JP3656101B2 - River water intake equipment - Google Patents

River water intake equipment Download PDF

Info

Publication number
JP3656101B2
JP3656101B2 JP01366099A JP1366099A JP3656101B2 JP 3656101 B2 JP3656101 B2 JP 3656101B2 JP 01366099 A JP01366099 A JP 01366099A JP 1366099 A JP1366099 A JP 1366099A JP 3656101 B2 JP3656101 B2 JP 3656101B2
Authority
JP
Japan
Prior art keywords
water
filter
receiving groove
water intake
water receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01366099A
Other languages
Japanese (ja)
Other versions
JP2000212940A (en
Inventor
博充 菅原
Original Assignee
山大機電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山大機電株式会社 filed Critical 山大機電株式会社
Priority to JP01366099A priority Critical patent/JP3656101B2/en
Publication of JP2000212940A publication Critical patent/JP2000212940A/en
Application granted granted Critical
Publication of JP3656101B2 publication Critical patent/JP3656101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
この発明は河川から飲料用、工業用、養殖用などのために水を取り入れる取水装置に関するものであり、取り込んだ水への砂利などの異物の混入を防止することができ、また取水口のメンテナンスを不要にして取水コストを低減することができるものである。
【0002】
【従来の技術】
飲料水や養殖池のために水を河川から取り込むための従来の取水装置は概略、図8に示す構造からなるものであり、高さ1〜1.5mの取水堰1を設け、この取水堰1の上流側の取水口にゲート弁3を設け、この取水口から取り込んだ水を沈砂池2に導き、上記沈砂池2で、泥や砂利や落葉、木片、砂などを除去しているものである。
しかし、落葉の多い季節の河川の水や、雪解け水には、多量の落葉が混じっており、殊に雪解け水には沈みがちな落葉が多量に混入しているので、これらが取水口から流入して沈砂池に流れ込み、沈砂池で沈降し、堆積する。梅雨、台風の季節における河川の流れは砂利や砂、木片を巻き込みながら激しく流れるので、その傾向が一段と強くなる。このために従来の取水装置においては、沈砂池を定期的に清掃する必要があり、また、取り入れた水の処理装置の施工コスト、取り入れた水の処理コスト、取水装置のメンテナンスコストがかさむと言う問題がある。
【0003】
【発明が解決しようとする課題】
本発明は取水装置のメンテナンスコストを低減するとともに、砂利、砂、落葉、木片などの異物が取水口から流れ込むことを確実に防止できるように、取水装置の構造を根本的に改良することをその課題とするものである。
【0004】
【課題を解決するための手段】
上記課題解決のために講じた手段は、次ぎの要素(イ)〜(ニ)によって構成されるものである。
(イ)堰堤の下流側壁側に堰堤と平行な水受け溝を設けたこと、
(ロ)上記水受け溝の上方を、堰堤上端から斜度5度乃至45度で下流側に傾斜したフィルタで覆ったこと、
(ハ)上記水受け溝内に多孔エアー管を当該水受け溝の長手方向に沿って配置し、これを圧力空気源にバルブを介して接続したこと、
(ニ)上記水受け溝に取水管を設けたこと。
【0005】
【作用】
川の流れは堰堤上端を乗り越えて、放物線を描いて下流側に流れ落ちるが、上記フィルタが堰堤上端から下流側に斜度5度乃至45度で傾斜して配置されているので、上記の放物線状の水流がこのフィルタによって捕らえられ、その上を滑りながら当該フィルタ上を流れることになる。このために堰堤上端を乗り越え、フィルタに捕らえられた水流の一部がフィルタを通過して上記水受け溝に落下する。
水流と共に堰堤を乗り越えた砂利、落葉、砂等は上記フィルタ上を通過するから、これらが上記水受け溝に侵入することはなく、したがって、水受け溝に沈降、堆積することもない。
フィルタの斜度が余り小さいとフィルタを通過する水の割合が高くなるから取水効率は高いがフィルタ上を滑り落ちる水流の勢いが弱いので、砂利、落葉、砂等がフィルタ上に止まって目詰まりを起こしやすく、また反対に、斜度が余り大きいとフィルタ上を滑り落ちる水流の勢いが強いので、砂利、落葉、砂等によるフィルタの目づまりは低減されるが、フィルタを通過する水の割合が小さいので取水効率が低下する。
