JP3655980B2 - Filter media - Google Patents

Filter media Download PDF

Info

Publication number
JP3655980B2
JP3655980B2 JP30876196A JP30876196A JP3655980B2 JP 3655980 B2 JP3655980 B2 JP 3655980B2 JP 30876196 A JP30876196 A JP 30876196A JP 30876196 A JP30876196 A JP 30876196A JP 3655980 B2 JP3655980 B2 JP 3655980B2
Authority
JP
Japan
Prior art keywords
filter medium
layer
filtration
water
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30876196A
Other languages
Japanese (ja)
Other versions
JPH10128021A (en
Inventor
剛 小林
美香 間
彰則 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP30876196A priority Critical patent/JP3655980B2/en
Publication of JPH10128021A publication Critical patent/JPH10128021A/en
Application granted granted Critical
Publication of JP3655980B2 publication Critical patent/JP3655980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、水中に分散している懸濁物質を濾過する技術に関し、特に、濾過槽内に複数の濾材を充填構成する濾過装置に用いられ、しかも、工事現場や浚渫作業時或いは田の代かき時に発生する土壌濁水及び藻類を始めとする比較的小さな粒径の懸濁物質を対象とした濾過装置や、超純水製造の前処理用として用いて好適な濾材に関する。
【0002】
【従来の技術】
近年、環境に対する関心は日毎に増しているが、その中でも、生活排水に起因する水環境汚染は古くからの関心事である。特に、湖沼、河川の水質汚染は生態系を一変させ、視覚的な美観の問題に留まらず、悪臭のように、一般生活に直接悪影響を及ぼす問題として、種々の対策や工夫が為されている。汚染された水を濾過する技術は種々活発に研究開発が進められており、中でも藻類のような比較的粒径の小さな懸濁物質(以下、懸濁物質を単にSSと総称する場合もある)を濾過する技術については、小さい粒径のSSを如何に効率良く捕捉し、しかも、濾過槽内に充填した濾材全体としての目詰まり、若しくは濾過圧上昇を如何に遅延させるかと言う、一見、相反する要求を満足する必要が有る。
【0003】
上述の要求達成を期する濾材として、砂、アンスラサイト並びに活性炭といった粒状の濾材を濾過槽内に充填構成した技術は良く知られている。しかし、これら粒状濾材は、主として濾材粒子間にSSを捕捉するものであるため、藻類や土粒子のように粒径が100μm以下のSSに対しては、必ずしも有効な手段とは言えない。しかも、このような粒状濾材は比重が大きいことから、例えば逆洗時に濾過槽から分離回収する場合、濾材重量が大きくなるため、取り扱いが難しかった。
【0004】
また、種々の合成樹脂を用いた直径数cmの繊維状ボールや、合成樹脂を発泡構成したビーズといった球形濾材も実用化されているが、上記粒状濾材に較べて逆洗等の作業性や濾過速度は改善されるものの、前述した粒径の小さいSSに対する除去率は必ずしも満足できるものではなかった。
【0005】
係る従前の技術を改善するため、特開平8−33818号公報及び特開平8−33819号公報には、繊維シートをチップ状とした濾材が提案されている。
【0006】
まず、特開平8−33818号公報(以下、文献iと称する)に開示される濾材は、繊維径が30〜200μmの綿毛状のフィラメントを、これよりも融点の低い融着材で結合させ、その内部に空隙を有する厚さ3〜10mmのマット状の媒体を構成し、当該媒体を一辺が5〜50mmの四方形状に裁断してチップ状としたものである。この公報によれば、処理槽に当該濾材を多数充填すれば、各濾材が目詰まりした場合であっても、容易に逆洗し得る旨の提案がなされている。
【0007】
また、特開平8−33819号公報(以下、文献iiと称する)に開示される濾材の場合、太さが100〜500μmの大径の合成樹脂フィラメントと、太さが30〜100μmの小径のフィラメントとを混合し、これらを融着材で結合させ、内部に微小空隙を有する厚さ3〜10mmの板状の濾材を構成し、当該板状の濾材を10〜50mm角状に裁断したチップ状のものである。この濾材構成の場合、大径のフィラメントは濾過圧力に対して耐性を持ち、小径フィラメントで構成される微小な空隙が確保される。これがため、SSを捕捉するに従って上昇傾向にある濾過圧により、SSを捕捉するための空隙がつぶれにくいことから、濾過装置を長時間運転することを期待する技術である。
【0008】
【発明が解決しようとする課題】
しかしながら上述した従来の技術では、濾過槽内に多数充填された濾材の全てを効率良く利用するものではなかった。即ち、文献iに提案される濾材の場合、綿毛状のフィラメントにより濾材内部の空隙を構成するものであるが、捕捉されたSSは、当該空隙内に蓄積される。このため、濾過槽内で処理される汚水の上流側に有る濾材が先に目詰まりを起こし、当該濾材自体が汚水の流通を妨げる。従って、汚水の下流側に有る濾材が未捕捉の状態であっても、濾過圧の上昇を来すという問題が有った。
【0009】
また、文献iiに提案される濾材であっても、個々の濾材に確保されたSS捕捉用の空隙が捕捉されたSSで閉塞した後、下流側の濾材に汚水並びに浄化された被処理水を透過・流通させる構成は採られていない。従って、文献iの技術と同様に、文献iiの技術を以てしても、濾過槽内に未捕捉の濾材が残っているにもかかわらず濾過圧の上昇を来し、効率的な濾過装置の運転を図ることが難しいという問題点があった。
【0010】
この発明は、上述した従来の問題点に鑑み為されたものであり、従って、この発明の目的は、濾過槽内に多数充填される濾材として、汚水の上流側或いは下流側に関わらず、実質的に均一な懸濁物質の捕捉を行うことが可能であり、延いては、濾過装置の効率的な運転を実現し得る新規な濾材を提供することに有る。
【0011】
【課題を解決するための手段】
この目的の達成を図るため、この発明の濾材構成によれば、懸濁物質(SS)を捕捉するための布はくよりなる濾過層と、この懸濁物質が分散した処理水を透過・流通する通水層とを積層してなり、前記濾過層が4〜20μmから選択される平均粒径の懸濁物質に対して0.3倍以上4倍未満の平均開孔径を有し、前記通水層が前記平均粒径の懸濁物質に対して4〜50倍の平均開孔径を有し、且つ前記濾材の面積が0.01〜1cm であることを特徴としている。尚、ここで言う処理水とは、濾過装置に導入される濾過前の汚水と、当該装置から排出される前であってしかも所定の度合いでSSが濾過捕集され、浄化が進んでいる被処理水とを包括的に表すものである。また、この発明の実施に当たり、上述した濾過層と上述の通水層とを不織布で構成するのが好適である。
【0012】
【発明の実施の形態】
本発明の濾材は、前述の濾過層と通水層とを有する構成としたものである。以下、本発明の好適例としての濾材につき、概略断面により示す図1を参照して実施の形態につき説明する。本発明の最も単純な構造として、図1に示すように、濾過層11と通水層13とを各1層ずつで積層構成した濾材15が挙げられる。このうち、濾過層11はSSを捕捉する布はくで構成するのが好ましく、通水層13は、濾過層11が目詰まりした場合であっても、近接する他の濾材15に対して、処理水を流通させるための構成成分である。
【0013】
この濾材15の寸法は、濾過装置の送液圧力など、装置条件に応じて種々に設計することができる。例えば、送液の圧力を0.02〜2.0Kg/cm2程度として設計した汎用の濾過装置の場合、個々の濾材15の濾材面積が1cm2以下が必要であり、好ましくは0.5cm2以下とするのが好適である。この濾材面積とは、濾過層11と通水層13との積層方向に対して垂直な面内で濾材が有する面積を表す。本発明の濾材は、濾過層11に主として深層濾過による濾過性能を期待するものであるが、この出願に係る発明者の実験によれば、前述の送液圧力の範囲で、濾材面積を上述の好適範囲よりも大きく採る場合、汚水が濾過(浄化)されることなく通水層13を介してのみ流通する傾向(以下、ショートパスと称する)にある。この現象は、上記好適濾材面積よりも大きな濾材とした場合、処理水が通水層を透過する際の抵抗に較べて、個々の濾材の濾過層を透過するための抵抗が相対的に大きくなるためと考えられる。また、濾材の濾過性能上、濾材面積の下限値には制約を生じないが、従来の粒状濾材を用いた濾過装置に具えられるのと同様な、濾材の流出防止用のメッシュ状部材の配設による圧力損失、或いは小片に裁断加工する際の加工性に考慮し、0.01cm2以上の濾材面積として構成する必要がある。さらに、濾材の裁断形状は、正方形、長方形、その他の多角形や円形などとして設計し得る。しかしながら、前述したショートパス低減や濾材の逆洗効率をそこなわないためには、同等の濾材面積であれば、長方形とするのが好ましい。
【0014】
これらに加えて、前述の濾過圧に設計する場合、濾材15の厚さは0.3mm以上、10mm以下とし、特に好ましくは0.5mm以上、4mm以下とするのが良い。さらに、濾材15の各構成成分の厚さは、前述した送液圧下で濾材15における通水層13の厚さが占める割合を30〜90%、好ましくは40〜80%とするのが好適である。当該割合を30%未満とし、かつ0.3mm未満の厚さで濾材15を構成した場合、設けた通水層13の機能が不十分となり、濾過層11の目詰まりに伴って急激な濾過圧上昇を来す。また、通水層13の厚さの割合が90%を超え、かつ濾材15の厚さを10mmを超えて設計する場合には、前述のショートパスを来す危険性が高くなる。
【0015】
個々の構成成分についての実施形態として、まず、濾過層につき説明すれば、当該濾過層を構成する素材として、従来用いられてきたのと同様に、織物、不織布といった種々の布はくを利用することができる。これら布はくを構成する繊維としては、親水性、疎水性を問わず、いかなる樹脂を使用しても良いが、濾材としての耐久性を考慮すれば、化学的に安定なポリアミド系繊維、ポリエステル系繊維やポリオレフィン系繊維を主体として構成することが好ましい。特に、比較的小さなSSの捕捉を所望とする場合には、開孔径が小さく、緻密な三次元構造を実現できる極細繊維不織布が好適である。上述した布はくを用いるに当たり、濾過層として機能させるため、その開孔径は所望とする懸濁物質の粒径よりも小さく設計すればよい。但し、懸濁物質は所定の粒径分布を採ることが多いため、濾過層として、より良く機能させるためには、不織布のように開孔径が所定の分布を有する素材として構成するのが望ましい。係る場合、濾過層の平均開孔径は、懸濁物質の平均粒径の0.3倍以上4倍未満に設計する必要がある。この平均開孔径の上限は、濾過装置内で濾過圧を受けて開孔が小さくなる傾向にあるため、捕捉するSSの粒径より大きく設計しても実質的な開孔径はSSを捕捉するに十分である。
【0016】
次いで、通水層を構成する素材は、上述の濾過層と接する面や通水層の厚み方向に延在する端面から、通水層の濾材面積に相当する端面に渡って処理水を流通させることが可能な連通孔を有するものであれば、如何なるものを用いても良い。この通水層の好適素材としては、濾過層と同様に化学的に安定な合成樹脂で構成するのが好ましく、種々の合成樹脂を発泡構成したもの、スポンジ状のものなどの多孔質素材が挙げられる。特に、前述した濾過層との積層(接着)または一工程生産が容易であり、しかも、SSを透過可能な開孔径設計の自由度が高いことから、通水層は濾過層と同様に不織布で構成するのが好ましい。この通水層は、既に述べたように、SS捕捉により濾過層が目詰まりした場合であっても、濾過槽内に充填された他の濾材への処理水の流通を図るものであるため、当該通水層の開孔径は、少なくともSSの粒径よりも大きく構成する必要が有る。しかしながら、この開孔径を著しく大きく採る場合には、ショートパスが起こりやすく、また、濾過圧力下での形態保持が難しくなる。従って、前述した濾過圧力においても通水層として機能せしめるため、通水層を構成する素材の平均開孔径の下限は、SSの粒径の2倍以上とすればよく、形態保持に関係する平均開孔径の上限も考慮すれば、好ましくは4〜50倍程度の開孔径とする必要がある。
【0017】
【実施例】
以下、この発明の実施例につき説明する。尚、以下においては、この発明の理解を容易とするため、寸法条件、配置関係及びその他の数値条件など、特定の条件を例示して説明するが、これら条件は好適例に過ぎず、従って、この発明は、これら条件にのみ限定されるものではない。
【0018】
(実施例)
まず、実施例に係る濾材の作製手順につき説明する。この実施例では、図1を参照して説明した2層構造の濾材15を作製した。
始めに、濾過層11を構成するため、分割性繊維であるナイロンとPETとの複合繊維(16分割であり、分割後の繊維直径約4.3μm,繊維長51mm)100重量%から成る繊維ウエブに対して高圧水流による絡合を行い、面密度85g/m2、厚さ0.5mm(20g/cm2荷重時)の基布を得た。尚、この水流絡合不織布の平均開孔径をポロメーター(COULTER社製)によりバブルポイント法で測定したところ、約15μmであった。
次いで通水層13を構成するため、ポリプロピレン短繊維(繊度6デニール,繊維長64mm)30重量%、ポリプロピレンとポリエチレンとから成る熱融着複合繊維(繊度6デニール,繊維長102mm)30重量%、及び同熱融着複合繊維(繊度18デニール,繊維長102mm)40重量%を混綿し、ニードルパンチ法による絡合を施した後、加熱ロールによる熱融着を行い、面密度100g/m2、厚さ1.0mm(20g/cm2荷重時)の基布を得た。前述と同様に測定した結果、この熱融着不織布の平均開孔径は約89μmであった。
続いて、上述の熱融着不織布の片面に対して、合成ゴム系接着剤をスプレーコーティングし、前述の水流絡合不織布との貼り合わせを行った。然る後、周知の技術によって、貼り合わせ後の不織布を後述する種々の寸法で長方形に裁断し、実施例に係る濾材15を得た。
【0019】
(比較例1)
比較する濾材として、上述の水流絡合不織布(実施例の濾過層に相当)のみを裁断し、比較例1に係る濾材を得た。
【0020】
(比較例2)
比較例2として、PET短繊維(繊度1.5デニール,繊維長44mm)100重量%からなるウエブに高圧水流による絡合を施し、面密度60g/m2、厚さ0.5mmの不織布を濾過層に使用することを除いては、実施例と同じ通水層を同一の積層手順で作製したものを用いた。この濾過層として用いた不織布の平均開孔径を前述のバブルポイント法により測定したところ、約39μmであった。
【0021】
(比較例3)
比較例3として、溶融紡糸法により、ポリプロピレンとポリエチレンとの芯鞘構造を有する熱融着性複合短繊維によって、面密度を600g/m2、厚さ10mm(20g/cm2荷重時)とした通水層を有することを除いては、実施例と同一の構成とした濾材を作製した。この際のPP/PEの重量組成比は1:1とし、当該長繊維の見掛け上の比重は0.91であった。また、この比較例3に配設した通水層の平均開孔径を求めたところ、約3000μmであった。尚、周知の通り、窒素ガス圧入法による測定結果の信頼性の上限が約300μm程度であるため、この比較例3の通水層に関する平均開孔径は、前述したバブルポイント法による開孔径測定の代わりに、後段で説明する計算式により求めた。
【0022】
(比較例4)
比較例4として、ナイロン繊維(繊度45デニール)70重量%とレーヨン繊維(繊度30デニール)30重量%よりなる繊維ウエブを絡合し、面密度100g/m2の繊維ウエブを調製し、55g/m2のアクリルバインダを用いて厚さ7mm(20g/cm2荷重時)の不織布を通水層としたことを除き、濾過層の構成及び積層手段は実施例と同一とした濾材を作製した。この比較例4の平均開孔径算出には比較例3と同様に後述の計算式を用い、見掛け密度にはバインダ重量を含む状態の数値を用いて当該径を求めたところ、約900μmであった。
【0023】
(平均開孔径の算出)
次いで、バブルポイント法の代わりに用いた平均開孔径の算出につき説明する。計算手法としては、不織布の見掛け密度と使用した繊維の平均繊度から開孔を構成する単位格子の格子間距離を求め、次いで、この格子間距離が円形の開孔を構成する場合の半径として平均開孔径を求めるものである。まず、不織布が規則的な立方格子から構成されると仮定すれば、不織布の見掛け密度ρ、不織布を構成する繊維1g当たりの繊維長L、格子を構成する1辺の長さc、並びに格子間距離aの間には、下記の数式1が成り立つ。
【0024】
【数1】

Figure 0003655980
【0025】
この数式1では、不織布を1cm3の規則的な3次元格子状の立方体と仮定して格子間距離aを求めるものである。ここで、LはJISに定められる繊度の定義から、不織布を構成する繊維の平均繊度で9×105cmを除して求められ、ρLは不織布1cm3当たりに含まれる繊維の全長であり、格子を構成する1辺の長さc(=1cm)で当該全長を割ることによって、3次元格子を構成する辺の総数が求められる。立方格子には、縦、横及び高さの3方向に等しい長さの辺が存在するため、この総数を3で割って、1方向に存在する辺の数が求められる。この辺の数は立方体の1面に表れる格子の交差点の数に相当するので、この交差点数の平方根は、立方体の一辺に存在する交差点の数となる。この1辺に存在する交差点数から1を引けば、一辺に存在する格子間隔の数が得られる。1cm3の立方体を仮定しているため、一辺の長さ1cmを格子間隔の数で割ることにより、格子間距離aが求められる。
【0026】
次いで、上記数式1により求められた格子間距離aと、不織布を構成する繊維の平均繊維直径とによって、不織布に形成される開孔を半径rの円とみなした場合には、下記の数式2が成り立つ。
【0027】
【数2】
πr2=(a−d)2
【0028】
数式2では、不織布に形成される開孔の面積πr2と、数式1で求めた格子間距離aから平均繊維直径dを引いた長さを一辺とする正方形の面積(a−d)2とが一致すると仮定して導いたものであり、この式を誘導して、2rに相当する平均開孔径φは、次の数式3により求められる。
【0029】
【数3】
φ=2(a−d)/π1/2
【0030】
尚、これら計算式により求められる平均開孔径φと、前述のバブルポイント法による平均開孔径との整合性は、実施例として述べた通水層(平均開孔径89μm)により確認した。
【0031】
(評価試験)
次に、上述した種々の濾材を評価した方法につき説明する。図2は、評価を実施した濾過装置の構成を模式的に示す説明図であり、断面を表すハッチング等は省略して有る。同図からも理解できるように、濾過装置として、内径15cm、高さ70cmの塩化ビニール製の管を濾過槽17として用い、その両端に、各々、導入口19又は排出口21を配設した密閉型のものを用いた。また、濾過槽17内に充填した複数の濾材15が流出するのを防止する目的でメッシュ状の部材(符号省略)を排出口21近傍に設置すると共に、濾過圧力を測定する目的で、圧力計23を配設構成したものである。
評価に当たっては、まず、各実施例及び比較例に係る板状の濾材を所定形状に裁断し、各々、前述した濾過面積の合計を1m2に統一して、濾過層17内に充填構成した。然る後、後述する種々の試験水を処理水に用い、図示していないポンプによって流量を53リットル/分に保ち、通水を行う。この評価試験では排出口21で得られた処理水の濁度を測定し、原則として予め測定された原水としての処理水濁度の90%程度(後述する除去率10%程度)に濾過能力が低下するまでを目安として実施した。尚、この濁度測定は、『衛生試験法注解』に記載される環境試験法に準拠したホルマジン(C2H4N2)法により行った。
【0032】
濾材構成と試験水との組合せについては表1に、その試験結果については表2に示す。
【0033】
【表1】
Figure 0003655980
藻類A:滋賀県の湖沼から採取したもの
シルト:浚渫作業時に発生した土壌濁水
藻類B:千葉県の湖沼から採取したもの
【0034】
【表2】
Figure 0003655980
【0035】
この表2からも理解できるように、表1に示す4種類の試験水で評価した実施例に係る濾材では、何れの場合も、除去率(予め測定した試験水の濁度と濾過試験開始直後に排出口で採取した処理水の初期濁度との差を試験水の濁度で割って百分率で示したもの)は約60%以上を達成しており、しかも、濾過圧力は実質的に殆ど変化せず、試験終了までの間に処理された試験水の量は、何れも500〜1000リットルと、大量の水を効果的に浄化することができた。また、試験終了後、充填した濾材を取り出して目視観察したところ、濾過槽内の上流下流に関わらず、ほぼ均一にSSが捕捉されているのが確認できた。
【0036】
また、藻類BをSSとし、通水層を設けることなく濾材を構成した比較例1では、通水開始直後に急激な濾過圧力の上昇を来したため、試験を中止した。当該例に係る濾材を取り出して目視観察したところ、導入口側に相当する濾材表面にSSが皮膜として付着し、通水を妨げているのが確認された。
さらに、藻類AをSSとし、濾過層の平均開孔径をSSの約5.5倍とした比較例2では、通水層の平均開孔径を実施例3と同様に設計したにも関わらず、除去率が低く、実質的に濾過を行うことができなかった。
これとは対照的に、濾過層の構成を実施例と同一にし、濾材の厚さに占める通水層の厚さの割合を95%程度とし、かつ通水層の平均開孔径をSSの約175倍に設計した比較例3に係る濾材では、前述したショートパスを生じて濁度の低減が認められず、濾材として機能しなかった。
加えて、通水層の平均開孔径をSSの約65倍としたことを除いては実施例5と同様に設計した比較例4でも、比較例2及び比較例3と同様にショートパスを来たし、濾材として機能しなかった。
【0037】
以上、この発明の実施例につき説明したが、この発明は、これら実施例にのみ限定されるものではない。例えば、上述の実施例では、濾過層と通水層とを各々1層ずつで2層構造とした場合を説明した。しかしながら、この発明の濾材は、係る2層構造にのみ限定されるものではなく、これらを少なくとも1層以上含む積層構造とすれば、3層以上の積層構造であっても上述と同様の効果が期待し得る。また、この積層に当たっては、通水層の機能を損なわないように各層間に皮膜を形成しない手段で有れば、接着樹脂をドット形成した積層技術、或いは、接着のみを目的とした構成成分の付加、さらには、上記2つの構成成分を絡合手段により積層構成するなど、種々の変形を行い得る。加えて、上述の実施例では、所定の濾過装置を下向流方式で運転した場合を例示したが、上向流方式でも同様の効果を期待することができる。これら例示条件は、この発明の目的の範囲内で種々の変形及び変更を行い得る。
【0038】
【発明の効果】
上述した説明からも明らかなように、この発明の濾材の構成によれば、懸濁物質(SS)を捕捉するための布はくより成る濾過層と、処理水を透過・流通する通水層とが積層構成されている。このため、SS捕捉により濾過層が目詰まりした場合であっても、濾過槽内に充填された他の濾材への処理水の透過流通が通水層によって確保し得る。従って本発明により、濾過層内の配置関係に関わらず、個々の濾材がSS捕捉に寄与し得るため、濾過槽内に複数充填された当該濾材が実質的に均一にSS捕捉することが可能であり、しかも、濾過装置の効率的な運転を実現することが期待できる。
【図面の簡単な説明】
【図1】 本発明の実施例の説明に供する濾材の概略断面図
【図2】 本発明の実施例の説明に供する濾過装置の模式図
【符号の説明】
11:濾過層、 13:通水層、 15:濾材、
17:濾過槽、 19:導入口、 21:排出口、
23:圧力計。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for filtering suspended substances dispersed in water, and is particularly used in a filtration device in which a plurality of filter media are filled in a filtration tank, and at the time of construction site, dredging work or paddy fielding. The present invention relates to a filtering device for a suspended matter having a relatively small particle diameter including soil turbid water and algae that are sometimes generated, and a filter medium suitable for use as a pretreatment for the production of ultrapure water.
[0002]
[Prior art]
In recent years, interest in the environment has been increasing day by day, and among them, water environmental pollution caused by domestic wastewater has long been a concern. In particular, water pollution of lakes and rivers has changed the ecosystem, and not only a visual aesthetic problem, but also various countermeasures and ingenuity as a problem that directly affects ordinary life, such as bad odor. . Various techniques for filtering contaminated water are being actively researched and developed, and among them, suspended substances having a relatively small particle size such as algae (hereinafter, suspended substances may be simply referred to as SS). As for the technology to filter the filter, how to efficiently capture SS with a small particle size, and how to delay clogging of the entire filter medium filled in the filter tank or increase in filtration pressure, seemingly contradictory. It is necessary to satisfy the demand to do.
[0003]
As a filter medium for achieving the above requirements, a technique in which a granular filter medium such as sand, anthracite, and activated carbon is filled in a filter tank is well known. However, since these granular filter media mainly capture SS between the filter media particles, they are not necessarily effective means for SS having a particle size of 100 μm or less such as algae and soil particles. In addition, since such a granular filter medium has a large specific gravity, for example, when it is separated and recovered from the filter tank during backwashing, the filter medium weight increases, so that it is difficult to handle.
[0004]
Spherical filter media such as fibrous balls with a diameter of several centimeters using various synthetic resins and beads made of synthetic resin foamed have also been put to practical use. Although the speed is improved, the above-mentioned removal rate for SS having a small particle diameter is not always satisfactory.
[0005]
In order to improve such conventional techniques, Japanese Patent Application Laid-Open No. 8-33818 and Japanese Patent Application Laid-Open No. 8-33819 propose a filter medium having a fiber sheet as a chip.
[0006]
First, the filter medium disclosed in JP-A-8-33818 (hereinafter referred to as Document i) binds a fluffy filament having a fiber diameter of 30 to 200 μm with a fusing material having a melting point lower than this, A matt medium having a thickness of 3 to 10 mm having a void inside is formed, and the medium is cut into a square shape having a side of 5 to 50 mm to form a chip. According to this publication, it is proposed that if a large amount of the filter medium is filled in the treatment tank, even if each filter medium is clogged, it can be easily backwashed.
[0007]
In the case of the filter medium disclosed in Japanese Patent Application Laid-Open No. 8-33819 (hereinafter referred to as Document ii), a large diameter synthetic resin filament having a thickness of 100 to 500 μm and a small diameter filament having a thickness of 30 to 100 μm Are combined with a fusing material to form a plate-shaped filter medium with a thickness of 3 to 10 mm having a microscopic gap inside, and the plate-shaped filter medium is cut into a 10 to 50 mm square shape belongs to. In the case of this filter medium configuration, the large-diameter filament is resistant to the filtration pressure, and a minute gap composed of the small-diameter filament is secured. For this reason, it is a technique that expects to operate the filtration device for a long time because the gap for capturing the SS is not easily crushed by the filtration pressure that tends to increase as the SS is captured.
[0008]
[Problems to be solved by the invention]
However, in the conventional technology described above, not all of the filter media filled in the filter tank are efficiently used. That is, in the case of the filter medium proposed in the document i, a void inside the filter medium is constituted by a fluffy filament, but the captured SS is accumulated in the gap. For this reason, the filter medium on the upstream side of the sewage treated in the filtration tank is clogged first, and the filter medium itself hinders the flow of sewage. Therefore, there is a problem that the filtration pressure increases even when the filter medium on the downstream side of the sewage is not captured.
[0009]
Moreover, even in the filter medium proposed in the literature ii, after the SS trapping gap secured in each filter medium is closed with the trapped SS, the sewage and purified treated water are put on the downstream filter medium. No permeation / distribution configuration is adopted. Therefore, similarly to the technique of Document i, even with the technique of Document ii, the filtration pressure increases even though uncaptured filter medium remains in the filtration tank, and the efficient operation of the filtration apparatus There was a problem that it was difficult to plan.
[0010]
The present invention has been made in view of the above-described conventional problems. Therefore, the object of the present invention is to provide a filter medium filled in the filtration tank, regardless of whether it is upstream or downstream of sewage. The object is to provide a novel filter medium that is capable of trapping suspended solids in a uniform manner and that can realize efficient operation of the filtration apparatus.
[0011]
[Means for Solving the Problems]
In order to achieve this object, according to the filter medium configuration of the present invention, a filter layer made of cloth cloth for capturing suspended substances (SS) and treated water in which the suspended substances are dispersed are permeated and distributed. Ri Na by laminating a water flow layer that has an average pore size of less than 0.3 times or more 4 times the suspended solids having an average particle size of the filtration layer is selected from 4 to 20 .mu.m, the has an average pore size of 4 to 50 times water flow layer with respect to suspended solids of the average particle size, and the area of the filter medium is characterized in that it is 0.01~1cm 2. The treated water here refers to the sewage before filtration introduced into the filtration device, the waste before being discharged from the device and the SS being filtered and collected at a predetermined degree, and the purification is proceeding. It represents the treated water comprehensively. In carrying out the present invention, it is preferable that the above-described filtration layer and the above-mentioned water-permeable layer are formed of a nonwoven fabric.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The filter medium of the present invention is configured to have the above-described filtration layer and water passage layer. Hereinafter, an embodiment of a filter medium as a preferred example of the present invention will be described with reference to FIG. As shown in FIG. 1, the simplest structure of the present invention is a filter medium 15 in which a filtration layer 11 and a water passage layer 13 are laminated in one layer. Among these, the filtration layer 11 is preferably configured with a cloth foil that captures SS, and the water-passing layer 13 is in a case where the filtration layer 11 is clogged, with respect to other adjacent filter media 15. It is a component for circulating treated water.
[0013]
The size of the filter medium 15 can be variously designed according to the apparatus conditions such as the liquid feeding pressure of the filtration apparatus. For example, in the case of a general-purpose filtration device designed with a liquid feeding pressure of about 0.02 to 2.0 Kg / cm 2, the filter medium area of each filter medium 15 is required to be 1 cm 2 or less , preferably 0.5 cm 2 or less. Is preferred. The filter medium area represents the area of the filter medium in a plane perpendicular to the laminating direction of the filter layer 11 and the water flow layer 13. The filter medium of the present invention expects the filtration performance mainly by the depth filtration to the filter layer 11, but according to the experiment of the inventor according to this application, the filter medium area is within the above-mentioned range of the liquid feeding pressure. When it takes larger than a suitable range, it exists in the tendency (only henceforth a short pass) to distribute | circulate only the sewage through the water flow layer 13 without being filtered (purified). In this phenomenon, when the filter medium is larger than the above-mentioned suitable filter medium area, the resistance for permeating the filter layers of the individual filter media is relatively larger than the resistance when treated water permeates the water passage layer. This is probably because of this. In addition, there is no restriction on the lower limit value of the filter medium area on the filtration performance of the filter medium, but the arrangement of a mesh-like member for preventing the filter medium from flowing out is the same as that provided in a conventional filtration apparatus using a granular filter medium. In consideration of the pressure loss due to or the workability when cutting into small pieces, it is necessary to configure the filter medium area as 0.01 cm 2 or more . Furthermore, the cutting shape of the filter medium can be designed as a square, a rectangle, other polygons, a circle, or the like. However, in order not to impair the short path reduction and the backwashing efficiency of the filter medium described above, it is preferable to use a rectangle if the filter medium area is the same.
[0014]
In addition to these, when designing the above filtration pressure, the thickness of the filter medium 15 is 0.3 mm or more and 10 mm or less, and particularly preferably 0.5 mm or more and 4 mm or less. Further, the thickness of each constituent component of the filter medium 15 is preferably 30 to 90%, preferably 40 to 80% of the ratio of the thickness of the water passage layer 13 in the filter medium 15 under the above-described liquid feeding pressure. is there. When the ratio is less than 30% and the filter medium 15 is configured with a thickness of less than 0.3 mm, the function of the provided water passage layer 13 becomes insufficient, and a rapid filtration pressure due to clogging of the filtration layer 11 Come up. Moreover, when the ratio of the thickness of the water flow layer 13 exceeds 90% and the thickness of the filter medium 15 is designed to exceed 10 mm, the risk of causing the above-described short path increases.
[0015]
As an embodiment of each constituent component, first, the filtration layer will be described. As a material constituting the filtration layer, various fabric foils such as a woven fabric and a nonwoven fabric are used in the same manner as conventionally used. be able to. Any fiber may be used as the fiber constituting the fabric foil, regardless of hydrophilicity or hydrophobicity. However, considering the durability as a filter medium, a chemically stable polyamide fiber or polyester is used. It is preferable that the fiber is composed mainly of a fiber or a polyolefin fiber. In particular, when it is desired to capture a relatively small SS, an ultrafine fiber nonwoven fabric that has a small aperture diameter and can realize a dense three-dimensional structure is preferable. In using the above-described cloth foil, the pore size may be designed to be smaller than the desired particle size of the suspended substance in order to function as a filtration layer. However, since suspended substances often take a predetermined particle size distribution, in order to function better as a filtration layer, it is desirable to configure the material as a material having a predetermined distribution of pore diameters such as a nonwoven fabric. In such a case, it is necessary to design the average pore size of the filtration layer to be 0.3 times or more and less than 4 times the average particle size of the suspended substance . Since the upper limit of the average aperture diameter tends to be smaller due to the filtration pressure in the filtration device, the substantial aperture diameter can capture SS even if designed to be larger than the particle diameter of SS to be captured. It is enough.
[0016]
Next, the material constituting the water flow layer distributes the treated water over the end surface corresponding to the filter medium area of the water flow layer from the surface in contact with the filtration layer described above or the end surface extending in the thickness direction of the water flow layer. As long as it has a communicating hole that can be used, any one may be used. As a suitable material for the water-permeable layer, it is preferable to use a chemically stable synthetic resin as in the case of the filtration layer. Examples include porous materials such as foamed various synthetic resins and sponge-like materials. It is done. In particular, since the lamination (adhesion) or one-step production with the filtration layer described above is easy and the degree of freedom in designing the aperture diameter that allows SS to pass through is high, the water-permeable layer is a non-woven fabric like the filtration layer. It is preferable to configure. As already mentioned, this water-permeable layer is intended to distribute treated water to other filter media filled in the filtration tank even when the filter layer is clogged due to SS capture. The pore diameter of the water flow layer needs to be configured to be at least larger than the particle diameter of SS. However, when the aperture diameter is extremely large, a short pass is likely to occur, and it becomes difficult to maintain the shape under the filtration pressure. Therefore, in order to make it function as a water-permeable layer even at the filtration pressure described above, the lower limit of the average pore diameter of the material constituting the water-permeable layer may be at least twice the particle size of SS, and the average related to the shape retention In consideration of the upper limit of the aperture diameter, it is necessary to make the aperture diameter preferably about 4 to 50 times .
[0017]
【Example】
Examples of the present invention will be described below. In the following, in order to facilitate understanding of the present invention, specific conditions such as dimensional conditions, arrangement relations and other numerical conditions will be exemplified and described. However, these conditions are only preferred examples, and therefore The present invention is not limited only to these conditions.
[0018]
(Example)
First, the procedure for producing the filter medium according to the example will be described. In this example, the filter medium 15 having a two-layer structure described with reference to FIG. 1 was produced.
First, in order to form the filtration layer 11, a fiber web comprising 100% by weight of a split fiber, nylon and PET composite fiber (16 split, fiber diameter after splitting: 4.3 μm, fiber length 51 mm) Was entangled with a high-pressure water flow to obtain a base fabric having a surface density of 85 g / m 2 and a thickness of 0.5 mm (at 20 g / cm 2 load). In addition, it was about 15 micrometers when the average opening diameter of this water-entangled nonwoven fabric was measured by the bubble point method with the porometer (made by COULTER).
Next, in order to constitute the water-permeable layer 13, 30% by weight of polypropylene short fiber (fineness 6 denier, fiber length 64 mm), 30% by weight of heat-sealed composite fiber (fineness 6 denier, fiber length 102 mm) composed of polypropylene and polyethylene, And 40% by weight of the same heat-sealable composite fiber (fineness: 18 denier, fiber length: 102 mm), entangled by a needle punch method, and then heat-sealed by a heating roll to obtain a surface density of 100 g / m 2, thickness A base fabric having a thickness of 1.0 mm (at a load of 20 g / cm 2) was obtained. As a result of measurement in the same manner as described above, the average pore diameter of this heat-sealed nonwoven fabric was about 89 μm.
Subsequently, a synthetic rubber adhesive was spray-coated on one surface of the above-described heat-sealed nonwoven fabric, and bonded to the above-described hydroentangled nonwoven fabric. Thereafter, the bonded nonwoven fabric was cut into rectangles with various dimensions described later by a known technique to obtain a filter medium 15 according to the example.
[0019]
(Comparative Example 1)
As a filter medium to be compared, only the above-described hydroentangled nonwoven fabric (corresponding to the filter layer of the example) was cut to obtain a filter medium according to Comparative Example 1.
[0020]
(Comparative Example 2)
As Comparative Example 2, a web composed of 100% by weight of PET short fibers (fineness 1.5 denier, fiber length 44 mm) is entangled with a high-pressure water stream, and a nonwoven fabric having a surface density of 60 g / m 2 and a thickness of 0.5 mm is filtered. The same water-permeable layer as that used in Example was prepared by the same lamination procedure except that it was used in the above. The average pore size of the nonwoven fabric used as the filtration layer was measured by the aforementioned bubble point method and found to be about 39 μm.
[0021]
(Comparative Example 3)
As Comparative Example 3, water flow with a surface density of 600 g / m 2 and a thickness of 10 mm (at 20 g / cm 2 load) was obtained by a melt spinning method using a heat-fusible composite short fiber having a core-sheath structure of polypropylene and polyethylene. Except for having a layer, a filter medium having the same structure as in the example was produced. The weight composition ratio of PP / PE at this time was 1: 1, and the apparent specific gravity of the long fibers was 0.91. Moreover, when the average opening diameter of the water flow layer arrange | positioned in this comparative example 3 was calculated | required, it was about 3000 micrometers. As is well known, since the upper limit of the reliability of the measurement result by the nitrogen gas intrusion method is about 300 μm, the average hole diameter for the water-permeable layer of Comparative Example 3 is the value of the hole diameter measurement by the bubble point method described above. Instead, the calculation formula described later is used.
[0022]
(Comparative Example 4)
As Comparative Example 4, a fiber web composed of 70% by weight of nylon fiber (fineness 45 denier) and 30% by weight of rayon fiber (fineness 30 denier) was entangled to prepare a fiber web having a surface density of 100 g / m 2, and 55 g / m 2. A filter medium having the same structure and laminating means as those of the examples was prepared except that a non-woven fabric having a thickness of 7 mm (at 20 g / cm 2 load) was used as a water-permeable layer using an acrylic binder. The average pore diameter of Comparative Example 4 was calculated using the calculation formula described later in the same manner as in Comparative Example 3, and the apparent density was calculated using a numerical value in a state including the binder weight, and was about 900 μm. .
[0023]
(Calculation of average pore size)
Next, calculation of the average pore diameter used instead of the bubble point method will be described. As a calculation method, the interstitial distance of the unit cell constituting the opening is obtained from the apparent density of the nonwoven fabric and the average fineness of the used fiber, and then the average as the radius when this interstitial distance constitutes the circular opening. The hole diameter is obtained. First, assuming that the nonwoven fabric is composed of a regular cubic lattice, the apparent density ρ of the nonwoven fabric, the fiber length L per gram of fibers constituting the nonwoven fabric, the length c of one side constituting the lattice, and the spacing between the lattices The following formula 1 is established between the distances a.
[0024]
[Expression 1]
Figure 0003655980
[0025]
In Equation 1, the inter-lattice distance a is obtained assuming that the nonwoven fabric is a regular three-dimensional lattice cube of 1 cm 3. Here, L is obtained by dividing the average fineness of the fibers constituting the nonwoven fabric by 9 × 105 cm from the definition of the fineness defined in JIS, and ρL is the total length of fibers contained in 1 cm3 of the nonwoven fabric, which constitutes the lattice. By dividing the total length by the length of one side c (= 1 cm), the total number of sides constituting the three-dimensional lattice is obtained. Since the cubic lattice has sides having the same length in the three directions of length, width, and height, the total number is divided by 3 to obtain the number of sides existing in one direction. Since the number of sides corresponds to the number of intersections of the lattice appearing on one face of the cube, the square root of the number of intersections is the number of intersections existing on one side of the cube. If 1 is subtracted from the number of intersections existing on one side, the number of lattice intervals existing on one side can be obtained. Since a 1 cm3 cube is assumed, the interstitial distance a is obtained by dividing the length of one side by 1 cm by the number of lattice intervals.
[0026]
Next, when the opening formed in the nonwoven fabric is regarded as a circle with a radius r based on the interstitial distance a obtained by the above formula 1 and the average fiber diameter of the fibers constituting the nonwoven fabric, the following formula 2 Holds.
[0027]
[Expression 2]
πr2 = (ad) 2
[0028]
In Formula 2, the area πr2 of the openings formed in the nonwoven fabric and the square area (ad) 2 having one side as a length obtained by subtracting the average fiber diameter d from the interstitial distance a obtained in Formula 1 are as follows. The average hole diameter φ corresponding to 2r can be obtained by the following equation (3).
[0029]
[Equation 3]
φ = 2 (ad) / π1 / 2
[0030]
In addition, the consistency between the average hole diameter φ obtained by these calculation formulas and the average hole diameter obtained by the above-described bubble point method was confirmed by the water passage layer (average hole diameter 89 μm) described as an example.
[0031]
(Evaluation test)
Next, a method for evaluating the various filter media described above will be described. FIG. 2 is an explanatory diagram schematically showing the configuration of the filtration apparatus that has been evaluated, and hatching or the like that represents a cross section is omitted. As can be understood from the figure, as a filtration device, a vinyl chloride tube having an inner diameter of 15 cm and a height of 70 cm is used as the filtration tank 17, and the inlet 19 or the outlet 21 are respectively provided at both ends thereof. The type was used. Further, in order to prevent the plurality of filter media 15 filled in the filtration tank 17 from flowing out, a mesh-like member (not shown) is installed in the vicinity of the discharge port 21, and a pressure gauge is used to measure the filtration pressure. 23 is arranged and configured.
In the evaluation, first, the plate-shaped filter medium according to each of the examples and comparative examples was cut into a predetermined shape, and the total filtration area was unified to 1 m 2 to fill the filtration layer 17. Thereafter, various test waters, which will be described later, are used as treated water, and the flow rate is maintained at 53 liters / minute by a pump (not shown), and water is passed. In this evaluation test, the turbidity of the treated water obtained at the discharge port 21 is measured, and in principle, the filtration capacity is about 90% of the treated water turbidity as the raw water measured in advance (about 10% of the removal rate described later). It was carried out using as a guide until it decreased. In addition, this turbidity measurement was performed by the formazine (C2H4N2) method based on the environmental test method described in "hygiene test method remarks".
[0032]
Table 1 shows the combinations of the filter medium configuration and the test water, and Table 2 shows the test results.
[0033]
[Table 1]
Figure 0003655980
Algae A: collected from a lake in Shiga Prefecture Silt: soil muddy algae generated during dredging work B: collected from a lake in Chiba Prefecture [0034]
[Table 2]
Figure 0003655980
[0035]
As can be understood from Table 2, in each case, the filter media according to the examples evaluated with the four types of test water shown in Table 1 have the removal rate (the turbidity of the test water measured in advance and immediately after the start of the filtration test). The difference between the initial turbidity of the treated water collected at the discharge port and the percentage of the turbidity of the test water divided by the turbidity of the test water) is about 60% or more, and the filtration pressure is practically almost The amount of test water treated before the end of the test was 500 to 1000 liters, and it was possible to effectively purify a large amount of water. Moreover, when the filled filter medium was taken out and visually observed after completion | finish of a test, it has confirmed that SS was trapped substantially uniformly irrespective of the upstream downstream in a filtration tank.
[0036]
Further, in Comparative Example 1 in which the algae B was SS and the filter medium was configured without providing a water passage layer, the test was stopped because a rapid increase in filtration pressure occurred immediately after the start of water passage. When the filter medium according to this example was taken out and visually observed, it was confirmed that SS adhered as a film to the surface of the filter medium corresponding to the introduction port side and hindered water flow.
Furthermore, in Comparative Example 2 in which the algae A is SS and the average pore diameter of the filtration layer is about 5.5 times that of SS, although the average pore diameter of the water passage layer is designed in the same manner as in Example 3, The removal rate was low, and filtration could not be performed substantially.
In contrast, the structure of the filtration layer is the same as that of the example, the ratio of the thickness of the water passage layer to the thickness of the filter medium is about 95%, and the average pore diameter of the water passage layer is about SS. The filter medium according to Comparative Example 3 designed to be 175 times did not function as a filter medium because the short path described above was generated and the turbidity was not reduced.
In addition, Comparative Example 4 designed in the same manner as in Example 5 except that the average pore diameter of the water-passing layer was about 65 times that of SS resulted in a short path as in Comparative Examples 2 and 3. It did not function as a filter medium.
[0037]
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments. For example, in the above-described embodiment, the case where the filtration layer and the water flow layer are each formed into a two-layer structure with one layer has been described. However, the filter medium of the present invention is not limited to such a two-layer structure. If the filter medium has a laminated structure including at least one layer, the same effect as described above can be obtained even in a laminated structure of three or more layers. You can expect. In addition, in this lamination, if it is a means that does not form a film between the respective layers so as not to impair the function of the water-permeable layer, a lamination technique in which an adhesive resin is formed by dots, or a component for the purpose of adhesion only In addition, various modifications such as stacking the above two constituent components by an entanglement means can be performed. In addition, in the above-described embodiment, the case where the predetermined filtering device is operated in the downward flow method is illustrated, but the same effect can be expected even in the upward flow method. These exemplary conditions can be variously modified and changed within the scope of the object of the present invention.
[0038]
【The invention's effect】
As is clear from the above description, according to the configuration of the filter medium of the present invention, a filter layer made of cloth foil for capturing suspended solids (SS), and a water-permeable layer that permeates and distributes treated water. Are laminated. For this reason, even if it is a case where a filtration layer is clogged by SS capture | acquisition, the permeation | transmission flow of the treated water to the other filter medium with which the inside of the filtration tank was filled can be ensured by a water flow layer. Therefore, according to the present invention, each filter medium can contribute to SS trapping regardless of the arrangement relationship in the filter layer, so that a plurality of filter media filled in the filter tank can trap SS substantially uniformly. In addition, it can be expected to realize efficient operation of the filtration device.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a filter medium used to explain an embodiment of the present invention. FIG. 2 is a schematic view of a filtration device used to explain an embodiment of the present invention.
11: filtration layer, 13: water flow layer, 15: filter medium,
17: Filtration tank, 19: Introduction port, 21: Discharge port,
23: Pressure gauge.

Claims (2)

懸濁物質を捕捉するための布はくよりなる濾過層と、処理水を透過する通水層とを有する濾材であって、前記濾過層が4〜20μmから選択される平均粒径の懸濁物質に対して0.3倍以上4倍未満の平均開孔径を有し、前記通水層が前記平均粒径の懸濁物質に対して4〜50倍の平均開孔径を有し、且つ前記濾材の面積が0.01〜1cm であることを特徴とする濾材。A filter medium comprising a filter layer made of cloth foil for capturing suspended substances and a water-permeable layer that passes treated water , wherein the filter layer is a suspension having an average particle size selected from 4 to 20 μm. Having an average pore diameter of 0.3 to 4 times the substance, the water-permeable layer has an average pore diameter of 4 to 50 times the suspended substance having the average particle diameter, and filter media area of the filter medium is characterized in that it is a 0.01~1cm 2. 前記濾過層と前記通水層とを不織布で構成してなることを特徴とする請求項1に記載の濾材。  The filter medium according to claim 1, wherein the filtration layer and the water flow layer are made of a nonwoven fabric.
JP30876196A 1996-11-05 1996-11-05 Filter media Expired - Fee Related JP3655980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30876196A JP3655980B2 (en) 1996-11-05 1996-11-05 Filter media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30876196A JP3655980B2 (en) 1996-11-05 1996-11-05 Filter media

Publications (2)

Publication Number Publication Date
JPH10128021A JPH10128021A (en) 1998-05-19
JP3655980B2 true JP3655980B2 (en) 2005-06-02

Family

ID=17984986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30876196A Expired - Fee Related JP3655980B2 (en) 1996-11-05 1996-11-05 Filter media

Country Status (1)

Country Link
JP (1) JP3655980B2 (en)

Also Published As

Publication number Publication date
JPH10128021A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
CN104321121A (en) Elastomeric depth filter
JP5213311B2 (en) Water treatment filter
JP6050752B2 (en) Cartridge filter including combination of depth filter and submicron filter and RO pretreatment method
US7938276B2 (en) Filtration architecture for optimized performance
US7870965B2 (en) Geotextile composite for filtration of contaminated liquids and sediments
CA2832872C (en) Liquid filtration media
JP4825013B2 (en) Method for producing flat membrane filter medium for suspended water filter
JP3655980B2 (en) Filter media
JP3360857B2 (en) Filtration device
US20190070541A1 (en) Filter material and filtration assembly
JP4820340B2 (en) 浚 渫 Wastewater purification system
JP2007098195A (en) Biologically contact filter and method for treating water
JPH07251191A (en) Carrier for biological membrane and water treating method
JP2015029949A (en) Oil-water separation treatment system, oil-water separation treatment method and spiral type separation membrane element
WO2008114897A1 (en) Horizontal filtering device for wastewater and water treatment
JP2009022908A (en) Sewage purification system
JP2009023266A (en) System for processing stone material
JP3469296B2 (en) Multilayer filter
JP2009024111A (en) Coal dressing system
JPH0420492Y2 (en)
CN211912999U (en) Water purification material of composite non-woven fabric
JP2012096222A (en) Filtering apparatus and filtering method
JPH0685083U (en) Filtration filter
JP2009022909A (en) Flexible container bag
JP2009022910A (en) Sewage filtration box

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees