support table 15 that support the frame body 38. 15 is fixed. The regulating jig 45 plays a role of regulating the angle of the frame body 38 so as to correspond to the insertion angle of the thickness direction thread z. Then, the thickness direction thread z is inserted into the position corresponding to the bent portion 4 so as to penetrate the bent portion 4 and the substrate portion 1 while intersecting the thickness direction of the substrate portion 1. Note that the thickness direction thread z may be inserted with the jigs 39 and 40 attached. After the insertion of the thickness direction thread z at the angle of FIG. 12, the support bracket 11 is supported in a state where the restriction jig 45 is inverted by 180 °. In a state of being symmetric with respect to a plane perpendicular to 15, the thickness direction thread z is inserted again at a position corresponding to the bent portion 4. Then, after the insertion of the thickness direction thread z is completed, each pin 7 is removed from the frame body 38, and the periphery of the substrate portion 1 is cut at a predetermined position to complete the manufacture of the three-dimensional fiber structure W. .
[0054]
This embodiment has the following effects.
(1) At the position corresponding to the bent portion 4 of the reinforcing rib 2 of the three-dimensional fiber structure W, the bent portion 4 and the substrate portion in a state where the thickness direction thread z intersects the thickness direction of the substrate portion 1. 1 are arranged so as to penetrate 1. Therefore, compared to the case where the reinforcing rib 2 is simply bonded or integrally formed, the reinforcing rib 2 and the substrate portion of the three-dimensional fiber structure W in which the substrate portion 1 and the reinforcing rib 2 are joined by the thickness direction thread z. The strength of the connecting portion with 1 is increased, and the composite material using the three-dimensional fiber structure W as a skeleton material can be thinned if the required physical properties are the same.
[0055]
(2) Since the yarns of the respective yarn layers constituting the laminated yarn group 3 joined by the thickness direction yarns z are arranged in a folded manner with reference to the pins 7 (regulating members), the yarns can be arranged in a tensioned state. And the thickness direction thread | z is inserted in the state. Therefore, a three-dimensional fiber structure with better straightness and high quality (good physical properties) compared to a three-dimensional fiber structure in which crosses (woven fabrics on a plane) are laminated and stitches are stitched together. A body W is obtained.
[0056]
(3) Since the reinforcing rib 2 is formed in a T shape at least in the vicinity of the coupling portion with the substrate portion 1, it is possible to secure a good strength against bending regardless of which side the force is applied.
[0057]
(4) In the three-dimensional fiber structure W, both the substrate portion 1 and the reinforcing rib 2 are formed by laminating a plurality of yarn layers, and the laminated yarn group 3 having an in-plane orientation of 4 or more (4 in-plane) orientations. And four or more axes (5 axes) including the thickness direction yarns z arranged in the thickness direction. Therefore, a composite material having excellent physical properties (particularly strength and impact resistance) can be obtained.
[0058]
(5) In the method of weaving the reinforcing rib 2 and the substrate portion 1 together, the mechanism becomes very complicated to produce a three-dimensional fabric having three or more in-plane axes, and the three-dimensional fabric is efficiently produced. It ’s difficult. However, in the case of the three-dimensional fiber structure W in which the laminated yarn group 3 formed by laminating a plurality of yarn layers and having an orientation of three or more in-plane (four in-plane) orientations is joined by the thickness direction yarn z. Even with four axes in the plane, it can be manufactured relatively easily.
[0059]
(6) Since the substrate portion 1, the reinforcing rib 2 and the thickness direction yarn z are all formed of carbon yarns, a yarn made of another material or a combination of a carbon yarn and a yarn made of another material is used. Compared to the above, the physical properties of the composite material are improved. For example, when a glass fiber yarn is used as the yarn, the weight is increased compared to the carbon yarn. In addition, polyaramid fibers have a high water absorption rate, which becomes a factor of deterioration of physical properties when forming a composite material.
[0060]
(7) The bias yarns B1 and B2 constituting the three-dimensional fiber structure W are arranged so as to intersect with the first and second in-plane arranged yarns x and y at an angle of approximately ± 45 °. . Therefore, it functions most effectively with respect to a force from an oblique direction as compared with the case where it is arranged at another angle.
[0061]
(8) Since at least one continuous yarn in the yarn layer is used as the yarn constituting each yarn layer, it is easy to arrange the yarns with appropriate tension applied, Contributes to the improvement of physical properties when used as a material.
[0062]
(9) When the thickness direction thread z is inserted, the laminated yarn group 3 held by the frame 3 is pressed by the pressing member 34 and the press blocks 42 and 43 while being positioned by the pressing member 34. Accordingly, the pressing member 34 plays a role as a guide, and it becomes easy to form a hole at a predetermined position of the laminated yarn group 3 by the punch needle 31.
[0063]
(10) When manufacturing the T-shaped three-dimensional fiber structure WT for the reinforcing rib 2, the L-shaped tertiary inserted preliminarily at such a coarse interval that the thickness direction thread z can be handled. After two original fiber structures WL are manufactured and combined, the thickness direction thread z is inserted at a regular pitch. Therefore, compared to the case where the L-shaped laminated yarn group 3 is joined without inserting the preliminary thickness direction yarn z and the thickness direction yarn z is inserted, the T-shaped three-dimensional fiber is inserted. Manufacture of the structure WT and insertion of the thickness direction thread z for joining with the substrate part 1 are facilitated.
[0064]