取水装置の幅は、河川の水量、必要な取水量等によって左右されることであるが、フィルタの単位面積当たりの取水量が少なくて良い場合はその斜度を大きくし、フィルタの単位面積当たりの取水量を多くする必要がある場合はその斜度を小さくする。しかし、フィルタの目詰まりの問題、フィルタの単位面積当たりの取水効率の点から、5度より小さく、45度より大きい範囲は実用性に乏しい。フィルタによって濾過されて水受け溝に落下した水は水受け溝から取水口に取り込まれる。
フィルタの目詰まりが著しくなり、取水効率が低下すると、水受け溝内の水位が低下し、取水管内の流速が低下し、取水流量が減少する。このときは、電動弁が閉じ水の流動が停止して後、上記多孔エアー管に接続した電磁バルブを開いて圧力空気を多孔エアー管に送り込み、多孔エアー管の空気孔からフィルタに向けて吹き出させる。この空気がフィルタの下面から上方に吹き抜けるのでフィルタに目詰まりしていた砂利、落葉、砂等が吹き飛ばされ水と共の流され、フィルタが清掃される。この後電磁バルブを閉じエアーの供給を停止し、次ぎに電動弁が開いて取水が開始される。したがって、取水効率が回復する。この清掃を所定間隔に行うことによって一定の取水効率が維持される。
また、長い間には水受け溝の底に微小な砂等が堆積することが避けられず、そのために清掃する必要がある場合は、水受け溝の底の排水口を解放すれば上記フィルタのメッシュから落下した水によって自然に洗い流される。したがってこの水受け溝の清掃のためのコストは殆ど零で済む。
【0006】
【実施態様1】
解決手段における高圧空気源をコンプレッサとアキュムレータで構成したこと。
【0007】
【作用】
アキュムレータに圧縮空気を蓄えておくことができるので、必要な高圧空気量を上記エアー管に供給することができ、コンプレッサーの容量も小さなもので足りるので、設備コストを低減することができる。
【0008】
【実施態様2】
解決手段における取水管に流量計と濁度計を設け、当該流量計による流量信号及び当該濁度計による濁度信号に応答するバルブ制御装置を設けたこと。
【0009】
【作用】
上記フィルタが目詰まりすると取水管から取り込まれる流量が低下するので、この水量の低下を流量計で検知することによって、上記多孔エアー管から高圧空気を吹き出させてフィルタを清掃するタイミングを検知することができる。
流量計による流量が基準値以下になったときその流量信号によってバルブ制御装置が作動して、エアーバルブが開らかれて高圧空気が多孔エアー管に自動的に供給され、フィルタの清掃が自動的に行われる。
また、雨や雪解け水等で河川が濁った場合には取水の濁度が大きくなるので、そのまま取水すると水処理に負担がかかり好ましくない。そこで、取水の濁度を濁度計で検知し基準値以上になった場合はその濁度信号によってバルブ制御装置が作動して、電動弁が閉じられて取水を自動的に停止する。
以上のように、上記フィルタの清掃作業が必要な時に自動的に行われ、また必要以上の濁った水も入ってこなくなるので、本発明の取水装置の運転コストは低い。
【0010】
【実施態様3】
解決手段における多孔エアー管に噴出空気をフィルタに向けて指向させるエアーガイドを設けたこと。
【0011】
【作用】
多孔エアー管の空気孔から吹き出される高速空気流がエアーガイドによって上記フィルタに向けてガイドされるので、上記高速空気流によるフィルタの清掃効率が向上する。
【0012】
【実施態様4】
解決手段における上記多孔エアー管を水受け溝の底に配置したこと。
【0013】
【作用】
多孔エアー管を水受け溝の底に配置したことにより、多孔エアー管は水受け溝の水面下に沈んだ状態にある。したがって、多孔エアー管からフィルタに向けて吹き出される高速空気流によって水受け溝内の水が高速空気流とともにフィルタに向けて吹き付けられるから、フィルタは極めて効率的に清掃される。
【0014】
【実施例】
次いで図面を参照しつつ実施例を説明する。
図1に示す実施例は、川幅3mの堰堤10の上端に水受け溝11を付設した例である。
高さが1.5mの堰堤の下流側の壁面に断面L型のコンクリート構造物を付設して水受け溝11を設けている。堰堤10の上端からこの水受け溝11の側壁11aの上端の間に目の小さい金網製フィルタ12を渡して、水受け溝11を覆っている。このフィルタ12の斜度は20度である。
水受け溝11の流れ方向幅は堰堤上端を流れる水の流速、取水量によって異なるが、当該溝の内法(溝幅)は50cm〜100cmが適当であり、この実施例では内法を50cmにしている。また、水受け溝11の深さは取水管18の接続位置(溝底からの高さ)及びその管径にもよるが、取水管18が水面下10〜15cmになるようにするのがよい。この実施例では取水管18の管径が15cmであるので、溝の深さを25cmにしている。
フィルタ12の支持構造は図2に示すとおりであり、水受け溝11の上にグレーチング13を渡し、このグレーチング13の上に多孔鋼板14を張り、この多孔鋼板14の上にフィルタ12を張っている。フィルタ12を形成する金網は素線径が0.3mm〜5.0mmで、素線間の隙間が0.3mm〜3.0mmのものである。
水受け溝11の底に外径8cmの多孔エアー管15を堰堤10の下流側壁面に沿わせて配置してあり、これにフィルタ12に向けた多数の小孔(空気孔)15aを設けてある。また、上記小孔15aから吹き出す高速空気流をフィルタ12に向けて指向させるためのエアーガイド16を設けている。このエアーガイド16は、多数の平板をフィルタ12に向けて配置して構成されており、その間隔及びその高さは水受け溝11の深さにもよるが、平板の上端が水面よりも数cm以上下方に位置するようにすればよい。これによって吹き出された高速空気流によって、水受け溝11内の水は巻き込まれてフィルタに吹き付けられる。
また、堰堤10の上流の川底の高さを堰堤10の上端とほぼ同じにしてあり、川底の上層を砂利層17にしている。これによって堰堤10の上流での水の流れを整え、堰堤の上端の流れが層状になり、フィルタ上を流れる水流の乱れを小さくすることができる。
取水管18に流量計20、電磁弁又は電動弁21、濁度計19を設けてあり、また、多孔エアー管15に電磁弁又は電動弁22を介してアキュムレータ(空気タンク)23を設けている。このアキュムレータ23はその圧力が3〜10Kg/cm、その容量が1m〜10mであり、これに小型コンプレッサ24を接続している。
【0015】
流量計20からの流量信号が伝送されているので、この流量が基準値以下になると、これに反応してバルブ制御装置25によって取水管18の電磁弁又は電動弁21を閉じて取水を停止し水の流れを止めてのち、他方多孔エアー管15の電磁弁又は電動弁22を開いてアキュムレータ23から多孔エアー管15に高圧空気を供給する。これによって多数の小孔(空気孔)15aからフィルタ12に向けて高圧空気が吹き出される。この高圧空気の吹き出し時間は10秒〜45秒でよく、この時間はバルブ制御装置25内のタイマーによって制御され、所定時間に達すると、バルブ制御装置25によって電磁弁又は電動弁22が自動的に閉じられ、高圧空気の吹き出しが停止し、電磁弁又は電動弁21が開かれて取水が開始される。タイマー設定の調整によって高圧空気の吹き出し時間は自在に調整できるので、実際のフィルタ12の清掃状況に応じて適宜調整すればよい。
【0016】
図6に示す第2の実施例は水量が比較的多い河川から多量に取水するのに適したものであり、堰堤31の下流側に打設されたコンクリート床32上に壁33を設け、堰堤31、コンクリート床32、壁33によって幅広の水受け溝34を構成しているものである。この実施例のものでは水受け溝の幅が100cmある。このため一つの多孔エアー管から吹き出される高速空気流でフィルタ全面を清掃するのは困難なので、この実施例では2本の多孔エアー管35、35を配置している。
一つのアキュムレータに2本の多孔エアー管35、35を接続しておいて、同時に2本の多孔エアー管35、35から高圧空気を吹き出させる構造とするときは、両多孔エアー管35、35への高圧空気の分配が問題となり、2本の多孔エアー管35、35への高圧空気の流量分配弁によって分配する必要がある。この場合は、堰堤31に近い方の多孔エアー管35から吹き出された高速空気流はフィルタ12に到達するまでの距離が長いので、当該多孔エアー管35への高圧空気の分配量を水受け溝34の壁33に近い方の多孔エアー管35よりも多くする必要がある。このようにして両多孔エアー管35、35から吹き出された高速空気流の速度がフィルタ12の下面においてほぼ同速になるようにする。また、実施例2では高圧空気の使用量が大であるので、アキュムレータ23の容量をそれに似合ったものにする必要がある。
しかし、両多孔エアー管をバルブによって選択的にアキュムレータに接続する構造にするときは、上記のような高圧空気の分配の問題はない。
その他の点については図6の実施例は図1の実施例と違いはない。
なお、フィルタとしては、ステンレス製薄板に微小孔を多数開けたもの、あるいは流れ方向に対して直角方向に長い微小スリットを多数開けたもの、あるいは細い線材を微小の隙間(例えば0.3〜3.0mm)を開けて流れ方向に密に並べたものが、フィルタ上の水の流れを滑らかにする上で望ましい。また、流れに直角に並べた方がゴミ、異物が入りにくい。しかし、施工コストを低くする観点からすれば市販の目の小さい金網が望ましい。
【0017】
【発明の効果】
以上のとおりであるから、本発明の取水装置は従来構造の取水装置に比してその施工費用が安く、堰堤の上流側の川底が土砂の堆積によって上がって取水に支障を生じるということもないから、長年に亘って所定の取水能力を発揮することができ、また堰を開け、堰堤上流の水位を下げ、或は取水口のゲート弁を閉じて沈砂池を清掃するなどのために、長時間に亘って取水を停止する必要はない。
フィルタの目詰まりを高圧空気を使って短時間に、しかも自動的に清掃できるので、取水効率を年中ほぼ一定に維持することができ、また、取水装置のメンテナンスコストには殆ど人手を要しないから、そのコストは著しく低い。
また、取り込まれた水に砂利、砂、落葉が混入することは殆どないから、取り込んだ水の処理装置を簡便なものにすることができ、また、取り込んだ水の処理コストも低減できる。
さらに取水装置は、堰堤の下流側に付設した水受け溝とフィルタ、多孔エアー管、アキュムレータ、コンプレッサであるが、フィルタ、多孔エアー管、アキュムレータ、コンプレッサなどは工業製品であるから比較的安価であり、また、従来の取水装置のように沈砂池は不要であるから、その施工費用も従来の取水装置と違わない。
【図面の簡単な説明】
【図1】実施例1の側面図である。
【図2】図1のフィルタの拡大断面図である。
【図3】実施例1の正面図である。
【図4】実施例1の平面図である。
【図5】実施例1の制御系の概念図である。
【図6】実施例2の側面図である。
【図7】実施例2の平面図である。
【図8】従来の取水装置の模式図である。
【符号の説明】
1・・・取水堰
2・・・沈砂池
3・・・ゲート弁
11、34・・・水受け溝
11a・・・側壁
12・・・フィルタ
15、35・・・多孔エアー管
16・・・エアーガイド
17・・・砂利層
18・・・取水管
19・・・濁度計
20・・・流量計
21、22・・・電磁弁又は電動弁
23・・・アキュムレータ
24・・・コンプレッサ
25・・・バルブ制御装置
31・・・堰堤
32・・・コンクリート床
33・・・壁
[0001]
[Industrial application fields]
The present invention relates to a water intake device for taking water from a river for drinking, industrial use, aquaculture, etc., and can prevent contamination of foreign matter such as gravel into the taken-in water, and maintenance of a water intake The water intake cost can be reduced by eliminating the need for water.
[0002]
[Prior art]
A conventional water intake device for taking water from a river for drinking water or aquaculture pond has a schematic structure shown in FIG. 8, and a water intake weir 1 having a height of 1 to 1.5 m is provided. 1. A gate valve 3 is provided at the upstream intake of 1, and water taken from this intake is led to a sand basin 2 where mud, gravel, fallen leaves, wood chips, sand, etc. are removed. It is.
However, a lot of fallen leaves are mixed in the river water in the season with many fallen leaves and the snowmelt. Then, it flows into the sand basin, sinks and accumulates in the sand basin. In the rainy season and typhoon season, the river flows violently with gravel, sand, and wood chips, so the tendency becomes stronger. For this reason, in the conventional water intake device, it is necessary to periodically clean the sand basin, and the construction cost of the incorporated water treatment device, the treatment cost of the incorporated water, and the maintenance cost of the intake device are increased. There's a problem.
[0003]
[Problems to be solved by the invention]
The present invention reduces the maintenance cost of the water intake device and fundamentally improves the structure of the water intake device so that foreign matter such as gravel, sand, fallen leaves, and wood chips can be reliably prevented from flowing from the water intake port. It is to be an issue.
[0004]
[Means for Solving the Problems]
The means taken for solving the above-described problems is constituted by the following elements (a) to (d).
(B) A water receiving groove parallel to the dam was provided on the downstream side wall side of the dam,
(B) The upper portion of the water receiving groove was covered with a filter inclined at a slope of 5 to 45 degrees downstream from the upper end of the dam,
(C) A porous air tube is disposed in the water receiving groove along the longitudinal direction of the water receiving groove, and this is connected to a pressure air source via a valve;
(D) A water intake pipe is provided in the water receiving groove.
[0005]
[Action]
The river flows over the top of the dam and flows down to the downstream with a parabola, but the filter is arranged at an inclination of 5 to 45 degrees from the top of the dam to the downstream, The water flow is captured by the filter and flows over the filter while sliding on it. For this purpose, the top of the dam is overcome, and a part of the water flow captured by the filter passes through the filter and falls into the water receiving groove.
Gravel, fallen leaves, sand, etc. that have passed over the weir along with the water flow pass on the filter, so that they do not enter the water receiving groove, and therefore do not settle or accumulate in the water receiving groove.
If the slope of the filter is too small, the rate of water passing through the filter will be high, so the water intake efficiency is high, but the momentum of the water that slides on the filter is weak, so gravel, fallen leaves, sand, etc. stop on the filter and clog it. On the contrary, if the slope is too large, the flow of water that slides on the filter is strong, so clogging of the filter due to gravel, fallen leaves, sand, etc. is reduced, but the percentage of water that passes through the filter is small As a result, water intake efficiency decreases.
The width of the water intake device depends on the amount of water in the river, the required water intake, etc., but if the amount of water intake per unit area of the filter is small, increase the slope and If it is necessary to increase the amount of water intake, reduce the slope. However, from the viewpoint of clogging of the filter and the water intake efficiency per unit area of the filter, a range smaller than 5 degrees and larger than 45 degrees is not practical. The water filtered by the filter and dropped into the water receiving groove is taken into the water intake from the water receiving groove.
When the filter becomes clogged significantly and the water intake efficiency decreases, the water level in the water receiving groove decreases, the flow velocity in the water intake pipe decreases, and the water intake flow rate decreases. At this time, after the motor-operated valve is closed and the flow of water is stopped, the electromagnetic valve connected to the porous air pipe is opened, pressure air is sent to the porous air pipe, and blown out from the air hole of the porous air pipe toward the filter. Let Since this air is blown upward from the lower surface of the filter, clogged gravel, fallen leaves, sand and the like are blown away and are flushed with water to clean the filter. Thereafter, the electromagnetic valve is closed and the supply of air is stopped. Next, the motor-operated valve is opened and water intake is started. Therefore, water intake efficiency is restored. A constant water intake efficiency is maintained by performing this cleaning at predetermined intervals.
In addition, for a long time, it is inevitable that fine sand or the like accumulates on the bottom of the water receiving groove, and if it is necessary to clean it, it is necessary to open the drain outlet at the bottom of the water receiving groove to remove the filter. Naturally washed away by water falling from the mesh. Therefore, the cost for cleaning the water receiving groove is almost zero.
[0006]
Embodiment 1
The high-pressure air source in the solution is composed of a compressor and an accumulator.
[0007]
[Action]
Since the compressed air can be stored in the accumulator, the required amount of high-pressure air can be supplied to the air pipe, and the capacity of the compressor can be small, so that the equipment cost can be reduced.
[0008]
Embodiment 2
A flow meter and a turbidity meter were provided in the water intake pipe in the solution, and a valve control device responding to the flow signal from the flow meter and the turbidity signal from the turbidity meter was provided.
[0009]
[Action]
When the filter is clogged, the flow rate taken in from the water intake pipe decreases, and by detecting the decrease in the water amount with a flow meter, the timing of cleaning the filter by blowing high-pressure air from the porous air pipe is detected. Can do.
When the flow rate by the flow meter falls below the reference value, the valve controller is activated by the flow rate signal, the air valve is opened, and high-pressure air is automatically supplied to the perforated air tube, and the filter is automatically cleaned. To be done.
In addition, when the river becomes cloudy due to rain, thawed water, or the like, the turbidity of the water intake becomes large. Therefore, when the turbidity of the water intake is detected by a turbidimeter and exceeds the reference value, the valve control device is actuated by the turbidity signal, the motorized valve is closed, and the water intake is automatically stopped.
As described above, since the cleaning operation of the filter is automatically performed when necessary, and more turbid water does not enter, the operation cost of the water intake device of the present invention is low.
[0010]
Embodiment 3
An air guide for directing the blown air toward the filter is provided in the porous air tube in the solution.
[0011]
[Action]
Since the high-speed air flow blown out from the air holes of the porous air tube is guided toward the filter by the air guide, the cleaning efficiency of the filter by the high-speed air flow is improved.
[0012]
Embodiment 4
The porous air pipe in the solving means is disposed at the bottom of the water receiving groove.
[0013]
[Action]
By arranging the porous air tube at the bottom of the water receiving groove, the porous air tube is in a state of being submerged under the water surface of the water receiving groove. Therefore, since the water in the water receiving groove is blown toward the filter together with the high-speed air flow by the high-speed air flow blown toward the filter from the porous air tube, the filter is cleaned extremely efficiently.
[0014]
【Example】
Next, embodiments will be described with reference to the drawings.
The embodiment shown in FIG. 1 is an example in which a water receiving groove 11 is attached to the upper end of a dam 10 having a river width of 3 m.
A water receiving groove 11 is provided by attaching a concrete structure having an L-shaped cross section to a wall surface on the downstream side of a dam with a height of 1.5 m. A small wire mesh filter 12 is passed between the upper end of the dam 10 and the upper end of the side wall 11 a of the water receiving groove 11 to cover the water receiving groove 11. The inclination of the filter 12 is 20 degrees.
The flow direction width of the water receiving groove 11 varies depending on the flow velocity of water flowing through the upper end of the dam and the amount of water intake, but the inner method (groove width) of the groove is appropriately 50 cm to 100 cm. In this embodiment, the inner method is 50 cm. ing. The depth of the water receiving groove 11 depends on the connection position of the intake pipe 18 (height from the groove bottom) and the diameter of the pipe, but the intake pipe 18 should be 10 to 15 cm below the water surface. . In this embodiment, since the pipe diameter of the intake pipe 18 is 15 cm, the depth of the groove is 25 cm.
The support structure of the filter 12 is as shown in FIG. 2. A grating 13 is passed over the water receiving groove 11, a porous steel plate 14 is stretched over the grating 13, and the filter 12 is stretched over the porous steel plate 14. Yes. The wire mesh forming the filter 12 has a wire diameter of 0.3 mm to 5.0 mm and a gap between the wires of 0.3 mm to 3.0 mm.
A porous air pipe 15 having an outer diameter of 8 cm is arranged along the downstream side wall surface of the dam 10 at the bottom of the water receiving groove 11, and a large number of small holes (air holes) 15 a facing the filter 12 are provided on the porous air pipe 15. is there. Further, an air guide 16 is provided for directing a high-speed air flow blown out from the small hole 15a toward the filter 12. The air guide 16 is configured by arranging a large number of flat plates facing the filter 12, and the interval and the height thereof depend on the depth of the water receiving groove 11, but the upper end of the flat plate is several times higher than the water surface. What is necessary is just to make it locate below cm or more. By the high-speed air flow blown out by this, the water in the water receiving groove 11 is caught and blown to the filter.
Further, the height of the riverbed upstream of the dam 10 is made substantially the same as the upper end of the dam 10, and the upper layer of the riverbed is a gravel layer 17. As a result, the flow of water upstream of the dam 10 is adjusted, and the flow at the upper end of the dam becomes layered, and the disturbance of the water flow flowing on the filter can be reduced.
The intake pipe 18 is provided with a flow meter 20, an electromagnetic valve or electric valve 21, and a turbidity meter 19, and the porous air pipe 15 is provided with an accumulator (air tank) 23 via an electromagnetic valve or electric valve 22. . The accumulator 23 has a pressure of 3 to 10 kg / cm 2 and a capacity of 1 m 3 to 10 m 3 , and a small compressor 24 is connected to the accumulator 23.
[0015]
Since the flow rate signal from the flow meter 20 is transmitted, when this flow rate falls below the reference value, the valve controller 25 closes the electromagnetic valve or the motor operated valve 21 of the water intake pipe 18 in response to this and stops water intake. After the flow of water is stopped, the electromagnetic valve or electric valve 22 of the other porous air tube 15 is opened, and high pressure air is supplied from the accumulator 23 to the porous air tube 15. As a result, high-pressure air is blown out from the large number of small holes (air holes) 15 a toward the filter 12. The high-pressure air blowing time may be 10 seconds to 45 seconds, and this time is controlled by a timer in the valve control device 25. When the predetermined time is reached, the valve control device 25 automatically causes the electromagnetic valve or the motor operated valve 22 to be automatically turned on. It is closed, the high-pressure air blowing is stopped, the electromagnetic valve or motor-operated valve 21 is opened, and water intake is started. Since the high pressure air blowing time can be freely adjusted by adjusting the timer setting, it may be appropriately adjusted according to the actual cleaning condition of the filter 12.
[0016]
The second embodiment shown in FIG. 6 is suitable for taking a large amount of water from a river having a relatively large amount of water. A wall 33 is provided on a concrete floor 32 placed on the downstream side of the dam 31, and the dam is A wide water receiving groove 34 is configured by the 31, the concrete floor 32, and the wall 33. In this embodiment, the width of the water receiving groove is 100 cm. For this reason, it is difficult to clean the entire surface of the filter with a high-speed air flow blown from one porous air tube. In this embodiment, two porous air tubes 35 and 35 are arranged.
When two porous air pipes 35, 35 are connected to one accumulator and high pressure air is blown from the two porous air pipes 35, 35 at the same time, the two porous air pipes 35, 35 are connected. The distribution of the high-pressure air is a problem, and it is necessary to distribute the high-pressure air to the two porous air pipes 35 and 35 by the flow rate distribution valve. In this case, since the high-speed air flow blown out from the porous air pipe 35 closer to the dam 31 has a long distance to reach the filter 12, the distribution amount of the high-pressure air to the porous air pipe 35 is changed to the water receiving groove. It is necessary to increase the number of porous air pipes 35 closer to the wall 33 of 34. In this way, the speed of the high-speed air flow blown out from both the porous air pipes 35 and 35 is made substantially the same on the lower surface of the filter 12. In Example 2, the amount of high-pressure air used is large, so that the capacity of the accumulator 23 needs to match that.
However, when both porous air pipes are selectively connected to the accumulator by a valve, there is no problem of the high-pressure air distribution as described above.
In other respects, the embodiment of FIG. 6 is not different from the embodiment of FIG.
As the filter, a stainless steel thin plate with a lot of fine holes, a lot of fine slits long in the direction perpendicular to the flow direction, or a thin wire rod with a fine gap (for example, 0.3 to 3). 0.0 mm) and arranged closely in the flow direction is desirable for smoothing the water flow on the filter. Also, dust and foreign matter are less likely to enter when they are arranged at right angles to the flow. However, from the viewpoint of reducing the construction cost, a commercially available wire mesh is desirable.
[0017]
【The invention's effect】
As described above, the construction cost of the water intake device of the present invention is lower than that of a conventional water intake device, and the riverbed on the upstream side of the dam does not rise due to sedimentation and does not interfere with water intake. For a long time, it is possible to demonstrate a predetermined water intake capacity, open the weir, lower the water level upstream of the weir, or close the intake gate valve to clean the sand basin. There is no need to stop water intake over time.
Since clogging of the filter can be automatically cleaned in a short time using high-pressure air, the water intake efficiency can be maintained almost constant throughout the year, and the maintenance cost of the water intake device requires little manual labor. Therefore, its cost is extremely low.
Moreover, gravel, sand, and fallen leaves are hardly mixed in the taken-in water, so that the processing device for the taken-in water can be simplified, and the processing cost for the taken-in water can be reduced.
Furthermore, the water intake device is a water receiving groove and a filter, a porous air pipe, an accumulator, and a compressor attached to the downstream side of the dam. However, since the filter, the porous air pipe, the accumulator, the compressor, etc. are industrial products, they are relatively inexpensive. Moreover, since a sand basin is not required unlike the conventional water intake apparatus, the construction cost is not different from the conventional water intake apparatus.
[Brief description of the drawings]
FIG. 1 is a side view of Example 1. FIG.
FIG. 2 is an enlarged cross-sectional view of the filter of FIG.
FIG. 3 is a front view of the first embodiment.
4 is a plan view of Example 1. FIG.
FIG. 5 is a conceptual diagram of a control system according to the first embodiment.
6 is a side view of Example 2. FIG.
7 is a plan view of Example 2. FIG.
FIG. 8 is a schematic view of a conventional water intake device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Intake weir 2 ... Sand basin 3 ... Gate valve 11, 34 ... Water receiving groove 11a ... Side wall 12 ... Filter 15, 35 ... Porous air pipe 16 ... Air guide 17 ... Gravel layer 18 ... Intake pipe 19 ... Turbidimeter 20 ... Flow meter 21, 22 ... Solenoid valve or motorized valve 23 ... Accumulator 24 ... Compressor 25 ..Valve control device 31 ... Dam 32 ... Concrete floor 33 ... Wall

Claims (5)

堰堤の下流側壁側に堰堤と平行な水受け溝を設け、
上記水受け溝の上方を、堰堤上端から斜度5度乃至45度で下流側に傾斜したフィルタで覆い、
上記水受け溝内に多孔エアー管を当該水受け溝の長手方向に沿って配置し、これを圧力空気源にバルブを介して接続し、
上記水受け溝に取水管を設けた河川の取水装置。
A water receiving groove parallel to the dam is provided on the downstream side wall side of the dam,
Cover the upper portion of the water receiving groove with a filter inclined at a slope of 5 to 45 degrees downstream from the upper end of the dam,
A porous air tube is disposed in the water receiving groove along the longitudinal direction of the water receiving groove, and this is connected to a pressure air source via a valve,
A water intake device for a river in which a water intake pipe is provided in the water receiving groove.
上記高圧空気源をコンプレッサとアキュムレータとで構成した請求項1記載の河川の取水装置。The river intake apparatus according to claim 1, wherein the high-pressure air source is composed of a compressor and an accumulator. 上記取水管に流量計及び濁度計を設け、当該流量計による流量信号及び当該濁度計による濁度信号に応答するバルブ制御装置を設けた請求項1記載の河川の取水装置。The river water intake device according to claim 1, wherein a flow meter and a turbidity meter are provided in the intake pipe, and a valve control device that responds to a flow rate signal from the flow meter and a turbidity signal from the turbidimeter is provided. 上記多孔エアー管に噴出空気をフィルタに指向させるエアーガイドを設けた請求項1記載の河川の取水装置。The river water intake device according to claim 1, wherein an air guide is provided in the porous air pipe to direct the blown air toward the filter. 上記多孔エアー管を水受け溝の底に配置した請求項1記載の河川の取水装置。The river water intake device according to claim 1, wherein the porous air pipe is disposed at the bottom of the water receiving groove.
JP01366099A 1999-01-21 1999-01-21 River water intake equipment Expired - Lifetime JP3656101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01366099A JP3656101B2 (en) 1999-01-21 1999-01-21 River water intake equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01366099A JP3656101B2 (en) 1999-01-21 1999-01-21 River water intake equipment

Publications (2)

Publication Number Publication Date
JP2000212940A JP2000212940A (en) 2000-08-02
JP3656101B2 true JP3656101B2 (en) 2005-06-08

Family

ID=11839368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01366099A Expired - Lifetime JP3656101B2 (en) 1999-01-21 1999-01-21 River water intake equipment

Country Status (1)

Country Link
JP (1) JP3656101B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5042051B2 (en) * 2008-01-25 2012-10-03 山大機電株式会社 Water intake system and water intake device
JP5080620B2 (en) * 2010-07-23 2012-11-21 秀樹 中込 Intake mechanism of Sabo Dam
KR101363261B1 (en) 2012-04-25 2014-02-13 한국에너지기술연구원 Dam Having Forebay
JP5296918B1 (en) * 2012-12-01 2013-09-25 秀樹 中込 Intake mechanism of Sabo Dam
JP7116506B1 (en) 2021-07-21 2022-08-10 新那須温泉供給株式会社 Water intake structures and water intake facilities

Also Published As

Publication number Publication date
JP2000212940A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
US4608181A (en) Water filtration apparatus having upflow buoyant media filter and downflow nonbuoyant media filter
CN102574031B (en) High speed filtration device using porous media, and backwash method thereof
KR101494296B1 (en) A Non-power Automatic Back-washing Type Equipment for Decreasing Non-point Pollution of First Flush
CN108203196A (en) A kind of municipal sewage treatment purifier
JP3656101B2 (en) River water intake equipment
JP2010221197A (en) Overflow water treatment system in combined sewerage
JP2001507276A (en) Liquid processing method and processing apparatus
CN207371173U (en) A kind of self-cleaning filtering water system
KR20080102867A (en) Combined sewer overflow system
KR102154227B1 (en) Water quality management unit using water quality monitoring
CN108114526A (en) A kind of up-flow settlement of sewage filter plant
CN106186109B (en) A kind of grid pond tobacco wastewater suspended substance collects separate tank
KR102373598B1 (en) Filtration type non-point pollution reduction facility equipped with backwashing function using treated water
KR100975144B1 (en) Filtration apparatus for river water using porous media
CN1827537A (en) Non-blocking aeration biological filter
KR101227333B1 (en) Nonpoint source pollution removal system using buoyancy rising floodgatet
RU2646052C1 (en) Filter unit
JP2008093552A (en) Moving-bed filtration apparatus
JPS61291098A (en) Apparatus for biological filtering of organic sewage
JP3308211B2 (en) Rainwater flow switching device
CN220609449U (en) Vertical integrated sewage treatment plant of intelligence
CN2452591Y (en) Back-washing apparatus for water filtering machine
CN220703404U (en) Denitrification tank
JP3391498B2 (en) Gravity filtration device
US20070193932A1 (en) Water purification system and method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term