JP3654320B2 - Immersion coating method for cylindrical substrate - Google Patents

Immersion coating method for cylindrical substrate Download PDF

Info

Publication number
JP3654320B2
JP3654320B2 JP13172096A JP13172096A JP3654320B2 JP 3654320 B2 JP3654320 B2 JP 3654320B2 JP 13172096 A JP13172096 A JP 13172096A JP 13172096 A JP13172096 A JP 13172096A JP 3654320 B2 JP3654320 B2 JP 3654320B2
Authority
JP
Japan
Prior art keywords
coating
cylindrical substrate
cylindrical
substrate
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13172096A
Other languages
Japanese (ja)
Other versions
JPH09299867A (en
Inventor
雄一 矢敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP13172096A priority Critical patent/JP3654320B2/en
Publication of JPH09299867A publication Critical patent/JPH09299867A/en
Application granted granted Critical
Publication of JP3654320B2 publication Critical patent/JP3654320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、感光ドラム等の円筒基体の浸漬塗布方法に関し、一つの塗布槽で複数の円筒基体を用いて浸漬塗布しても、膜厚のむらを極力小さくできる塗布方法に関するものである。
【0002】
【従来の技術】
従来、円筒基体の表面に感光層形成用塗布液等を塗布して有機感光体(OPC)ドラム等の感光ドラムを製造することは広く行われている。その塗布方法としては、例えば特開昭59−90667号公報に記載されているように、塗布液を塗布槽からオーバーフローさせて循環させながら基体を浸漬する方法が一般的であり、通常は、実開昭63−126075号公報記載のように、一つの塗布槽で一つの基体が塗布されている。
【0003】
【発明が解決しようとする課題】
ところが、一つの塗布槽で一つの円筒基体の塗布を行うのでは効率が悪く、生産を合理化するためには、一つの大きな塗布槽で複数の円筒基体を同時に浸漬塗布することが望まれる。しかしながら、一つの塗布槽に複数の円筒基体を浸漬すると、円筒基体の周囲をオーバーフローする塗布液の流れが不均一になって、円筒基体表面に形成される塗膜の膜厚むらを生じるという問題がある。
【0004】
これを解消するために、図に示すように内部に塗布液2を入れた塗布槽1の上部に孔7と傾斜面8を有する塗布液制御板10を配置して、被塗布物である円筒基体6の周囲のオーバーフローを均一化して塗布する装置が提案されている(実開昭61−130375号公報)。この装置においては、塗布液は供給口4から入り、上部からオーバーフローし、受け皿3に集められて排出口5より排出される。なお、9は蓋である。
また、塗布槽上部に仕切り板を設け、仕切られた区域ごとに円筒基体を浸漬することが提案されている(特開昭59−42068号公報および特開平5−88384号公報)。
これらの方法は、実質的には一つの塗布槽で一つの円筒基体を塗布する場合と差異がない。そのため、円筒基体の浸漬本数を直径ごとに変更しようとすると、切り換えが困難である。
【0005】
本発明は、従来の技術における上記のような問題点を解消することを目的とするものである。すなわち、本発明の目的は、真に一つの塗布槽で複数の円筒基体浸漬塗布しても、塗布時の膜厚むらのない感光ドラム等の円筒基体の浸漬塗布方法を提供することにある。
【0006】
【課題を達成するための手段】
前記目的を達成するために、本発明者等は鋭意研究を重ねた結果、塗布液中に浸漬する円筒基体表面周辺における塗布液の流速が、形成される膜厚に重要な関連を有し、複数の円筒基体を浸漬した場合にも流速を均一にすればよいとの知見を得、本発明を完成するに至った。
【0007】
すなわち、本発明は、塗布液がオーバーフローしている塗布槽に複数の円筒基体を浸漬して塗布する円筒基体の浸漬塗布方法において、浸漬した円筒基体を塗布液中から引き上げる際に、塗布槽への塗布液の供給を停止させ、円筒基体を塗布液中から引き上げるときの引上げ速度を徐々に増加させるように変化させることを特徴とする。
本発明は、特に、感光ドラムや現像器に用いられる現像スリーブ等、膜厚むらの発生が問題となる円筒基体の浸漬塗布に有効に適用できる。
【0008】
【発明の実施の形態】
本発明の構成および作用について詳記する。
一般的に、その上部から塗布液がオーバーフローしている塗布槽に複数の円筒基体を浸漬して塗布する方法において、円筒基体周囲のオーバーフロー流速が不均一になると膜厚むらが生じるのは、流速によって、液体の圧力が変化(ベルヌーイの定理)するからである。
すなわち、流速が速いほど液体の圧力は小さくなり、塗布槽からの円筒基体の引き上げ時に円筒基体と共に付着して塗布される塗布液は少なくなるので、膜厚は薄くなるのである。円筒基体周囲のオーバーフローが均一であれば流速も一定になるので、膜厚むらはないが、一つの塗布槽に複数の円筒基体を浸漬すると、塗布槽の中央部と辺縁部とでは、オーバーフローの状態が均一でなくなり、塗布液の流速が異なるので、各円筒基体に膜厚むらが生じる。
【0009】
そこで、塗布槽に複数の円筒基体を浸漬した場合、本発明では、円筒基体を引き上げる時は塗布液のオーバーフローを停止するようにしたのである。オーバーフローを停止させることにより、流速は液面では等しくゼロになるので、円筒基体に形成される塗膜の膜厚むらはなくなるのである。
【0010】
塗布槽からの塗布液のオーバーフローを停止させる方法として、本発明においては、図に示すように塗布液の供給を中断して液面を低下させる方法が採用される。
【0011】
上記のように、液面を低下させる場合は、液面の低下と共に円筒基体との相対塗布速度が増すので、引き上げ速度はそれを考慮して設定しなければならない。さらに、液面低下により塗布後の円筒基体周囲には、高速度の溶剤蒸気が存在するようになり(図における11の部分)、塗膜の乾燥が遅れるためダレが生じやすくなると、膜厚が薄くなることがある。そのような場合には、膜厚が薄くならないよう引き上げ速度をその部分だけ増すように変化させるとよい。
【0012】
本発明において、円筒基体として感光ドラム用基体を用いる場合、本発明をOPCドラムの製造に適用するのが好適である。OPCドラムは、円筒基体上に必要に応じて下引き層を設け、その上に電荷発生層および電荷輸送層を形成することによって作製されるが、本発明はそのいずれの層の形成に適用してもよい。
【0013】
本発明において、円筒基体として、現像スリーブ用基体を用いることができる。現像スリーブとは、感光ドラムに形成された静電潜像を現像するための現像装置に使用される部材である。現像スリーブには、トナーの摩擦帯電特性を制御したり、現像ゴーストとよばれる現象の発生を防止するために、その表面に被覆層を設けるのが有効であり、その場合被覆層の膜厚は均一でなければならない。したがって、本発明は、現像スリーブの被覆層の形成に好適に使用される。
【0014】
なお、図は一成分磁性トナーを用いる現像スリーブを備えた現像装置の概略断面図である。図において、現像ロールのマグネット12上に円筒状の現像スリーブ13が設けられており、感光ドラム14に対向するように配置されている。この現像装置において、回転する円筒状の現像スリーブ13上にトナーホッパー15からトナー16を供給し、帯電ブレード17でトナー層を均一に形成すると共に、摩擦により帯電させ、感光ドラム14の表面にトナーを飛翔させて現像が行われる。現像されなかったトナーは、再びトナーホッパーに戻される。
【0015】
【実施例】
本発明の実施例を比較例と共に説明するが、本発明はこれによって限定されるものではない。
【0016】
比較例1
OPCドラムにおいて膜厚むらの影響を受けやすいのは電荷輸送層である。そこで電荷輸送層について実施例を説明する。
まず、N,N′−ジフェニル−N,N′−(m−トリル)ベンジジン36部とポリカーボネートZ樹脂64部をモノクロロベンゼン300部に溶解した。得られた液を塗布液として、図1に示す内径90mmφの塗布槽1に塗布液2として入れ、循環させた。(循環装置は図示せず) 塗布液は下の供給口4から入り、上部からオーバーフローし、受け皿3に集められて排出口5より排出されて循環される。なお、6は円筒基体であり、9は蓋であり、11は溶剤蒸気高濃度部分である。
【0017】
被塗布物である円筒基体として、30mmφ×253mmのSUS304製パイプを用意し、この表面を砥石研削機で粗面化し、表面粗度をRa =0.3μmとした。円筒基体を2本同時に浸漬し、まずオーバーフローを停止させないで150mm/分で引き上げて塗布を行った。塗布液供給量は、500ml/分であり、この量であれば円筒基体引き上げ中も十分にオーバーフローがなされる。塗布後に110℃30分間乾燥し、電荷輸送層を形成した。