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. In this embodiment, the insertion method of the thickness direction thread z for joining the base plate portion 1 and the T-shaped three-dimensional fiber structure WT for the reinforcing rib 2 is different from the above embodiment. The same parts as those of the above-mentioned embodiment are denoted by the same reference numerals and detailed description thereof is omitted.
[0065]
In the above embodiment, the thickness direction yarns z are sequentially inserted one by one in the direction perpendicular to the longitudinal direction of the T-shaped three-dimensional fiber structure WT. In this embodiment, the T-shaped three-dimensional fiber is inserted. Thickness direction yarns z are sequentially inserted one by one in parallel with the longitudinal direction of the structure WT. The jig 40 for sandwiching the three-dimensional fiber structure WT is formed longer than the three-dimensional fiber structure WT, and both ends thereof pass between the pins 7 of the frame body 38 and are arranged outside the width of the laminated yarn group 3. Is clamped by the clamping part 39b of the jig 39. Then, without using the press blocks 42 and 43, the laminated yarn group 3 and the three-dimensional fiber structure WT are pressed by the jig 40 and the pressing member 34. Further, the jig 39 does not project the mounting portion 39a, and a screw hole (not shown) is formed at the bottom of the post of the jig 39, and a bolt insertion hole (not shown) formed on the frame 38 side. ) Is fixed to the frame body 38 by bolts penetrating through the).
[0066]
Therefore, also in this embodiment, the effects (1) to (10) of the above embodiment can be obtained. Further, since the press blocks 42 and 43 can be omitted as compared with the thickness direction thread insertion device 9 of the above embodiment, the structure is simplified and the number of insertion steps is reduced. The time required for insertion can be shortened.
[0067]
The embodiment is not limited to the above, and may be embodied as follows, for example.
The shape of the reinforcing rib 2 is not limited to the configuration extending in parallel with the longitudinal direction or the width direction of the three-dimensional fiber structure W, and as shown in FIG. May be formed on the lattice. When forming the three-dimensional fiber structure W having such a reinforcing rib 2, first, a T-shaped three-dimensional fiber structure WT having a predetermined length is manufactured in the same manner as in the first embodiment. To do. Next, a part thereof is cut to produce the three-dimensional fiber structure WT having the shape shown in FIG. Similarly, by combining the three-dimensional fiber structure WT having the shape shown in FIG. 14 with the three-dimensional fiber structure WT having the shape shown in FIG. 15, the three-dimensional fiber structure WT having the shape shown in FIG. A part of the T-shaped three-dimensional fiber structure WT is cut and formed. And it supports in the state joined to the board | substrate part 1 using an appropriate jig | tool, and the three-dimensional fiber structure W is obtained by inserting the thickness direction thread | z.
[0068]
○ The substrate portion 1 and the reinforcing rib 2 constituting the three-dimensional fiber structure W are each a laminated yarn group 3 formed by laminating a plurality of yarn layers and having an in-plane orientation of three or more axes, and in the thickness direction thereof. What is necessary is just to be comprised by the at least 4 axis | shaft including the arranged thickness direction thread | yarn z. For example, the bias yarns B1 and B2 are used when the in-plane triaxial laminated yarn group 3 is constituted by yarns arranged at an orientation angle of 0 °, 60 ° and −60 °, or when the in-plane four-axial laminated yarn group 3 is constituted. The orientation angle may be an orientation angle other than ± 45 °.
[0069]
The shape of the reinforcing rib 2 is not limited to a simple flat plate projecting vertically from the substrate portion 1, and the tip side may be T-shaped or L-shaped. Further, the joint portion with the substrate portion 1 is not limited to the T shape, and may be an L shape.
[0070]
○ The arrangement of the thickness direction thread z is not limited to the arrangement in which each thread layer is tightened together with the retaining thread, but for example, a chain stitch method like a fiber structure disclosed in Japanese Patent Laid-Open No. 6-184906. The thickness direction thread z itself may be configured to be tightened through each thread layer so as to perform a retaining function. Moreover, it is good also as the arrangement | sequence method by which the process by which the thickness direction thread | z was inserted from the front side of the laminated yarn group 3 to the back side and the process by which it was inserted from the back side to the front side were repeated alternately.
[0071]
The substrate unit 1 is not necessarily a flat plate but may be an arc surface with a small curvature.
O Depending on the thickness of the laminated yarn group 3 and the type of fiber, the insertion needle 23 may be inserted directly and the thickness direction thread z may be inserted without drilling with the punch needle 31. In this case, the configuration of the thickness direction thread inserting device 9 is simplified because the punching needle 31 and its driving device are unnecessary.
[0072]
O When the width | variety of the board | substrate part 1 is wide, you may divide into multiple times, without performing the insertion of the thickness direction thread | z in 1 row simultaneously.
The number of press blocks 42 and 43 arranged on the protruding side of the insertion needle 23 with respect to the laminated yarn group 3 is not limited to two, and may be one. In the case of one, when the insertion needle 23 is inserted into the laminated yarn group 3 with the press block arranged at the operating position, the formation of the loop of the thickness direction thread z on the protruding side of the insertion needle 23 is hindered. Place it on the side not to be used.
[0073]
○ Instead of forming the substrate portion 1 and the reinforcing rib 2 with a three-dimensional fiber structure in which the laminated yarn group 3 is joined by the thickness direction yarn z, a plurality of cloths (preferably uni-weave fabrics) are laminated. May be formed of a three-dimensional fiber structure bonded with a thickness direction thread z. Alternatively, one of the substrate portion 1 and the reinforcing rib 2 may be formed from a three-dimensional fiber structure formed from a cloth, and the other may be formed from a three-dimensional fiber structure formed from a laminated yarn group 3.
[0074]
Technical ideas (inventions) other than the claims that can be grasped from the respective embodiments will be described below together with the effects thereof.
(1) In the invention according to claim 3, the laminated yarn group is a first and second in-plane arranged yarn arranged in a state orthogonal to each other, and the first and second in-plane arranged yarn It is composed of four in-plane axes with bias yarns arranged so as to intersect at an angle of approximately ± 45 °. In this case, as compared with the case where the bias yarns are arranged at other angles, it functions most effectively with respect to the force from the oblique direction, and the physical properties of the composite material are improved.
[0075]
(2) A substrate portion made of a three-dimensional fiber structure and a reinforcing rib made of a three-dimensional fiber structure and having a substantially T-shaped joint to the substrate portion are joined by a thickness direction thread. In the method for producing a three-dimensional fiber structure,
Form two L-shaped layered yarn groups and insert thickness direction yarns preliminarily with a roughness that allows handling, and then join the two yarns together with a regular pitch at the joint. A T-shaped three-dimensional fiber structure with a thickness direction thread z inserted therein is formed, and the three-dimensional fiber structure is arranged at a predetermined position of a flat laminated yarn group constituting the substrate portion using a jig. The thread in the thickness direction is inserted at a predetermined pitch at a position other than the position corresponding to the bent portion of the reinforcing rib, and then the position corresponding to the bent portion of the reinforcing rib with respect to the thickness direction of the substrate portion. A method of manufacturing a three-dimensional fiber structure in which a thread in the thickness direction is inserted so as to penetrate the bent portion and the substrate portion in a state of crossing each other. In this case, a three-dimensional fiber structure having a reinforcing rib whose joint portion with the substrate portion is substantially T-shaped can be manufactured relatively easily by a method of weaving the whole at the same time.
[0076]
【The invention's effect】
As described above in detail, according to the first to fourth aspects of the present invention, the three-dimensional fiber structure in which the substrate portion and the reinforcing rib are joined by the thread in the thickness direction is provided between the reinforcing rib and the substrate portion. If the strength of the connecting portion is increased and the required physical properties are the same, the composite material using the three-dimensional fiber structure as a skeleton material can be thinned.
[0077]
According to the invention described in claim 2, since the reinforcing rib is formed in a T shape at least in the vicinity of the connecting portion with the substrate portion, it is good against bending regardless of which side of the lateral direction the force acts. High strength can be secured.
[0078]
In the invention according to claim 3, the substrate portion and the reinforcing rib are each a laminated yarn group formed by laminating a plurality of yarn layers and having an in-plane triaxial orientation and a thickness arranged in the thickness direction. Since it is composed of at least four axes including the vertical thread, a composite material having excellent physical properties (particularly strength and impact resistance) can be obtained.
[0079]
In the invention according to claim 4, since the substrate portion, the reinforcing rib and the thickness direction yarn are all formed of carbon yarn, it is compared with the case where other yarn or carbon yarn and other yarn are used in combination. Thus, the physical properties of the composite material are improved.
[Brief description of the drawings]
1A is a schematic cross-sectional view of a three-dimensional fiber structure according to a first embodiment, and FIG. 1B is a partially enlarged view of FIG.
FIG. 2 is a schematic perspective view of the same.
FIG. 3 is a schematic perspective view showing an arrangement state of yarns constituting a laminated yarn group.
FIG. 4 is a schematic perspective view of a frame used for forming a laminated yarn group.
FIG. 5 is a schematic perspective view of a state in which laminated yarn groups are formed on a frame.
FIG. 6 is a schematic partial plan view of a thickness direction thread insertion device.
FIG. 7 is a schematic end view showing a support state of an L-shaped three-dimensional fiber structure.
FIG. 8 is a schematic end view showing a support state of a T-shaped three-dimensional fiber structure.
FIG. 9 is a schematic diagram of a T-shaped three-dimensional fiber structure.
10A is a schematic cross-sectional view showing a support jig for a T-shaped three-dimensional fiber structure, and FIG. 10B is a schematic cross-sectional view showing a state after insertion of a thread in the thickness direction.
FIG. 11 is a schematic perspective view illustrating the operation of the thickness direction thread insertion device.
FIG. 12 is a partially cutaway schematic side view illustrating the operation of the thickness direction thread insertion device.
FIG. 13 is a schematic perspective view for explaining the operation of a jig according to another embodiment.
FIG. 14 is a schematic perspective view of another three-dimensional fiber structure.
FIG. 15 is a schematic perspective view showing a reinforcing rib that is also being manufactured.
FIG. 16 is a schematic perspective view showing a conventional method for producing a three-dimensional fabric.
FIG. 17 is a schematic cross-sectional view showing another conventional method for producing a three-dimensional fabric.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Board | substrate part, 2 ... Reinforcement rib, 2a, 2b, 2z ... Plate-shaped part, 3 ... Laminated yarn group, 4 ... Bending part, x ... 1st in-plane arrangement | sequence thread, y ... 2nd in-plane arrangement | positioning thread | yarn, z: Thickness direction yarn, B1, B2 ... Bias yarn, W, WT ... Three-dimensional fiber structure.

Claims (4)

三次元繊維構造体で構成された基板部と、三次元繊維構造体で構成された補強リブとが厚さ方向糸により結合された三次元繊維構造体であって、
前記補強リブはほぼ直角に屈曲された状態で連続する板状部を有し、前記板状部の一つが前記基板部に垂直となるように基板部に結合されるとともに、前記補強リブと前記基板部とを結合する厚さ方向糸は、前記補強リブと前記基板部との平面部が対応する位置においては、前記基板部の厚さ方向と平行に配列され、前記補強リブの屈曲部と対応する位置においては、前記基板部の厚さ方向に対して交差する状態で屈曲部及び基板部を貫通するように配列されている三次元繊維構造体。
A three-dimensional fiber structure in which a base plate composed of a three-dimensional fiber structure and a reinforcing rib composed of a three-dimensional fiber structure are joined by a thread in the thickness direction,
The reinforcing rib has a plate-like portion that is bent substantially at a right angle, and one of the plate-like portions is coupled to the substrate portion so as to be perpendicular to the substrate portion, and the reinforcing rib and the Thickness direction yarns connecting the substrate portion are arranged in parallel with the thickness direction of the substrate portion at a position where the plane portions of the reinforcement rib and the substrate portion correspond to each other, In the corresponding position, the three-dimensional fiber structure arranged so as to penetrate the bent portion and the substrate portion in a state of intersecting with the thickness direction of the substrate portion.
前記補強リブは少なくとも前記基板部との結合部付近がT字状に形成されている請求項1に記載の三次元繊維構造体。The three-dimensional fiber structure according to claim 1, wherein the reinforcing rib is formed in a T shape at least in the vicinity of a joint portion with the substrate portion. 前記基板部及び前記補強リブは、それぞれ複数の糸層を積層して形成された面内3軸以上の配向となる積層糸群と、その厚さ方向に配列された厚さ方向糸とを含む少なくとも4軸で構成されている請求項1又は請求項2に記載の三次元繊維構造体。The substrate portion and the reinforcing rib each include a laminated yarn group formed by laminating a plurality of yarn layers and having an in-plane triaxial orientation and at least thickness direction yarns arranged in the thickness direction. The three-dimensional fiber structure according to claim 1 or 2, comprising four axes. 前記基板部、補強リブ及び厚さ方向糸が全てカーボン糸で形成されている請求項3に記載の三次元繊維構造体。The three-dimensional fiber structure according to claim 3, wherein the substrate portion, the reinforcing rib and the thickness direction yarn are all formed of carbon yarn.
JP06678098A 1998-03-17 1998-03-17 3D fiber structure Expired - Fee Related JP3656395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06678098A JP3656395B2 (en) 1998-03-17 1998-03-17 3D fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06678098A JP3656395B2 (en) 1998-03-17 1998-03-17 3D fiber structure

Publications (2)

Publication Number Publication Date
JPH11269755A JPH11269755A (en) 1999-10-05
JP3656395B2 true JP3656395B2 (en) 2005-06-08

Family

ID=13325735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06678098A Expired - Fee Related JP3656395B2 (en) 1998-03-17 1998-03-17 3D fiber structure

Country Status (1)

Country Link
JP (1) JP3656395B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491955B2 (en) * 1999-11-02 2010-06-30 東レ株式会社 Impact energy absorbing member made of fiber reinforced plastic
DE102010015199B9 (en) * 2010-04-16 2013-08-01 Compositence Gmbh Fiber guiding device and apparatus for constructing a three-dimensional preform
JP5874802B1 (en) 2014-11-25 2016-03-02 株式会社豊田自動織機 Fiber structure and fiber reinforced composite

Also Published As

Publication number Publication date
JPH11269755A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
JP3070428B2 (en) 3D fiber tissue manufacturing equipment
KR101219878B1 (en) Manufacturing method of sandwich panels with truss type cores
US4787219A (en) Spatial warp knitted structure and a method of manufacturing the same
JP5047951B2 (en) Reinforced foam
RU2503757C2 (en) Hybrid three-dimensional fabric/layered spacers for use with composite constructions
EP0567845B1 (en) Formable multiaxial reinforcement
JPH05339862A (en) Production of fibrous reinforcing material for member of composite material and composite member consisting of reinforcing material
CA2174771A1 (en) Three-dimensional fabric and method for producing
JP2007511391A (en) Method for inserting Z-axis reinforcing fiber into composite laminate
JPH0781225B2 (en) Three-dimensional fabric for connecting members
EP0329434B1 (en) Textile structure for reinforcing structural members such as beams made of composite material, and method of producing the same
US20100196652A1 (en) Quasi-isotropic sandwich structures
JP3656395B2 (en) 3D fiber structure
DE4218860A1 (en) Deeply embossed fabric - utilises a reserve of fibre in the form of loops to enable formations to be pressed into a sheet of material
JP3486034B2 (en) Three-dimensional fiber structure
JP3475609B2 (en) Three-dimensional fiber structure and method of manufacturing the same
JP3486033B2 (en) Three-dimensional fiber structure
JPH11241256A (en) Three-dimensional fibrous structure and its production
US6123043A (en) Fibrous reinforcement for a composite component, and process and device for producing it
JPH0790605B2 (en) Fiber structure for reinforcing joint part of composite girder and manufacturing method thereof
JP2591814B2 (en) Fiber structure for reinforcing composite girder and method of manufacturing the same
JP3456114B2 (en) Thickness direction thread insertion device for three-dimensional fiber structure
JP3456113B2 (en) Manufacturing method and jig for three-dimensional fiber structure
JP4063175B2 (en) Three-dimensional fiber conjugates and composites
JPH0559634A (en) Three-dimensional woven fabric

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees