JP3655189B2 - Water heater with remembrance - Google Patents

Water heater with remembrance Download PDF

Info

Publication number
JP3655189B2
JP3655189B2 JP2000361623A JP2000361623A JP3655189B2 JP 3655189 B2 JP3655189 B2 JP 3655189B2 JP 2000361623 A JP2000361623 A JP 2000361623A JP 2000361623 A JP2000361623 A JP 2000361623A JP 3655189 B2 JP3655189 B2 JP 3655189B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
heating
reheating
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000361623A
Other languages
Japanese (ja)
Other versions
JP2002162101A (en
Inventor
幸弘 鈴木
郁朗 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2000361623A priority Critical patent/JP3655189B2/en
Publication of JP2002162101A publication Critical patent/JP2002162101A/en
Application granted granted Critical
Publication of JP3655189B2 publication Critical patent/JP3655189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Combustion (AREA)
  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給湯用の熱交換器と追焚き用の熱交換器の一部が重複した、いわゆる一缶二水路式の追焚き付き給湯器における湯張り制御に関する。
【0002】
【従来の技術】
近年、省スペースの目的から、給湯用熱交換器と追焚き用熱交換器の一部を重複させて設置したいわゆる一缶二水路式の追焚き付き給湯器が開発されている。かかる給湯器においては、一端が水道と接続されて水道から供給される水を給湯用熱交換器で加熱して他端から湯を供給する給湯管路と、両端が浴槽と連通されて、浴槽に滞留した湯水を前記追焚き熱交換器で加熱しながら循環させるための追焚き管路とが備えられている。
【0003】
そして、給湯を行う場合には、給湯管路から供給される湯の温度が所定の目標温度となるように給湯熱交換器の加熱量が決定されてフィードフォワード制御される。また、給湯管路から供給される湯の温度を検出する給湯温度センサが設けられ、該給湯温度センサの検出温度が目標給湯温度と一致するように加熱量がフィードバック制御によりさらに微調整される。
【0004】
かかる追焚き付き給湯器において、給湯管路と追焚き管路とを連通させる湯張り中継管を設けて、給湯管路から該湯張り中継管と追焚き管路とを介して浴槽に湯張りするようにした給湯器が提案されている。
【0005】
このように追焚き管路を利用して湯張りを行う場合、追焚き管路の追焚き熱交換器により加熱される側を経由して浴槽に至る第1湯張り経路と、追焚き管路の追焚き熱交換器により加熱されない側を経由して浴槽に至る第2湯張り経路という2つの経路を介して、いわゆる両搬送により給湯管路から浴槽に湯を供給するのが一般的である。
【0006】
しかし、両搬送によって湯張りを行うと、第2湯張り経路側では、給湯管路から供給される目標温度の湯がそのまま浴槽に供給されるが、第1湯張り経路側では、給湯管路から供給された目標温度の湯が追焚き熱交換器でさらに昇温されて浴槽に供給される。
【0007】
そのため、通常の(湯張り以外の)給湯を行う場合のように、給湯管路から供給される湯の温度が目標温度となるようにフィードバック制御を行うと、浴槽に貯められる湯の温度が目標温度よりも高くなってしまうという不都合がある。そこで、従来は、湯張りを行うときにはフィードバック制御を禁止してフィードフォワード制御のみで給湯温度を制御し、さらに追焚き熱交換器での加熱分を見込んで給湯熱交換器による加熱量を減少させるようにしていた。
【0008】
しかし、この場合には、加熱量をどの程度減少させるかを決定することが難しく、浴槽の湯張り温度を精度良く制御することが難しいという不都合があった。
【0009】
【発明が解決しようとする課題】
本発明は、上記背景を鑑みてなされたものであり、一缶二水路式の追焚き付き給湯器において、簡易な処理により浴槽への湯張り温度を精度良く制御することができる給湯器を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は上記目的を達成するためになされたものであり、両端が浴槽と接続されて浴槽に滞留した湯水を循環させて追焚きするための追焚き管路と、一端が水道と接続されて水道から供給される水を加熱して他端から給湯するための給湯管路と、該追焚き管路を流れる湯水を加熱する追焚き熱交換器と、その一部が該追焚き熱交換器と重複して該給湯管路を流れる水を加熱する給湯熱交換器と、該追焚き熱交換器と該給湯熱交換器とを加熱する加熱手段と、該加熱手段の加熱量を調節する加熱量調節手段とを備えた給湯器に関する。
【0011】
先ず、本発明の第1の態様は、給湯と追焚きとを同時に実行するときに前記加熱手段が発生する熱量のうち前記給湯熱交換器による水の加熱と前記追焚き熱交換器による湯水の加熱とに実際に使用される熱量の割合である第1熱効率のデータと、給湯のみを単独で実行するときに前記加熱手段が発生する熱量のうち前記給湯熱交換器による水の加熱に実際に使用される熱量の割合である第2熱効率のデータとを記憶した熱効率データ記憶手段と、前記給湯管路から所定温度の湯が供給されるように前記加熱量調節手段により前記加熱手段の加熱量を制御し、追焚きと給湯とを同時に実行するときは前記第1熱効率のデータに基づいて前記加熱手段の加熱量を決定し、給湯のみを単独で実行するときには前記第2熱効率のデータに基づいて前記加熱手段の加熱量を決定する給湯制御手段とを備えた追焚き付き給湯器の改良に関する。
【0012】
そして、前記給湯管の前記給湯熱交換器により水が加熱される箇所の下流側と前記追焚き管路とを連通して、前記給湯熱交換器により加熱生成された湯を、前記給湯管路から前記追焚き熱交換器により加熱される側の前記追焚き管路を経由して前記浴槽に供給する第1湯張り経路と、前記給湯管路から前記追焚き熱交換器により加熱されない側の前記追焚き管路を経由して前記浴槽に供給する第2湯張り経路とを形成する湯張り連通管を備え、前記給湯制御手段は、前記第1湯張り経路と前記第2湯張り経路とを介して前記給湯管路から前記浴槽に湯を供給するときには、前記第1熱効率に基づいて前記加熱手段の加熱量を決定することを特徴とする。
【0013】
かかる本発明において、前記熱効率記憶手段には、給湯と追焚きとを同時に実行する場合に応じた前記第1熱効率のデータと、給湯のみを単独で実行する場合に応じた前記第2熱効率のデータとが記憶されている。そして、前記給湯管路から前記第1湯張り経路と前記第2湯張り経路とを介して浴槽に湯を供給するという状況は、前記給湯熱交換器により前記給湯管路内を流れる水が加熱されると共に、前記追焚き熱交換器により前記追焚き管路内を流れる湯水が加熱されるという点で、給湯と追焚きとを同時に実行する状況と共通する。
【0014】
そのため、前記給湯管路から前記第1湯張り経路と前記第2湯張り経路とを介して前記浴槽に湯を供給する場合に、前記第1熱効率データに基づいて前記加熱手段の加熱量を決定することにより、前記給湯制御手段は前記浴槽に供給される湯の温度を精度良く制御することができる。また、この場合には、前記加熱手段の加熱量を補正するための複雑な処理を行う必要がない。
【0015】
次に、本発明の第2の態様は、給湯と追焚きとを同時に実行するときに前記加熱手段により与えられて前記給湯熱交換器による水の加熱と前記追焚き熱交換器による湯水の加熱とに使用される第1熱量のデータと、給湯のみを単独で実行するときに前記加熱手段により与えられて前記給湯熱交換器による水の加熱に使用される第2熱量のデータとを記憶した熱量データ記憶手段と、前記給湯管路から所定温度の湯が供給されるように前記加熱量調節手段により前記加熱手段の加熱量を制御し、追焚きと給湯とを同時に実行するときは前記第1熱量に基づいて前記加熱手段の加熱量を決定し、給湯のみを単独で実行するときには前記第2熱量に基づいて前記加熱手段の加熱量を決定する給湯制御手段とを備えた追焚き付き給湯器の改良に関する。
【0016】
そして、前記給湯管の前記給湯熱交換器により水が加熱される箇所の下流側と前記追焚き管路とを連通して、前記給湯熱交換器により加熱生成された湯を、前記給湯管路から前記追焚き熱交換器により加熱される側の前記追焚き管路を経由して前記浴槽に供給する第1湯張り経路と、前記給湯管路から前記追焚き熱交換器により加熱されない側の前記追焚き管路を経由して前記浴槽に供給する第2湯張り経路とを形成し、前記給湯制御手段は、前記第1湯張り経路と前記第2湯張り経路とを介して前記給湯管路から前記浴槽に湯を供給するときには、前記第1熱量のデータに基づいて前記加熱手段の加熱量を決定することを特徴とする。
【0017】
かかる本発明において、前記加熱量データ記憶手段には、給湯と追焚きとを同時に実行する場合に応じた前記第1熱量のデータと、給湯のみを単独で実行する場合に応じた前記第2熱量のデータとが記憶されている。そして、上述したように、前記給湯管路から前記第1湯張り経路と前記第2湯張り経路とを介して浴槽に湯を供給するという状況は、前記給湯熱交換器により前記給湯管路内を流れる水が加熱されると共に、前記追焚き熱交換器により前記追焚き管路内を流れる湯水が加熱されるという点で、給湯と追焚きとを同時に実行する状況と共通する。
【0018】
そのため、前記給湯管路から前記第1湯張り経路と前記第2湯張り経路とを介して前記浴槽に湯を供給する場合に、前記第1熱量のデータに基づいて前記加熱手段の加熱量を決定することにより、前記給湯制御手段は、前記浴槽に供給される湯の温度を精度良く制御することができる。
【0019】
【発明の実施の形態】
本発明の実施の形態の一例について、図1〜図2を参照して説明する。図1は本発明の追焚き付き給湯器の全体構成図、図2は図1に示した追焚き付き給湯器の制御ブロック図である。
【0020】
図1を参照して、給湯器1は、給湯管路2により水道管(図示しない)と接続され、追焚き管路3により浴槽4と接続されている。そして、給湯器1は、水道管から給湯管路2により供給される水を所定温度に加熱して給湯する機能と、浴槽4に貯められた湯水を加熱して追焚きする機能と、浴槽4に所定温度の湯を所定量貯める湯張り機能とを有する。
【0021】
給湯器1はコントローラ4により全体の作動が制御され、コントローラ4からの制御信号に応じて作動する第1バーナ5(本発明の加熱手段に相当する)及び該第1バーナよりも加熱能力が低い第2バーナ6(本発明の加熱手段に相当する)、第1バーナ5と第2バーナ6とにより加熱される追焚き熱交換器7と給湯熱交換器8、水道管から給湯管路2に供給された水の一部を給湯熱交換器8をバイパスさせて給湯熱交換器8から出湯される湯に混入させるバイパス管9、コントローラ4からの制御信号によりバイパス管9の開度を調節するバイパスサーボ10、給湯管路2とバイパス管9との合流箇所Xの下流側の湯の温度を検出して検出信号をコントローラ4に出力する給湯サーミスタ11、給湯熱交換器8の出口付近の湯の温度を検出して検出信号をコントローラ4に出力する熱交サーミスタ12、水道から給湯管路2に供給される水の流量を検出して検出信号をコントローラ4に出力する給水流量センサ13、及び給湯管路2から供給される湯の流量を調節する湯量サーボ14を備える。
【0022】
さらに、給湯器1は、給湯管路2と追焚き管路3とを接続する湯張り中継管30、コントローラ4からの制御信号により作動して湯張り中継管30を開閉する注湯電磁弁15、追焚き管路3から湯張り中継管30への方向の湯の通過を不能とし湯張り中継管30から追焚き管路3への方向の湯の通過を可能とする逆止弁16、コントローラ4からの制御信号により作動して浴槽4に貯められた湯水を追焚き管路3内に循環させるポンプ17、浴槽4から追焚き管路3に供給される湯水の温度(=浴槽に貯められた湯水の温度)を検出して検出信号をコントローラ4に出力する風呂サーミスタ18、追焚き管路3内を流れる湯水の有無を検出して検出信号をコントローラ4に出力する風呂水流スイッチ19、給湯管路2から湯張り中継管30と追焚き管路3とを経由して浴槽4に供給される湯の流量を検出して検出信号をコントローラ4に出力する湯量センサ20を備える。
【0023】
また、給湯器1は、第1バーナ5と第2バーナ6の作動を制御するため、コントローラ4からの制御信号に応じて第1バーナ5と第2バーナ6への燃料ガスの供給と遮断とを切替える元ガス電磁弁21、コントローラ4からの制御信号に応じて燃料ガスの供給流量を調節するガス比例弁22、コントローラ4からの制御信号に応じて第1バーナ5への燃料ガスの供給と遮断とを切替える第1ガス電磁弁23、コントローラ4からの制御信号に応じて第2バーナ6への燃料ガスの供給と遮断とを切替える第2ガス電磁弁24、コントローラ4からの制御信号に応じて第1バーナ5と第2バーナ6に燃焼用空気を供給する燃焼ファン25、コントローラ4からの制御信号に応じてイグナイタ26から印加される高電圧により火花放電を生じる点火プラグ27、第2バーナ6の燃焼炎の有無を検出して検出信号をコントローラ4に出力するフレームロッド28、及び給湯熱交換器8内で最も給湯管路2内の温度が高くなる箇所の水の温度を検出して検出信号をコントローラ4に出力する水管サーミスタ29を備える。
【0024】
なお、第1ガス電磁弁23と、第2ガス電磁弁24と、ガス比例弁22とにより、本発明の加熱量調節手段が構成される。また、水管サーミスタ29は、追焚きのみを単独で実行したときに、給湯熱交換器8内に滞留した水が加熱されて異常に昇温されることを防止するために設けられ、水管サーミスタ27の検出温度が所定の上限温度を超えたときに、コントローラ4は、第1バーナ5と第2バーナ6の燃焼を停止する。
【0025】
また、コントローラ4は、浴室等に設置されたリモコン40との間で各種信号の送受信を行う。リモコン40には、給湯温度、湯張り温度、追焚き時間等を設定するスイッチ類(図示しない)と、給湯温度、湯張り温度等を表示するディスプレイ部(図示しない)とが備えられている。
【0026】
次に、図2を参照して、コントローラ4は、給湯管路2から目標給湯温度の湯を供給する給湯運転を実行する給湯制御手段50、浴槽4に貯められた湯を目標追焚き温度まで昇温させる追焚き運転を実行する追焚き制御手段51、浴槽に目標湯張り温度の湯を目標湯張り量だけ供給する湯張り運転を実行する湯張り制御手段52、第1バーナ5と第2バーナ6とによる総燃焼量(本発明の加熱手段が発生する熱量に相当する。以下、総バーナ燃焼量という)のうち、給湯熱交換器8側の加熱に使用される熱量の割合を算出する給湯熱量分配比把握手段53、及び上記給湯運転と湯張り運転を行うために必要なデータが記憶されたデータメモリ54(本発明の熱効率データ記憶手段の機能を含む)を備える。
【0027】
給湯制御手段50は、リモコン40により設定された目標給湯温度の湯が給湯管路2から供給されるように、第1バーナ5と第2バーナ6の燃焼量を制御する。給湯制御手段50は、給湯管路2の下流側に接続されたカラン(図示しない)が開けられて、水道管からの給水が開始されたことを水量センサ13の検出信号から検知すると、燃焼ファン25を作動させて燃焼用空気の供給を開始し、イグナイタ26から点火プラグ27に高電圧を印加して火花放電を生じさせた状態で、元ガス電磁弁21と第2ガス電磁弁23とを開弁して第2バーナ6に点火する。
【0028】
そして、給湯制御手段50は、第1ガス電磁弁23と第2ガス電磁弁24の双方を開弁して第1バーナ5と第2バーナ6とを燃焼させる「大燃焼」、第1ガス電磁弁23を開弁して第2ガス電磁弁24を閉弁し、第1バーナ5のみを燃焼させる「中燃焼」、第1電磁弁23を閉弁して第2電磁弁24を開弁し、第2バーナ6のみを燃焼させる「小燃焼」という3段階で、第1バーナ5と第2バーナ6とによる総バーナ燃焼量を調節する。また、給湯制御手段50は、ガス比例弁22の開度を変更することにより、「大燃焼」、「中燃焼」、「小燃焼」における燃焼量をさらに細かく制御する。
【0029】
ここで、データメモリ54には、以下の表1に示したように、「大燃焼」における最大燃焼量(Q大max)と最小燃焼量(Q大min)、「中燃焼」における最大燃焼量(Q中max)と最小燃焼量(Q中min)、及び「小燃焼」における最大燃焼量(Q小max)と最小燃焼量(Q小min)のデータ(実験や計算により求められる)が記憶されている。
【0030】
【表1】

Figure 0003655189
【0031】
しかし、総バーナ燃焼量(QALL)の全てが、給湯熱交換器8内を流れる水や、追焚き熱交換器7内を流れる湯水の加熱に使用されるわけではなく、無駄に消費される燃焼量もある。そこで、データメモリ54には、以下の表2に示したように、「大燃焼(Q大max,Q大min)」、「中燃焼(Q中max,Q中min)」、「小燃焼(Q小max,Q小min)」における熱効率(η)のデータが記憶されている。
【0032】
【表2】
Figure 0003655189
【0033】
ここで、熱効率(η)は以下の式(1)により定義される。また、給湯単独運転に対応した熱効率(η単大max〜η単小min)が本発明の第2熱効率のデータに相当し、給湯・追焚き同時運転に対応した熱効率(η同大max〜η同小min)が本発明の第1熱効率のデータに相当する。
【0034】
【数1】
Figure 0003655189
【0035】
式(1)において、Tin1は水道管から給湯熱交換器8に供給される水の温度、Tout2は給湯熱交換器8から出湯される湯の温度、W2は給湯熱交換器8内を通過する水の流量である。一方、Tin2は浴槽4内に貯められた湯水の温度、Tout2は追焚き熱交換器から出湯される湯水の温度、W2は追焚き管路3内を通過する湯水の流量である。
【0036】
熱効率(η)は、給湯運転のみを単独で実行するとき(以下、給湯単独運転という)よりも、給湯運転と追焚き運転を同時に実行するとき(以下、給湯・追焚き同時運転という)の方が若干高くなる。これは、給湯熱交換器8と追焚き熱交換器7における有効な総伝熱面積が、給湯・追焚き同時運転時の方が広くなるからである。
【0037】
そのため、本実施の形態においては、上記表2に示したように給湯・追焚き同時運転に応じた熱効率(η同大max〜η同小min、本発明の第1熱効率に相当する)のデータと、給湯単独運転に応じた熱効率(η単大max〜η単小min、本発明の第2熱効率に相当する)のデータとが予めデータメモリ54に記憶されている。そして、給湯制御手段50は、運転状況(給湯単独運転又は給湯・追焚き同時運転)に応じた熱効率(η)を使用して、総バーナ燃焼量(QALL)を決定する。
【0038】
給湯単独運転時には、総バーナ燃焼量(QALL)は給湯熱交換器8内を通過する水を加熱するためにのみ消費される。そして、給湯制御手段50は、給湯サーミスタ11の検出温度(TH)と、水量センサ13の検出流量(FW)と、給湯熱交換器8において水の加熱に使用される熱量(QR)とから、以下の式(2)により、水道管からの給水温度(TW)を把握する。なお、熱量(QR)は、総バーナ燃焼量(QALL)に熱効率(η)を掛けて算出される。
【0039】
【数2】
Figure 0003655189
【0040】
そして、給湯制御手段50は、給湯管路2から目標給湯温度(TA)の湯を供給するために給湯熱交換器8に与える必要がある熱量(以下、必要給湯熱量(Qnh)という)を以下の式(3)により決定する。
【0041】
【数3】
Figure 0003655189
【0042】
給湯単独運転時には、追焚き熱交換器7側では加熱を要しないため、給湯熱交換器8と追焚き熱交換器7とに与える必要がある総熱量(以下、総必要熱量(Qn)という)は、以下の式(4)に示すように必要給湯熱量(Qnh)と一致する。
【0043】
【数4】
Figure 0003655189
【0044】
一方、給湯・追焚き同時運転時には、総バーナ燃焼量(QALL)の一部が、追焚き管路3内を循環する湯水を加熱するためにも消費される。そのため、給湯・追焚き同時運転時には、上記式(3)により算出される給湯必要熱量(Qnh)に、追焚き熱交換器7で消費される熱量(以下、追焚き消費熱量(Qc)という)を加えた熱量を給湯熱交換器8と追焚き熱交換器9に与える必要がある。
【0045】
そこで、給湯制御手段50は、給湯・追焚き同時運転時における総必要熱量(Qn)を、以下の式(5)により決定する。
【0046】
【数5】
Figure 0003655189
【0047】
なお、追焚き消費熱量(Qc)は、風呂サーミスタ18により検出される浴槽4に貯められた湯の温度と、ポンプ17の能力により定まる追焚き管路3内を流れる湯水の流量とにより把握される。
【0048】
そして、給湯制御手段50は、このようにして式(4)又は式(5)により決定された総必要熱量(Qn)が得られるように、各運転状態(給湯単独運転又は給湯・追焚き同時運転)に応じて表2に示した熱効率(η)のデータを選択して、以下の式(6)により、総バーナ燃焼量(QALL)を決定する。これにより、給湯制御手段50は、各運転状態に応じて総バーナ燃焼量(QALL)を精度良く決定することができる。
【0049】
【数6】
Figure 0003655189
【0050】
そして、このようにして決定したバーナ総燃焼量(QALL)が発生するように、給湯制御手段50は、上述した「大燃焼」,「中燃焼」,「小燃焼」のいずれかを選択し、また、ガス比例弁22の開度を調節することによって、給湯管路2からの給湯温度が目標給湯温度に保たれるようにフィードフォワード制御を行う。
【0051】
なお、このフィードフォワード制御により、基本的には給湯管路2からの給湯温度を目標給湯温度と一致させることができるはずであるが、給湯器1の固体差等を考慮して、最終的には給湯サーミスタ11により検出される実際の給湯温度が目標給湯温度と一致するように、給湯制御手段50は、フィードバック制御により総バーナ燃焼量(QALL)を補正する。
【0052】
また、給湯単独運転時の「大燃焼」(「中燃焼」,「小燃焼」でも同様)における中間燃焼量Q大x(Q大min<Q大x<Q大max)に対する熱効率(η)は、以下の比例計算式(7)によって算出される。なお、給湯・追焚き同時運転時や湯張り運転時の中間燃焼量に対する熱効率(η)も、同様の比例計算によって算出される。
【0053】
【数7】
Figure 0003655189
【0054】
次に、湯張り運転を行う場合、湯張り制御手段52は、給湯制御手段50に対してリモコン40で設定された目標湯張り温度で給湯を行うことを指示して、注湯電磁弁15を開弁する。
【0055】
注湯電磁弁15が開弁されると、図1を参照して、水道から給湯管路2への水の供給が開始され、給湯熱交換器8で加熱生成された湯が、給湯管路2から湯張り中継管30を介して追焚き管路3に供給され、追焚き管路3の追焚き熱交換器7を通過する側の第1湯張り経路R1と、追焚き管路3の追焚き熱交換器7を通過しない側の第2湯張り経路R2とを経由して浴槽4に供給される。
【0056】
ここで、給湯サーミスタ11により検出される給湯管路2からの給湯温度が、目標湯張り温度となるように第1バーナ5と第2バーナ6の燃焼量をフィードバック制御すると、第1湯張り経路R1を経由して浴槽4に供給される湯は追焚き熱交換器7でさらに加熱されるため、浴槽4に貯められる湯の温度が目標湯張り温度よりも高くなってしまう。
【0057】
そこで、給湯制御手段50は、湯張り運転時にはフィードバック制御は行わず、フィードフォワード制御のみを行って給湯温度を制御する。そして、給湯制御手段50は、上記式(6)により総バーナ燃焼量(QALL)を決定するときに、上記表2に示したように、給湯・追焚き同時運転に対応した熱効率(η同大max〜η同小min)を使用する。
【0058】
ここで、湯張り運転時には、給湯熱交換器8により給湯管路2内を流れる水が加熱されると共に、第2湯張り経路R2においては追焚き熱交換器7により追焚き管路3内を流れる湯水が加熱されるという状況となる。そして、この状況は、給湯・追焚き同時運転時における、給湯熱交換器8により給湯管路2内を流れる水が加熱されると共に、追焚き熱交換器7によりポンプ17で循環される浴槽4に貯まった湯水が加熱される状況と同様である。
【0059】
そのため、湯張り運転時の熱効率(η)は、給湯・追焚き同時運転時の熱効率(η)と同様になると考えられる。そこで、給湯制御手段50は、給湯・追焚き同時運転時に応じた熱効率(η)を使用して、湯張り運転時の第1バーナ5と第2バーナ2の燃焼量を制御することによって、浴槽4に供給される湯の温度が目標温度精度となるように精度良く制御することができる。
【0060】
なお、本実施の形態では、上述した表1に示したように、各運転状況に応じた熱効率(η)をデータメモリ54に記憶するようにしたが、以下の表3に示したように、総バーナ燃焼量のうち給湯熱交換器8による水の加熱と追焚き熱交換器7による湯水の加熱とに実際に使用される熱量のデータをデータメモリ54(この場合は本発明の熱量データ記憶手段の機能を含む)に記憶し、該熱量データを使用して、第1バーナ5と第2バーナ6の燃焼量を決定するようにしてもよい。
【0061】
【表3】
Figure 0003655189
【0062】
この場合には、上記式(4)または式(5)により決定した総必要熱量(Qn)に応じた総バーナ燃焼量(QALL)を表3から求める。例えば、給湯単独運転時に式(4)により決定された総必要熱量(Qn)がQ単大minであったときには、対応する総バーナ燃焼量(QALL)として、Q大minが選択される。なお、給湯単独運転に対応した熱量(Q単大max〜Q単小min)が本発明の第1熱量のデータに相当し、給湯・追焚き同時運転に対応した熱量(Q同大max〜Q小min)が本発明の第2熱量のデータに相当する。
【0063】
また、給湯単独運転時の「大燃焼」(「中燃焼」,「小燃焼」でも同様)における中間熱量Q単大x(Q単大min<Q単大x<Q単大max)に対する総バーナ燃焼量(QALL)は、以下の比例計算式(8)によって算出される。なお、給湯・追焚き同時運転時や湯張り運転時の中間熱量に対する総バーナ燃焼量(QALL)も、同様の比例計算によって算出される。
【0064】
【数8】
Figure 0003655189
【0065】
この場合には、例えば給湯器1の固体ごとに実際の熱量を測定して熱量データを設定することにより、より精度よく湯張り温度を制御することができる。
【0066】
また、本実施の形態では、本発明の加熱手段としてガスを燃料とするバーナを示したが、灯油を燃料とするバーナを用いてもよく、また、電熱線により熱交換を行う構成としてもよい。
【図面の簡単な説明】
【図1】本発明の追焚き付き給湯器の全体構成図。
【図2】図1に示した追焚き付き給湯器の制御ブロック図。
【符号の説明】
1…追焚き付き給湯器、2…給湯管路、3…追焚き管路、4…浴槽、5…第1バーナ、6…第2バーナ、7…追焚き熱交換器、8…給湯熱交換器、9…バイパス管、10…バイパスサーボ、11…給湯サーミスタ、12…熱交サーミスタ、13…水量センサ、14…湯量サーボ、15…注湯電磁弁、16…逆止弁、17…ポンプ、18…風呂サーミスタ、19…風呂水流スイッチ、20…湯量センサ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to hot water filling control in a so-called canned and two-water channel hot water heater with reheating, in which a part of a heat exchanger for hot water supply and a heat exchanger for reheating are overlapped.
[0002]
[Prior art]
In recent years, for the purpose of saving space, a so-called single-can two-water heater with a reheater in which a part of a heat exchanger for hot water supply and a heat exchanger for reheating is overlapped has been developed. In such a water heater, one end is connected to the water supply and the water supplied from the water supply is heated with a heat exchanger for hot water supply, and hot water is supplied from the other end. And a reheating pipe for circulating the hot water and water staying in the reheating heat exchanger while being heated by the reheating heat exchanger.
[0003]
When performing hot water supply, the heating amount of the hot water supply heat exchanger is determined so that the temperature of the hot water supplied from the hot water supply line becomes a predetermined target temperature, and feedforward control is performed. Further, a hot water supply temperature sensor for detecting the temperature of hot water supplied from the hot water supply pipe is provided, and the heating amount is further finely adjusted by feedback control so that the detected temperature of the hot water supply temperature sensor coincides with the target hot water supply temperature.
[0004]
In such a hot water heater with reheating, a hot water junction relay pipe is provided to connect the hot water supply pipe and the additional water heating pipe, and the hot water filling is carried out from the hot water supply pipe to the bathtub through the hot water filling relay pipe and the additional heating pipe. A water heater has been proposed.
[0005]
When hot water filling is performed using the additional heating pipe in this way, a first hot water filling path that reaches the bathtub via the side heated by the additional heat exchanger of the additional heating pipe, and the additional heating pipe It is common to supply hot water to the bathtub from the hot water supply pipe by so-called both transports through two paths called a second hot water filling path that reaches the bathtub through the side not heated by the reheating heat exchanger. .
[0006]
However, when hot water filling is performed by both transports, hot water of a target temperature supplied from the hot water supply pipe is supplied as it is to the bathtub on the second hot water supply path side, but on the first hot water supply path side, The hot water of the target temperature supplied from is further heated by a reheating heat exchanger and supplied to the bathtub.
[0007]
Therefore, when feedback control is performed so that the temperature of hot water supplied from the hot water supply line becomes the target temperature, as in normal hot water supply (other than hot water filling), the temperature of the hot water stored in the bathtub is the target. There is a disadvantage that it becomes higher than the temperature. Therefore, conventionally, when hot water filling is performed, feedback control is prohibited, the hot water supply temperature is controlled only by feedforward control, and the amount of heating by the hot water heat exchanger is reduced in anticipation of heating by the additional heat exchanger. It was like that.
[0008]
However, in this case, it is difficult to determine how much the heating amount is reduced, and it is difficult to accurately control the hot water temperature of the bathtub.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described background, and provides a water heater that can accurately control the temperature of a hot water bath to a bathtub by simple processing in a canned and double water heater with a reheater. The purpose is to do.
[0010]
[Means for Solving the Problems]
The present invention has been made in order to achieve the above-mentioned object, and has both ends connected to a bathtub and a reheating pipe for circulating and reheating hot water staying in the bathtub, and one end connected to a water supply. A hot water supply line for heating water supplied from the water supply and supplying hot water from the other end, a reheating heat exchanger for heating hot water flowing through the reheating line, and a part of the reheating heat exchanger And a hot water supply heat exchanger that heats the water flowing through the hot water supply pipe, heating means for heating the reheating heat exchanger and the hot water supply heat exchanger, and heating for adjusting the heating amount of the heating means The present invention relates to a water heater provided with a quantity adjusting means.
[0011]
First, according to the first aspect of the present invention, the heating by the hot water supply heat exchanger and the hot water by the additional heat exchanger out of the amount of heat generated by the heating means when simultaneously performing hot water supply and reheating. The first heat efficiency data, which is the ratio of the amount of heat actually used for heating, and the amount of heat generated by the heating means when performing only hot water supply alone, are actually used for heating water by the hot water supply heat exchanger. Heat efficiency data storage means storing second heat efficiency data, which is a ratio of the amount of heat used, and heating amount of the heating means by the heating amount adjustment means so that hot water of a predetermined temperature is supplied from the hot water supply pipe When the reheating and hot water supply are executed simultaneously, the heating amount of the heating means is determined based on the first thermal efficiency data, and when only the hot water supply is executed alone, the second thermal efficiency data is used. Said About reheating with water heater improvement and a hot water supply control means for determining a heating amount of the thermal unit.
[0012]
And the downstream side of the location where water is heated by the hot water supply heat exchanger of the hot water supply pipe and the reheating pipe line communicate with each other, and the hot water heated and generated by the hot water supply heat exchanger is connected to the hot water supply pipe line. A first hot water supply path to be supplied to the bathtub via the additional heating pipe on the side heated by the additional heat exchanger, and a side not heated by the additional heat exchanger from the hot water supply pipe A hot water communication pipe that forms a second hot water path that supplies the bathtub through the reheating pipe line, and the hot water supply control means includes the first hot water path and the second hot water path. When hot water is supplied from the hot water supply pipe to the bathtub through the first heat efficiency, the heating amount of the heating means is determined based on the first thermal efficiency.
[0013]
In the present invention, in the thermal efficiency storage means, the first thermal efficiency data according to the case where the hot water supply and the reheating are executed simultaneously, and the second thermal efficiency data according to the case where only the hot water supply is executed alone. Is stored. And the situation where hot water is supplied from the hot water supply pipe to the bathtub through the first hot water filling path and the second hot water filling path is that the water flowing in the hot water supply pipe is heated by the hot water heat exchanger. At the same time, the hot water flowing in the chasing pipe is heated by the chasing heat exchanger.
[0014]
Therefore, when supplying hot water to the bathtub from the hot water supply pipe via the first hot water filling path and the second hot water filling path, the heating amount of the heating means is determined based on the first thermal efficiency data. Thus, the hot water supply control means can accurately control the temperature of the hot water supplied to the bathtub. In this case, it is not necessary to perform a complicated process for correcting the heating amount of the heating means.
[0015]
Next, according to a second aspect of the present invention, when the hot water supply and the reheating are performed simultaneously, the heating means gives the water heated by the hot water heat exchanger and the hot water heated by the reheating heat exchanger. The first heat quantity data used in the above and the second heat quantity data given by the heating means and used for heating the water by the hot water supply heat exchanger when only hot water supply is executed are stored. When the heating amount of the heating means is controlled by the heating amount adjusting means so that hot water of a predetermined temperature is supplied from the heat quantity data storage means and the hot water supply pipe, Hot water supply with reheating provided with hot water control means for determining the heating amount of the heating means based on one heat amount and determining the heating amount of the heating means based on the second heat amount when performing only hot water supply alone On improvement of vessel
[0016]
And the downstream side of the location where water is heated by the hot water supply heat exchanger of the hot water supply pipe and the reheating pipe line communicate with each other, and the hot water heated and generated by the hot water supply heat exchanger is connected to the hot water supply pipe line. A first hot water supply path to be supplied to the bathtub via the additional heating pipe on the side heated by the additional heat exchanger, and a side not heated by the additional heat exchanger from the hot water supply pipe A second hot water supply path to be supplied to the bathtub via the reheating pipe line, and the hot water supply control means is configured to supply the hot water supply pipe via the first hot water supply path and the second hot water supply path. When hot water is supplied from the road to the bathtub, the heating amount of the heating means is determined based on the data of the first heat amount.
[0017]
In the present invention, the heating amount data storage means includes the first heat amount data corresponding to the case where hot water supply and reheating are performed simultaneously, and the second heat amount corresponding to the case where only hot water supply is executed alone. Are stored. As described above, the situation in which hot water is supplied from the hot water supply pipe to the bathtub through the first hot water filling path and the second hot water filling path is determined by the hot water heat exchanger in the hot water supply pipe. This is common with the situation where hot water supply and reheating are performed simultaneously in that the water flowing through the reheating heat exchanger is heated and the hot water flowing through the reheating pipeline is heated by the reheating heat exchanger.
[0018]
Therefore, when hot water is supplied from the hot water supply pipe to the bathtub via the first hot water filling path and the second hot water filling path, the heating amount of the heating means is determined based on the first heat quantity data. By determining, the hot water supply control means can accurately control the temperature of hot water supplied to the bathtub.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
An example of an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of a hot water heater with a reheating apparatus according to the present invention, and FIG. 2 is a control block diagram of the hot water supply apparatus with a reheating apparatus shown in FIG.
[0020]
Referring to FIG. 1, a water heater 1 is connected to a water pipe (not shown) by a hot water supply pipe 2 and is connected to a bathtub 4 by a reheating pipe 3. The water heater 1 has a function of heating water supplied from the water pipe through the hot water supply pipe 2 to a predetermined temperature to supply hot water, a function of heating and chasing the hot water stored in the bathtub 4, and the bathtub 4 Has a hot water filling function for storing a predetermined amount of hot water at a predetermined temperature.
[0021]
The entire operation of the water heater 1 is controlled by the controller 4, and the first burner 5 (corresponding to the heating means of the present invention) that operates according to the control signal from the controller 4 and the heating capability is lower than that of the first burner. The second burner 6 (corresponding to the heating means of the present invention), the reheating heat exchanger 7 and the hot water supply heat exchanger 8 heated by the first burner 5 and the second burner 6, and the water pipe to the hot water supply line 2 A bypass pipe 9 for bypassing the hot water supply heat exchanger 8 to mix a part of the supplied water with hot water discharged from the hot water supply heat exchanger 8, and the opening degree of the bypass pipe 9 is adjusted by a control signal from the controller 4. Bypass servo 10, hot water thermistor 11 that detects the temperature of hot water downstream of the junction X between the hot water supply pipe 2 and the bypass pipe 9 and outputs a detection signal to the controller 4, hot water near the outlet of the hot water heat exchanger 8 Detect temperature From the heat exchanger thermistor 12 that outputs a detection signal to the controller 4, the water supply flow rate sensor 13 that detects the flow rate of water supplied from the water supply to the hot water supply pipe 2 and outputs the detection signal to the controller 4, and the hot water supply pipe 2 A hot water servo 14 for adjusting the flow rate of hot water supplied is provided.
[0022]
Further, the water heater 1 includes a hot water relay pipe 30 that connects the hot water supply pipe 2 and the follow-up pipe 3, and a hot water solenoid valve 15 that operates by a control signal from the controller 4 to open and close the hot water relay pipe 30. A check valve 16 that allows passage of hot water in the direction from the hot water relay pipe 30 to the hot water relay pipe 30 and disables passage of hot water in the direction from the hot water relay pipe 30 to the hot water pipe 3, controller 4 is operated by a control signal from the pump 4 to circulate hot water stored in the bathtub 4 in the tracking pipe 3, and the temperature of hot water supplied from the bathtub 4 to the tracking pipe 3 (= stored in the bathtub). A bath thermistor 18 that detects the temperature of the hot water and outputs a detection signal to the controller 4, a bath water flow switch 19 that detects the presence or absence of hot water flowing in the tracking pipe 3 and outputs a detection signal to the controller 4, and hot water supply From pipe 2 to hot water filled relay pipe 30 Comprising a hot water sensor 20 that outputs a detection signal by detecting the flow rate of the hot water supplied to the bathtub 4 via the fired line 3 to the controller 4.
[0023]
In addition, the water heater 1 controls the operation of the first burner 5 and the second burner 6, so that the fuel gas is supplied to and shut off from the first burner 5 and the second burner 6 in accordance with a control signal from the controller 4. A gas proportional valve 22 that adjusts the supply flow rate of the fuel gas in accordance with a control signal from the controller 4, a fuel gas supply to the first burner 5 in accordance with a control signal from the controller 4 The first gas solenoid valve 23 that switches between shutoff and the control signal from the controller 4, the second gas solenoid valve 24 that switches between supply and shutoff of the fuel gas to the second burner 6 according to the control signal from the controller 4 Combustion fan 25 for supplying combustion air to the first burner 5 and the second burner 6, and ignition for generating a spark discharge by a high voltage applied from the igniter 26 according to a control signal from the controller 4 The lug 27, the frame rod 28 that detects the presence or absence of a combustion flame in the second burner 6 and outputs a detection signal to the controller 4, and the water at the highest temperature in the hot water supply pipe 2 in the hot water supply heat exchanger 8. And a water pipe thermistor 29 that outputs a detection signal to the controller 4.
[0024]
The first gas solenoid valve 23, the second gas solenoid valve 24, and the gas proportional valve 22 constitute the heating amount adjusting means of the present invention. Further, the water pipe thermistor 29 is provided to prevent the water staying in the hot water supply heat exchanger 8 from being heated and abnormally heated when only the reheating is performed alone. When the detected temperature exceeds a predetermined upper limit temperature, the controller 4 stops the combustion of the first burner 5 and the second burner 6.
[0025]
The controller 4 transmits and receives various signals to and from the remote controller 40 installed in a bathroom or the like. The remote controller 40 includes switches (not shown) for setting a hot water supply temperature, a hot water filling temperature, a chasing time, and the like, and a display unit (not shown) for displaying the hot water supply temperature, the hot water filling temperature, and the like.
[0026]
Next, referring to FIG. 2, the controller 4 performs hot water supply control means 50 for performing hot water supply operation for supplying hot water at the target hot water supply temperature from the hot water supply pipe 2, and supplies hot water stored in the bathtub 4 to the target reheating temperature. Reheating control means 51 for performing reheating operation for raising the temperature, hot water control means 52 for performing hot water filling operation for supplying the hot water at the target hot water temperature to the bathtub by the target hot water amount, the first burner 5 and the second Of the total amount of combustion by the burner 6 (corresponding to the amount of heat generated by the heating means of the present invention; hereinafter referred to as the total amount of burner combustion), the ratio of the amount of heat used for heating on the hot water supply heat exchanger 8 side is calculated. A hot water supply heat quantity distribution ratio grasping means 53 and a data memory 54 (including the function of the thermal efficiency data storage means of the present invention) in which data necessary for performing the hot water supply operation and the hot water filling operation are provided.
[0027]
The hot water supply control means 50 controls the combustion amount of the first burner 5 and the second burner 6 so that hot water at the target hot water supply temperature set by the remote controller 40 is supplied from the hot water supply pipe 2. When the hot water supply control means 50 detects from the detection signal of the water amount sensor 13 that a curan (not shown) connected to the downstream side of the hot water supply pipe 2 is opened and water supply from the water pipe is started, the combustion fan 25, the supply of combustion air is started, and a high voltage is applied from the igniter 26 to the spark plug 27 to cause a spark discharge, and the original gas solenoid valve 21 and the second gas solenoid valve 23 are The valve is opened and the second burner 6 is ignited.
[0028]
Then, the hot water supply control means 50 opens both the first gas solenoid valve 23 and the second gas solenoid valve 24 so as to burn the first burner 5 and the second burner 6, and the first gas solenoid. The valve 23 is opened and the second gas solenoid valve 24 is closed, “medium combustion” in which only the first burner 5 is burned, the first solenoid valve 23 is closed and the second solenoid valve 24 is opened. The total burner combustion amount by the first burner 5 and the second burner 6 is adjusted in three stages of “small combustion” in which only the second burner 6 is burned. Further, the hot water supply control means 50 controls the amount of combustion in “large combustion”, “medium combustion”, and “small combustion” more finely by changing the opening of the gas proportional valve 22.
[0029]
Here, in the data memory 54, as shown in Table 1 below, the maximum combustion amount in the “large combustion” (Q large max ), Minimum combustion amount (Q large min), maximum combustion amount in “medium combustion” (in Q max ) And minimum combustion amount (in Q) min ), And the maximum amount of combustion in “small combustion” (small Q) max ) And minimum combustion amount (small Q) min ) Data (obtained by experiments and calculations).
[0030]
[Table 1]
Figure 0003655189
[0031]
However, the total burner combustion amount (Q ALL ) Are not used for heating the water flowing in the hot water supply heat exchanger 8 or the hot water flowing in the reheating heat exchanger 7, and there is a combustion amount consumed wastefully. Therefore, in the data memory 54, as shown in Table 2 below, “large combustion (Q large max, Q large min)”, “medium combustion (Q medium max, Q medium min)”, “small combustion ( Data of thermal efficiency (η) at “Q small max, Q small min)” is stored.
[0032]
[Table 2]
Figure 0003655189
[0033]
Here, the thermal efficiency (η) is defined by the following equation (1). Further, the thermal efficiency corresponding to the hot water supply single operation (η single maximum to η single small min) corresponds to the second thermal efficiency data of the present invention, and the thermal efficiency corresponding to the hot water supply and reheating simultaneous operation (η same maximum max to η The same small min) corresponds to the first thermal efficiency data of the present invention.
[0034]
[Expression 1]
Figure 0003655189
[0035]
In equation (1), T in 1 is the temperature of water supplied from the water pipe to the hot water supply heat exchanger 8, T out 2 is the temperature of hot water discharged from the hot water supply heat exchanger 8, and W 2 is the flow rate of water passing through the hot water supply heat exchanger 8. On the other hand, T in 2 is the temperature of hot water stored in the bathtub 4, T out 2 is the temperature of hot water discharged from the reheating heat exchanger, and W2 is the flow rate of hot water passing through the reheating conduit 3.
[0036]
Thermal efficiency (η) is greater when performing hot water supply operation and reheating operation simultaneously (hereinafter referred to as simultaneous hot water supply and reheating operation) than when performing only hot water supply operation (hereinafter referred to as single operation of hot water supply). Is slightly higher. This is because the effective total heat transfer area in the hot water supply heat exchanger 8 and the reheating heat exchanger 7 is larger during the simultaneous operation of hot water supply and reheating.
[0037]
Therefore, in the present embodiment, as shown in Table 2 above, the data of the thermal efficiency (η same magnitude max to η same min min, corresponding to the first thermal efficiency of the present invention) according to the simultaneous hot water supply and reheating operation And data of thermal efficiency (η single maximum max to η single small min, corresponding to the second thermal efficiency of the present invention) according to the hot water supply single operation are stored in the data memory 54 in advance. Then, the hot water supply control means 50 uses the thermal efficiency (η) according to the operation state (hot water supply single operation or hot water supply / reheating simultaneous operation) to calculate the total burner combustion amount (Q ALL ).
[0038]
During hot water supply single operation, the total burner combustion amount (Q ALL ) Is consumed only to heat the water passing through the hot water supply heat exchanger 8. The hot water supply control means 50 detects the temperature detected by the hot water supply thermistor 11 (T H ) And the detected flow rate (F W ) And the amount of heat used to heat water in the hot water supply heat exchanger 8 (Q R ) And the water supply temperature (T W ). The amount of heat (Q R ) Is the total burner combustion amount (Q ALL ) Multiplied by thermal efficiency (η).
[0039]
[Expression 2]
Figure 0003655189
[0040]
Then, the hot water supply control means 50 is connected to the target hot water supply temperature (T A The amount of heat that needs to be given to the hot water supply heat exchanger 8 to supply hot water (hereinafter referred to as the required amount of hot water supply (Q nh )) Is determined by the following equation (3).
[0041]
[Equation 3]
Figure 0003655189
[0042]
During the hot water supply single operation, since the heating heat exchanger 7 does not require heating, the total heat amount (hereinafter referred to as the total required heat amount (Q) required to be given to the hot water supply heat exchanger 8 and the additional heat exchanger 7 is required. n )) Is the required amount of hot water supply (Q nh ).
[0043]
[Expression 4]
Figure 0003655189
[0044]
On the other hand, the total burner combustion amount (Q ALL ) Is also consumed to heat the hot and cold water circulating in the tracking pipe 3. For this reason, during simultaneous hot water supply and reheating operation, the required amount of heat for hot water supply (Q nh ) And the amount of heat consumed by the additional heat exchanger 7 (hereinafter referred to as additional heat consumption (Q c It is necessary to provide the hot water supply heat exchanger 8 and the reheating heat exchanger 9 with the amount of heat added).
[0045]
Therefore, the hot water supply control means 50 determines the total required heat amount (Q n ) Is determined by the following equation (5).
[0046]
[Equation 5]
Figure 0003655189
[0047]
In addition, additional heat consumption (Q c ) Is grasped by the temperature of the hot water stored in the bathtub 4 detected by the bath thermistor 18 and the flow rate of the hot water flowing in the chasing pipe 3 determined by the capacity of the pump 17.
[0048]
And the hot water supply control means 50 is the total required heat quantity (Q) determined by Formula (4) or Formula (5) in this way. n ) To obtain the thermal efficiency (η) data shown in Table 2 according to each operation state (hot water supply single operation or hot water supply and reheating simultaneous operation), and the following equation (6) Burner combustion amount (Q ALL ). As a result, the hot water supply control means 50 determines the total burner combustion amount (Q ALL ) Can be determined with high accuracy.
[0049]
[Formula 6]
Figure 0003655189
[0050]
The burner total combustion amount (Q ALL ) Is generated, the hot water supply control means 50 selects any one of the above-mentioned “large combustion”, “medium combustion”, and “small combustion”, and adjusts the opening of the gas proportional valve 22. The feedforward control is performed so that the hot water supply temperature from the hot water supply pipe line 2 is maintained at the target hot water supply temperature.
[0051]
It should be noted that this feedforward control should be able to basically match the hot water supply temperature from the hot water supply pipe line 2 with the target hot water supply temperature. The hot water supply control means 50 controls the total burner combustion amount (Q by feedback control so that the actual hot water supply temperature detected by the hot water supply thermistor 11 matches the target hot water supply temperature. ALL ) Is corrected.
[0052]
Further, the thermal efficiency (η) with respect to the intermediate combustion amount Q large x (Q large min <Q large x <Q large max) in “large combustion” (the same applies to “medium combustion” and “small combustion”) at the time of hot water supply single operation The following proportional calculation formula (7) is used. The thermal efficiency (η) with respect to the intermediate combustion amount at the time of simultaneous hot water supply and reheating operation or hot water filling operation is also calculated by the same proportional calculation.
[0053]
[Expression 7]
Figure 0003655189
[0054]
Next, when performing the hot water filling operation, the hot water filling control means 52 instructs the hot water supply control means 50 to supply hot water at the target hot water filling temperature set by the remote controller 40, and the hot water solenoid valve 15 is turned on. Open the valve.
[0055]
When the hot water solenoid valve 15 is opened, referring to FIG. 1, the supply of water from the water supply to the hot water supply pipe 2 is started, and the hot water generated by the hot water supply heat exchanger 8 is supplied to the hot water supply pipe. 2 through the hot water junction relay pipe 30 and the first hot water path R1 on the side of the additional water pipe 3 passing through the additional heat exchanger 7 and the additional water pipe 3 It is supplied to the bathtub 4 via the second hot water filling path R2 on the side that does not pass through the reheating heat exchanger 7.
[0056]
Here, when the amount of combustion in the first burner 5 and the second burner 6 is feedback-controlled so that the hot water supply temperature from the hot water supply pipe 2 detected by the hot water supply thermistor 11 becomes the target hot water filling temperature, the first hot water filling route. Since the hot water supplied to the bathtub 4 via R1 is further heated by the reheating heat exchanger 7, the temperature of the hot water stored in the bathtub 4 becomes higher than the target hot water temperature.
[0057]
Therefore, the hot water supply control means 50 does not perform feedback control during the hot water filling operation, but performs only feedforward control to control the hot water supply temperature. The hot water supply control means 50 then calculates the total burner combustion amount (Q ALL ) Is used, as shown in Table 2 above, the thermal efficiency (η same magnitude max to η same min) corresponding to simultaneous hot water supply and reheating operation is used.
[0058]
Here, at the time of hot water filling operation, water flowing in the hot water supply pipe line 2 is heated by the hot water supply heat exchanger 8, and in the second hot water filling path R2, the inside of the hot water pipe line 3 is moved by the additional heat exchanger 7. The flowing hot water is heated. In this situation, the water 4 flowing in the hot water supply pipe 2 is heated by the hot water supply heat exchanger 8 and the bathtub 4 circulated by the pump 17 by the additional heat exchanger 7 during simultaneous hot water supply and reheating operation. This is the same as the situation where the hot water stored in is heated.
[0059]
Therefore, it is considered that the thermal efficiency (η) at the time of hot water filling operation is the same as the thermal efficiency (η) at the time of hot water supply and reheating simultaneous operation. Therefore, the hot water supply control means 50 uses the thermal efficiency (η) according to the simultaneous hot water supply and reheating operation to control the combustion amount of the first burner 5 and the second burner 2 during the hot water filling operation, thereby 4 can be accurately controlled so that the temperature of the hot water supplied to the target temperature becomes the target temperature accuracy.
[0060]
In the present embodiment, as shown in Table 1 described above, the thermal efficiency (η) corresponding to each operation situation is stored in the data memory 54, but as shown in Table 3 below, Of the total burner combustion amount, data on the amount of heat actually used for heating the water by the hot water supply heat exchanger 8 and heating the hot water by the reheating heat exchanger 7 is stored in the data memory 54 (in this case, the heat amount data storage of the present invention). And the amount of combustion of the first burner 5 and the second burner 6 may be determined using the heat quantity data.
[0061]
[Table 3]
Figure 0003655189
[0062]
In this case, the total required heat quantity (Q determined by the above formula (4) or formula (5)) n ) Total burner combustion amount (Q ALL ) Is obtained from Table 3. For example, the total required heat amount (Q n ) Is Q single min, the corresponding total burner combustion amount (Q ALL ), Q large min is selected. The amount of heat corresponding to the hot water supply single operation (Q single maximum to Q single small min) corresponds to the first heat amount data of the present invention, and the heat amount corresponding to the simultaneous hot water supply and reheating operation (Q same maximum max to Q Small min) corresponds to the second calorific value data of the present invention.
[0063]
Also, the total burner for intermediate heat quantity Q single x (Q single large min <Q single large x <Q single maximum) in “large combustion” (same for “medium combustion” and “small combustion”) during hot water supply single operation Combustion amount (Q ALL ) Is calculated by the following proportional calculation formula (8). It should be noted that the total burner combustion amount (Q ALL ) Is also calculated by the same proportional calculation.
[0064]
[Equation 8]
Figure 0003655189
[0065]
In this case, for example, by measuring the actual amount of heat for each solid in the water heater 1 and setting the amount of heat data, the filling temperature can be controlled with higher accuracy.
[0066]
In the present embodiment, the burner using gas as fuel is shown as the heating means of the present invention. However, a burner using kerosene as fuel may be used, and heat may be exchanged by a heating wire. .
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a hot water heater with a reheating device according to the present invention.
FIG. 2 is a control block diagram of the hot water heater with reheating shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Hot water heater with reheating, 2 ... Hot water supply pipe line, 3 ... Reheating water pipe line, 4 ... Bathtub, 5 ... 1st burner, 6 ... 2nd burner, 7 ... Reheating heat exchanger, 8 ... Hot water supply heat exchange 9 ... Bypass pipe, 10 ... Bypass servo, 11 ... Hot water thermistor, 12 ... Heat exchange thermistor, 13 ... Water quantity sensor, 14 ... Hot water quantity servo, 15 ... Hot water solenoid valve, 16 ... Check valve, 17 ... Pump, 18 ... Bath thermistor, 19 ... Bath water flow switch, 20 ... Hot water sensor

Claims (2)

両端が浴槽と接続されて浴槽に滞留した湯水を循環させて追焚きするための追焚き管路と、一端が水道と接続されて水道から供給される水を加熱して他端から給湯するための給湯管路と、該追焚き管路を流れる湯水を加熱する追焚き熱交換器と、その一部が該追焚き熱交換器と重複して該給湯管路を流れる水を加熱する給湯熱交換器と、該追焚き熱交換器と該給湯熱交換器とを加熱する加熱手段と、該加熱手段の加熱量を調節する加熱量調節手段と、給湯と追焚きとを同時に実行するときに前記加熱手段が発生する熱量のうち前記給湯熱交換器による水の加熱と前記追焚き熱交換器による湯水の加熱とに実際に使用される熱量の割合である第1熱効率のデータと、給湯のみを単独で実行するときに前記加熱手段が発生する熱量のうち前記給湯熱交換器による水の加熱に実際に使用される熱量の割合である第2熱効率のデータとを記憶した熱効率データ記憶手段と、前記給湯管路から所定温度の湯が供給されるように前記加熱量調節手段により前記加熱手段の加熱量を制御し、追焚きと給湯とを同時に実行するときは前記第1熱効率のデータに基づいて前記加熱手段の加熱量を決定し、給湯のみを単独で実行するときには前記第2熱効率のデータに基づいて前記加熱手段の加熱量を決定する給湯制御手段とを備えた追焚き付き給湯器において、前記給湯管の前記給湯熱交換器により水が加熱される箇所の下流側と前記追焚き管路とを連通して、前記給湯熱交換器により加熱生成された湯を、前記給湯管路から前記追焚き熱交換器により加熱される側の前記追焚き管路を経由して前記浴槽に供給する第1湯張り経路と、前記給湯管路から前記追焚き熱交換器により加熱されない側の前記追焚き管路を経由して前記浴槽に供給する第2湯張り経路とを形成し、前記給湯制御手段は、前記第1湯張り経路と前記第2湯張り経路とを介して前記給湯管路から前記浴槽に湯を供給するときには、前記第1熱効率のデータに基づいて前記加熱手段の加熱量を決定することを特徴とする追焚き付き給湯器Both ends are connected to the bathtub and the hot water staying in the bathtub is circulated and chased, and one end is connected to the water and the water supplied from the water is heated to supply hot water from the other end Hot water supply line, a reheating heat exchanger that heats the hot water flowing through the reheating pipe, and a hot water supply heat that partially heats the water flowing through the renewing heat exchanger When simultaneously performing the heating device for heating the exchanger, the reheating heat exchanger and the hot water supply heat exchanger, the heating amount adjusting device for adjusting the heating amount of the heating device, and the hot water supply and reheating Of the amount of heat generated by the heating means, data on the first thermal efficiency, which is a ratio of the amount of heat actually used for heating water by the hot water supply heat exchanger and heating hot water by the reheating heat exchanger, and only hot water supply The hot water supply out of the amount of heat generated by the heating means when executing alone Heat efficiency data storage means storing second heat efficiency data, which is a ratio of the amount of heat actually used for water heating by the exchanger, and the heating amount so that hot water of a predetermined temperature is supplied from the hot water supply pipe When the heating means of the heating means is controlled by the adjusting means and the reheating and the hot water supply are executed simultaneously, the heating amount of the heating means is determined based on the data of the first thermal efficiency, and only the hot water supply is executed alone. Sometimes, in the hot water heater with reheating provided with the hot water supply control means for determining the heating amount of the heating means based on the data of the second thermal efficiency, the location where water is heated by the hot water heat exchanger of the hot water pipe The downstream side and the reheating pipe line communicate with each other, and the hot water generated by the hot water supply heat exchanger is connected to the reheating line on the side heated by the reheating heat exchanger from the hot water supply line. Via the bath Forming a first hot water supply path to be supplied to the bathtub and a second hot water supply path to be supplied to the bathtub through the additional heat pipe not heated by the additional heat exchanger from the hot water supply line, The hot water supply control means, when supplying hot water from the hot water supply pipe line to the bathtub via the first hot water filling path and the second hot water filling path, based on the data of the first thermal efficiency, A water heater with reheating, which determines the amount of heating. 両端が浴槽と接続されて浴槽に滞留した湯水を循環させて追焚きするための追焚き管路と、一端が水道と接続されて水道から供給される水を加熱して他端から給湯するための給湯管路と、該追焚き管路を流れる湯水を加熱する追焚き熱交換器と、その一部が該追焚き熱交換器と重複して該給湯管路を流れる水を加熱する給湯熱交換器と、該追焚き熱交換器と該給湯熱交換器とを加熱する加熱手段と、該加熱手段の加熱量を調節する加熱量調節手段と、給湯と追焚きとを同時に実行するときに前記加熱手段により与えられて前記給湯熱交換器による水の加熱と前記追焚き熱交換器による湯水の加熱とに使用される第1熱量のデータと、給湯のみを単独で実行するときに前記加熱手段により与えられて前記給湯熱交換器による水の加熱に使用される第2熱量のデータとを記憶した熱量データ記憶手段と、前記給湯管路から所定温度の湯が供給されるように前記加熱量調節手段により前記加熱手段の加熱量を制御し、追焚きと給湯とを同時に実行するときは前記第1熱量のデータに基づいて前記加熱手段の加熱量を決定し、給湯のみを単独で実行するときには前記第2熱量のデータに基づいて前記加熱手段の加熱量を決定する給湯制御手段とを備えた追焚き付き給湯器において、前記給湯管の前記給湯熱交換器により水が加熱される箇所の下流側と前記追焚き管路とを連通して、前記給湯熱交換器により加熱生成された湯を、前記給湯管路から前記追焚き熱交換器により加熱される側の前記追焚き管路を経由して前記浴槽に供給する第1湯張り経路と、前記給湯管路から前記追焚き熱交換器により加熱されない側の前記追焚き管路を経由して前記浴槽に供給する第2湯張り経路とを形成し、前記給湯制御手段は、前記第1湯張り経路と前記第2湯張り経路とを介して前記給湯管路から前記浴槽に湯を供給するときには、前記第1熱量のデータに基づいて前記加熱手段の加熱量を決定することを特徴とする追焚き付き給湯器Both ends are connected to the bathtub and the hot water staying in the bathtub is circulated and chased, and one end is connected to the water and the water supplied from the water is heated to supply hot water from the other end Hot water supply line, a reheating heat exchanger that heats the hot water flowing through the reheating pipe, and a hot water supply heat that partially heats the water flowing through the renewing heat exchanger When simultaneously performing the heating device for heating the exchanger, the reheating heat exchanger and the hot water supply heat exchanger, the heating amount adjusting device for adjusting the heating amount of the heating device, and the hot water supply and reheating Data of the first heat amount given by the heating means and used for heating the water by the hot water supply heat exchanger and heating the hot water by the reheating heat exchanger, and the heating when performing only hot water supply alone Used for heating water by the hot water heat exchanger given by the means Heat amount data storage means storing the second heat quantity data, and the heating amount adjustment means controls the heating amount of the heating means so that hot water of a predetermined temperature is supplied from the hot water supply pipe line. Is performed based on the first heat amount data, and the heating amount of the heating means is determined based on the second heat amount data when only the hot water supply is performed alone. In the hot water heater with reheating provided with the hot water supply control means for determining, the downstream side of the portion where water is heated by the hot water heat exchanger of the hot water supply pipe and the reheating pipe line communicate with each other, and the hot water heat A first hot water supply path for supplying hot water heated and generated by the exchanger to the bathtub via the reheating pipe on the side heated by the reheating heat exchanger from the hot water supply line, and the hot water supply Exhaust heat exchange from the pipeline Forming a second hot water supply path to be supplied to the bathtub via the reheating pipe line on the side not heated by the hot water supply control means, and the hot water supply control means includes the first hot water supply path and the second hot water supply path. when supplying hot water to the bathtub from the hot water supply conduit via the reheating with water heater and determines the heating amount of said heating means based on the data of the first heat.
JP2000361623A 2000-11-28 2000-11-28 Water heater with remembrance Expired - Lifetime JP3655189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000361623A JP3655189B2 (en) 2000-11-28 2000-11-28 Water heater with remembrance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000361623A JP3655189B2 (en) 2000-11-28 2000-11-28 Water heater with remembrance

Publications (2)

Publication Number Publication Date
JP2002162101A JP2002162101A (en) 2002-06-07
JP3655189B2 true JP3655189B2 (en) 2005-06-02

Family

ID=18833027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000361623A Expired - Lifetime JP3655189B2 (en) 2000-11-28 2000-11-28 Water heater with remembrance

Country Status (1)

Country Link
JP (1) JP3655189B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101519898B1 (en) 2012-11-13 2015-05-14 주식회사 카르빈 Power-saving hot water boiler system

Also Published As

Publication number Publication date
JP2002162101A (en) 2002-06-07

Similar Documents

Publication Publication Date Title
US8662022B2 (en) Water heater
JP5122850B2 (en) Control method of heat utilization device
JP4477566B2 (en) Hot water system
JP3655189B2 (en) Water heater with remembrance
JP3878476B2 (en) Flow water heater
JP6607375B2 (en) Auxiliary heat source machine
JP3683400B2 (en) Combined water heater
JP4718323B2 (en) Water heater and operation method thereof
JP3705246B2 (en) Hot water system
JP3730392B2 (en) Water heater
JP3881190B2 (en) Water heater with remembrance
JP3531458B2 (en) Auxiliary water heater connection unit
JP3652599B2 (en) Water heater with remembrance
JP3881192B2 (en) Bath water heater
JPH08100950A (en) Storage type hot water supply system
JP3705245B2 (en) Hot water system
JP3487905B2 (en) Water heater and combustion control method using the same
JP3769660B2 (en) Water heater
JP3727389B2 (en) Combined water heater
JP2024090834A (en) Water heater
JP2021067442A (en) Heat source device
JP3952485B2 (en) Bath water heater
JP3935759B2 (en) Heat supply system
JP4016006B2 (en) Hot water system
JPH11294860A (en) Gas hot water supplier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050302

R150 Certificate of patent or registration of utility model

Ref document number: 3655189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term