形成された電荷輸送層を円筒基体から剥がし、ダイヤルゲージにて各部の膜厚を測定したところ、基体円周方向において、塗布槽の中央部付近で塗布された部分(流速が小さい)の膜厚は20μmであったが、塗布槽の辺縁部付近(流速が大きい)の膜厚は18μmであった。一方、上下むらに関しては、上端から15mmはダレがあり、それ以下では、一定であった。すなわち、周方向むらが2μmであった。
【0018】
比較例2
円筒基体引き上げ時に循環ポンプを停止させ、塗布液供給量をゼロにした。こうすると、液面はL=14.13/49.455×V(V:基体引き上げ速度)に従って低下する。そのため塗布速度を150mm/分にするための基体引き上げ速度を150=V+Lより求めると、V=117mm/分となる。この速度で円筒基体を引き上げて塗布液を塗布し電荷輸送層を形成したところ、膜厚は基体周方向でむらはなかった。上下方向では、図に示すように、上部から100mmほどの高さから徐々に膜厚が薄くなって、下部では、19μmとなり、1μmの低下があった。ただしそれでも、前述した比較例1の場合の2μmの円周むらよりは小さくなっている。
【0019】
実施例1
比較例2と同様の条件で、基体引き上げ速度のみを、図に示すように円筒基体の上部から100mmの位置から徐々に増加させるよう変化させ、下部では130mm/分になるようにして塗布したところ、電荷輸送層の膜厚は全面に亘って20μmになっていた。
【0020】
前記、実施例および比較例の場合については、円筒基体に電荷輸送層を形成する場合について説明したが、OPCドラムを形成する際には、電荷輸送層形成に先だって、次のようにして下引き層および電荷発生層を形成すればよい。以下、その場合の実施例を示す。
【0021】
すなわち、OPCドラムを作製するには、電荷輸送層形成前に、まず8ナイロン(ラッカマイド、大日本インキ化学社製)5部(重量部、以下同じ)をメタノール40部および1−ブタノール60部の混合溶媒に溶解し、得られた下引き層形成用塗布液を円筒基体上に浸漬塗布し、膜厚1μmの下引き層を形成した。
続いてポリビニルブチラール樹脂(BM−1、積水化学社製)1部をシクロヘキサノン19部に溶解し、これにクロロガリウムフタロシアニン(特開平5−98181号公報参照)3部を加えてサンドミルで分散した。分散液に更に2−ブタノン20部を加え、得られた電荷発生層形成用塗布液を、下引き層上に塗布し、膜厚0.12μmの電荷発生層を形成した。
【0022】
上記各層の浸漬塗布時に一つの塗布槽に複数の円筒基体を浸漬する際には本発明の方法を適用するのはもちろんである。その上に、上記したように塗布して電荷輸送層を形成し、OPCドラムが作製される。
【0023】
【発明の効果】
本発明によれば、一つの塗布槽で補助的手段を用いることなく、複数の円筒基体を塗布することが可能となり、大きな塗布槽で多数の円筒基体を同時に浸漬塗布することができ、感光ドラムや現像スリーブのコストダウンに大いに寄与することができる。また、従来、電荷輸送層に2μmの膜厚むらがあるOPCドラムを使用して画像を形成すると、帯電電位にむらを生じるので画像濃度むらを生じるが、本発明によれば、そのような問題を生じることがなく、膜厚むらを解消した感光ドラムを作製することができる。
【図面の簡単な説明】
【図1】 本発明を実施する装置の構成を示す説明図である。
【図2】 比較例2の場合の膜厚の上下むらを示したグラフである。
【図3】 実施例1の場合の膜厚の上下むらをなくすための引き上げ速度の変化を示すグラフである。
【図4】 従来の塗布装置の概略構成図である。(a)は断面図、(b)は塗布液制御板の上面図。
【図5】 現像スリーブを備えた現像装置の概略断面図である。
【符号の説明】
1…塗布槽、2…塗布液、3…受け皿、4…供給口、5…排出口、6…円筒基体、7…孔、8…傾斜面、9…蓋、10…塗布液制御板、11…溶剤蒸気高濃度部分、12…マグネット、13…現像スリーブ、14…感光ドラム、15…トナーホッパー、16…トナー、17…帯電ブレード。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dip coating method for a cylindrical substrate such as a photosensitive drum, and more particularly to a coating method that can reduce unevenness in film thickness as much as possible even by dip coating using a plurality of cylindrical substrates in one coating tank.
[0002]
[Prior art]
Conventionally, a photosensitive drum such as an organic photoreceptor (OPC) drum is manufactured by applying a coating solution for forming a photosensitive layer on the surface of a cylindrical substrate. As a coating method, for example, as described in JP-A-59-90667, a method of immersing the substrate while allowing the coating solution to overflow from the coating tank and circulate is generally used. As described in Japanese Utility Model Laid-Open No. 63-126075, one substrate is coated in one coating tank.
[0003]
[Problems to be solved by the invention]
However, it is inefficient to apply one cylindrical substrate in one application tank, and in order to streamline production, it is desirable to simultaneously dip and apply a plurality of cylindrical substrates in one large application tank. However, when a plurality of cylindrical substrates are immersed in a single coating tank, the flow of the coating liquid overflowing around the cylindrical substrate becomes non-uniform, resulting in uneven film thickness on the surface of the cylindrical substrate. There is.
[0004]
In order to solve this problem, as shown in FIG. 4 , a coating liquid control plate 10 having a hole 7 and an inclined surface 8 is disposed at the top of the coating tank 1 in which the coating liquid 2 is placed. An apparatus for applying a uniform overflow around the cylindrical substrate 6 has been proposed (Japanese Utility Model Laid-Open No. 61-130375). In this apparatus, the coating liquid enters from the supply port 4, overflows from the top, is collected in the receiving tray 3, and is discharged from the discharge port 5. Reference numeral 9 denotes a lid.
In addition, it has been proposed that a partition plate is provided in the upper part of the coating tank and the cylindrical substrate is immersed in each partitioned area (Japanese Patent Laid-Open Nos. 59-4068 and 5-88384).
These methods are not substantially different from the case where one cylindrical substrate is applied in one application tank. Therefore, switching is difficult when the number of immersed cylindrical bases is changed for each diameter.
[0005]
The object of the present invention is to solve the above-mentioned problems in the prior art. That is, an object of the present invention is to provide a dip coating method for a cylindrical substrate such as a photosensitive drum which does not have a film thickness unevenness even when a plurality of cylindrical substrates are dip coated in a single coating tank. .
[0006]
[Means for achieving the object]
In order to achieve the above object, as a result of intensive studies, the present inventors have found that the flow rate of the coating solution around the cylindrical substrate surface immersed in the coating solution has an important relationship with the film thickness to be formed, The knowledge that the flow velocity should be uniform even when a plurality of cylindrical substrates are immersed is obtained, and the present invention has been completed.
[0007]
That is, the present invention provides a cylindrical substrate dip coating method in which a plurality of cylindrical substrates are immersed in a coating tank in which the coating solution overflows, and when the immersed cylindrical substrate is pulled up from the coating solution, The supply of the coating liquid is stopped, and the pulling speed when the cylindrical substrate is pulled up from the coating liquid is changed so as to gradually increase.
In particular, the present invention can be effectively applied to dip coating of a cylindrical substrate in which the occurrence of uneven film thickness is a problem, such as a developing sleeve used in a photosensitive drum or a developing device.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The configuration and operation of the present invention will be described in detail.
In general, in a method in which a plurality of cylindrical substrates are immersed in a coating tank in which the coating liquid overflows from the upper part, unevenness in the film thickness occurs when the overflow flow rate around the cylindrical substrate becomes uneven. This is because the pressure of the liquid changes (Bernoulli's theorem).
That is, the higher the flow velocity, the smaller the pressure of the liquid, and the smaller the coating liquid that adheres and is applied together with the cylindrical substrate when the cylindrical substrate is lifted from the coating tank, so the film thickness is reduced. If the overflow around the cylindrical substrate is uniform, the flow rate will be constant, so the film thickness will not be uneven, but if multiple cylindrical substrates are immersed in one coating tank, overflow will occur at the center and edge of the coating tank. This state is not uniform and the flow rate of the coating solution is different, resulting in uneven film thickness on each cylindrical substrate.
[0009]
Therefore, when a plurality of cylindrical substrates are immersed in the coating tank, in the present invention, when the cylindrical substrate is pulled up, the overflow of the coating solution is stopped. By stopping the overflow, the flow rate becomes equal to zero at the liquid level, so that the film thickness unevenness of the coating film formed on the cylindrical substrate is eliminated.
[0010]
As a method for stopping the overflow of the coating liquid from the coating tank, in the present invention, as shown in FIG. 1 , a method of interrupting the supply of the coating liquid and lowering the liquid level is adopted.
[0011]
As described above, when the liquid level is lowered, the relative coating speed with the cylindrical substrate increases as the liquid level is lowered. Therefore, the lifting speed must be set in consideration thereof. Furthermore, when the liquid level is lowered, high-speed solvent vapor is present around the cylindrical substrate after coating (portion 11 in FIG. 1 ). May become thinner. In such a case, the pulling speed may be changed so as to increase only that portion so that the film thickness does not become thin.
[0012]
In the present invention, when a photosensitive drum substrate is used as the cylindrical substrate, the present invention is preferably applied to the production of an OPC drum. An OPC drum is produced by providing an undercoat layer on a cylindrical substrate as necessary, and forming a charge generation layer and a charge transport layer thereon, and the present invention is applicable to the formation of any of these layers. May be.
[0013]
In the present invention, a developing sleeve substrate can be used as the cylindrical substrate. The developing sleeve is a member used in a developing device for developing the electrostatic latent image formed on the photosensitive drum. It is effective to provide a coating layer on the surface of the developing sleeve in order to control the triboelectric charging characteristics of the toner and prevent the phenomenon called development ghost. Must be uniform. Therefore, the present invention is preferably used for forming the coating layer of the developing sleeve.
[0014]
FIG. 5 is a schematic cross-sectional view of a developing device provided with a developing sleeve using a one-component magnetic toner. In FIG. 5 , a cylindrical developing sleeve 13 is provided on the magnet 12 of the developing roll, and is disposed so as to face the photosensitive drum 14. In this developing device, toner 16 is supplied from a toner hopper 15 onto a rotating cylindrical developing sleeve 13, a toner layer is uniformly formed by a charging blade 17, and charged by friction, and the toner is formed on the surface of the photosensitive drum 14. Development is performed by flying. The toner that has not been developed is returned to the toner hopper again.
[0015]
【Example】
Examples of the present invention will be described together with comparative examples, but the present invention is not limited thereto.
[0016]
Comparative Example 1
In the OPC drum, it is the charge transport layer that is easily affected by the film thickness unevenness. Accordingly, examples of the charge transport layer will be described.
First, 36 parts of N, N'-diphenyl-N, N '-(m-tolyl) benzidine and 64 parts of polycarbonate Z resin were dissolved in 300 parts of monochlorobenzene. The obtained liquid was applied as a coating liquid into the coating tank 1 having an inner diameter of 90 mmφ shown in FIG. 1 and circulated. (The circulation device is not shown) The coating solution enters from the lower supply port 4, overflows from the upper part, is collected in the receiving tray 3, is discharged from the discharge port 5, and is circulated. 6 is a cylindrical substrate, 9 is a lid, and 11 is a high concentration portion of the solvent vapor.
[0017]
A SUS304 pipe with a diameter of 30 mmφ × 253 mm was prepared as a cylindrical base body to be coated, and the surface was roughened with a grindstone grinder to make the surface roughness Ra = 0.3 μm. Two cylindrical substrates were immersed at the same time, and the coating was first performed at 150 mm / min without stopping the overflow. The supply amount of the coating liquid is 500 ml / min. If this amount is reached, the overflow is sufficiently performed even when the cylindrical substrate is pulled up. After coating, the film was dried at 110 ° C. for 30 minutes to form a charge transport layer.
The formed charge transport layer was peeled off from the cylindrical substrate, and the film thickness of each part was measured with a dial gauge. The film thickness of the portion coated near the center of the coating tank in the circumferential direction of the substrate (low flow rate) Was 20 μm, but the film thickness in the vicinity of the edge of the coating tank (high flow rate) was 18 μm. On the other hand, regarding the vertical unevenness, there was a sag 15 mm from the upper end, and it was constant below that. That is, the circumferential unevenness was 2 μm.
[0018]
Comparative Example 2
When the cylindrical substrate was pulled up, the circulation pump was stopped and the coating liquid supply amount was made zero. As a result, the liquid level decreases according to L = 14.13 / 49.455 × V (V: substrate pulling speed). Therefore, when the substrate pulling speed for setting the coating speed to 150 mm / min is determined from 150 = V + L, V = 117 mm / min. When the cylindrical substrate was pulled up at this speed and the coating liquid was applied to form the charge transport layer, the film thickness was not uneven in the circumferential direction of the substrate. In the vertical direction, as shown in FIG. 2 , the film thickness gradually decreased from a height of about 100 mm from the upper part, and at the lower part, it became 19 μm, a decrease of 1 μm. However, it is still smaller than the circumferential unevenness of 2 μm in the case of Comparative Example 1 described above.
[0019]
Example 1
Under the same conditions as in Comparative Example 2, only the substrate lifting speed was changed so as to gradually increase from the position of 100 mm from the top of the cylindrical substrate as shown in FIG. 3 , and the coating was applied at 130 mm / min at the bottom. However, the thickness of the charge transport layer was 20 μm over the entire surface.
[0020]
In the case of the examples and comparative examples, the case where the charge transport layer is formed on the cylindrical substrate has been described. However, when the OPC drum is formed, the subbing is performed as follows prior to the formation of the charge transport layer. A layer and a charge generation layer may be formed. Hereinafter, an example in that case will be described.
[0021]
That is, in order to produce an OPC drum, before forming the charge transport layer, first, 5 parts (8 parts by weight) of 8 nylon (racamide, manufactured by Dainippon Ink & Chemicals) (40 parts by weight) and 60 parts of 1-butanol The undercoat layer forming coating solution obtained by dissolving in a mixed solvent was dip-coated on a cylindrical substrate to form an undercoat layer having a thickness of 1 μm.
Subsequently, 1 part of polyvinyl butyral resin (BM-1, manufactured by Sekisui Chemical Co., Ltd.) was dissolved in 19 parts of cyclohexanone, and 3 parts of chlorogallium phthalocyanine (see JP-A-5-98181) was added thereto and dispersed by a sand mill. 20 parts of 2-butanone was further added to the dispersion, and the resulting coating solution for forming a charge generation layer was applied onto the undercoat layer to form a charge generation layer having a thickness of 0.12 μm.
[0022]
It goes without saying that the method of the present invention is applied when immersing a plurality of cylindrical substrates in one coating tank during the dip coating of the above layers. On top of that, the charge transport layer is formed by coating as described above, and an OPC drum is manufactured.
[0023]
【The invention's effect】
According to the present invention, it becomes possible to apply a plurality of cylindrical substrates in one coating tank without using auxiliary means, and a large number of cylindrical substrates can be dip coated simultaneously in a large coating tank. And can greatly contribute to the cost reduction of the developing sleeve. Conventionally, when an image is formed by using an OPC drum having a film thickness unevenness of 2 μm in the charge transport layer, the charged potential is uneven, and thus the image density is uneven. Thus, it is possible to manufacture a photosensitive drum in which the film thickness unevenness is eliminated.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of an apparatus for carrying out the present invention.
2 is a graph showing unevenness in film thickness in Comparative Example 2. FIG.
3 is a graph showing a change in pulling speed for eliminating unevenness in film thickness in the case of Example 1. FIG.
FIG. 4 is a schematic configuration diagram of a conventional coating apparatus. (A) is sectional drawing, (b) is a top view of a coating liquid control board.
FIG. 5 is a schematic cross-sectional view of a developing device provided with a developing sleeve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Coating tank, 2 ... Coating liquid, 3 ... Receptacle, 4 ... Supply port, 5 ... Discharge port, 6 ... Cylindrical base | substrate, 7 ... Hole, 8 ... Inclined surface, 9 ... Cover, 10 ... Coating liquid control board, 11 A high concentration portion of solvent vapor, 12 a magnet, 13 a developing sleeve, 14 a photosensitive drum, 15 a toner hopper, 16 a toner, 17 a charging blade.

Claims (3)

塗布液がオーバーフローしている塗布槽に複数の円筒基体を浸漬して塗布する円筒基体の浸漬塗布方法において、浸漬した円筒基体を塗布液中から引き上げる際に、塗布槽への塗布液の供給を停止させ、円筒基体を塗布液中から引き上げるときの引上げ速度を徐々に増加させるように変化させることを特徴とする円筒基体の浸漬塗布方法。  In a dip coating method for a cylindrical substrate in which a plurality of cylindrical substrates are immersed in a coating bath in which the coating solution overflows, the coating solution is supplied to the coating bath when the immersed cylindrical substrate is pulled up from the coating solution. A dip coating method for a cylindrical substrate, characterized in that it is stopped and changed so as to gradually increase the pulling speed when the cylindrical substrate is pulled up from the coating solution. 円筒基体が感光ドラム用基体である請求項1に記載の円筒基体の浸漬塗布方法。  2. The method for dip coating a cylindrical substrate according to claim 1, wherein the cylindrical substrate is a photosensitive drum substrate. 円筒基体が現像スリーブ用基体である請求項1に記載の円筒基体の浸漬塗布方法。  2. The method for dip coating a cylindrical substrate according to claim 1, wherein the cylindrical substrate is a substrate for a developing sleeve.
JP13172096A 1996-03-15 1996-05-27 Immersion coating method for cylindrical substrate Expired - Fee Related JP3654320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13172096A JP3654320B2 (en) 1996-03-15 1996-05-27 Immersion coating method for cylindrical substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5885796 1996-03-15
JP8-58857 1996-03-15
JP13172096A JP3654320B2 (en) 1996-03-15 1996-05-27 Immersion coating method for cylindrical substrate

Publications (2)

Publication Number Publication Date
JPH09299867A JPH09299867A (en) 1997-11-25
JP3654320B2 true JP3654320B2 (en) 2005-06-02

Family

ID=26399871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13172096A Expired - Fee Related JP3654320B2 (en) 1996-03-15 1996-05-27 Immersion coating method for cylindrical substrate

Country Status (1)

Country Link
JP (1) JP3654320B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953520B2 (en) * 2001-06-07 2012-06-13 株式会社ブリヂストン Dipping control method and apparatus, and roll member manufacturing method

Also Published As

Publication number Publication date
JPH09299867A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
US7645491B2 (en) Venting assembly for dip coating apparatus and related processes
JP3654320B2 (en) Immersion coating method for cylindrical substrate
JPS6097361A (en) Apparatus for producing electrophotographic sensitive body
JP2002049162A (en) Coating applicator for electrophotographic photoreceptor and method for manufacturing the same
JP2754651B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH02181152A (en) Manufacture of electrophotographic sensitive body
JPH0410943Y2 (en)
JP3215829B2 (en) Method of manufacturing aluminum substrate for photosensitive drum
JPH10254149A (en) Manufacture of photoreceptor drum
JP2008132420A (en) Dip coating method
JPH10272397A (en) Method and device for immersing coating of cylindrical body
JPH0934136A (en) Production of electrophotographic photoreceptor and production apparatus therefor
JPS59139967A (en) Coating method
JP2001321708A (en) Apparatus for immersion coating and method for producing photosensitive body for electrophotography
JPS59177161A (en) Coating apparatus
JPH0263571A (en) Thin film coater
JPH0862868A (en) Production of electrophotographic photoreceptor
JP3215294B2 (en) Apparatus and method for manufacturing organic electrophotographic photoreceptor
JPH04162042A (en) Manufacture of electrophotographic photosensitive body
JP2008136898A (en) Coating method
JP3966665B2 (en) Circulating dip coating method, method for producing electrophotographic photosensitive member, and image forming method
JPH04215663A (en) Coating method for electrophotographic photoreceptor
JPS61178060A (en) Apparatus for coating drum
JPS61223843A (en) Formation of thin film
JPH02140751A (en) Coating device for electrophotographic sensitive body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees