JP3653859B2 - Method for producing gelled product - Google Patents

Method for producing gelled product Download PDF

Info

Publication number
JP3653859B2
JP3653859B2 JP10996296A JP10996296A JP3653859B2 JP 3653859 B2 JP3653859 B2 JP 3653859B2 JP 10996296 A JP10996296 A JP 10996296A JP 10996296 A JP10996296 A JP 10996296A JP 3653859 B2 JP3653859 B2 JP 3653859B2
Authority
JP
Japan
Prior art keywords
parts
aqueous dispersion
particles
water
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10996296A
Other languages
Japanese (ja)
Other versions
JPH09296068A (en
Inventor
克之 河野
裕子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP10996296A priority Critical patent/JP3653859B2/en
Publication of JPH09296068A publication Critical patent/JPH09296068A/en
Application granted granted Critical
Publication of JP3653859B2 publication Critical patent/JP3653859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、微細で均一な開孔を多数有するゲル化物を製造する方法に関するものであり、詳細には、水性媒体中に無機または有機微粒子が安定に分散している水分散体において、これらの微粒子を融着させることなく、ほぼ粒子状態を維持したまま凝集・ゲル化させることによって、粒子と粒子の間隙を開孔として残存させる新しいゲル化物の製造方法に関するものである。本発明の製造方法は、種々の用途に展開可能である多孔質膜や多孔質材を形成する方法として有用である。
【0002】
【従来の技術】
エマルションやラテックスといった水分散体中のポリマー粒子が、均一な連続した被膜を作成する機構(造膜機構)は、次の様に考えられている。
▲1▼水分散体の層を形成した後、この層中に水が充分存在している間は、エマルション粒子はブラウン運動によって自由に動き回っている。
▲2▼乾燥が進んで水の量がかなり減少すると、粒子は水の表面張力によって互いに引き寄せられ、最密充填状態となったところから粒子の融着が始まる。
▲3▼粒子の融着は、分散安定化に寄与していた保護層が破壊されてから、粒子同士が、最密充填状態においてもまだ残存している水の毛細管圧によって、あるいはポリマー分子鎖(セグメント)が運動して相互拡散することによって、またはポリマー分子鎖の粘性流動によって、粒子が変形しながら融着し、連続被膜を形成する。
【0003】
現在においても、上記▲3▼における粒子の融着後、粒子が変形して被膜化するときの要件の全てが理論的に明確になっているわけではないが、エマルション等の水分散体を扱う塗料や接着剤分野の当業者は、Tgまたは最低造膜温度を把握し、必要に応じて造膜助剤等を添加するなどして、均一な連続被膜を形成している。
【0004】
一方、エマルションやラテックスを用いて比較的厚膜の塗膜を得る様な用途の場合、感熱ゲル化システムが利用されている。例えば特開平4−261453号には、ラテックスを効率よく乾燥させるための感熱ゲル化剤の使用が開示されている。すなわち、ラテックスの媒体である水は、沸点が高い上に比熱が大きく、特に厚膜の場合は、塗膜表面の乾燥速度と塗膜内部の乾燥速度に差が生じ易いため、いわゆる「皮張り現象」を起こす。しかし、感熱ゲル化剤をラテックス中に添加すると、加熱乾燥時に塗工液中のラテックスが凝集し、塗膜内部の乾燥を速めるので、乾燥のための熱エネルギーを節約し、さらにカルボン酸と多価金属錯体の架橋によって耐水性に優れた塗膜を作成できる、という技術思想である。
【0005】
この技術における感熱ゲル化剤は、前記した造膜機構のうち、▲2▼における粒子の引き寄せ合いと最密充填後の融着、あるいは▲3▼における粒子の変形・融着を、水がまだ充分乾燥していない状態で、ゲル化剤によるゲル化・凝集作用を利用して促進させるものである。従って、凝集した粒子は、既にかなり変形して融着し、その後連続被膜を形成していくものと考えられる。
【0006】
ところで、近年、微細な開孔を有する膜やフィルター等が種々の用途において機能性材料として利用されている。ポリマー材料の多孔質膜の作製方法として現在採用されているものには、ポリマー溶液中の相分離を利用する方法、ポリマーフィルムに高エネルギー線でエッチングを施す方法、ポリマーフィルムの延伸を利用する方法があり、またセラミックス等の無機粉末の多孔質膜を作製する方法として焼結法も用いられている。
【0007】
【発明が解決しようとする課題】
本発明では、無機または有機微粒子の水分散体をゲル化物の製造原料として用い、水分散体中のこれらの微粒子をゲル化・凝集させてゲル化物を製造する際の最適な製造条件を見出し、この製造方法で得られるゲル化物を、種々の用途に展開可能である多孔質膜や多孔質材として提供することを課題として掲げるものである。
【0008】
【課題を解決するための手段】
本発明のゲル化物の製造方法は、微粒子が水性媒体中に安定に分散している水分散体を、支持体上に塗布して水分散体層を形成し、該水分散体層中の全ての水が飛散する前に、水分散体を不安定化させることによって、水分散体中の前記微粒子を凝集させ、次いで乾燥させるところに要旨を有する。水分散体は、加熱によって不安定化するものであることが好ましい。水分散体中の微粒子の凝集を、ゲル化温度以上、かつゲル化温度における飽和水蒸気圧と同じ水蒸気圧以上の雰囲気下で行うものであることは、いずれも本発明法の好ましい実施態様である。本発明の方法で得られるゲル化物は、平均直径500nm以下の開孔を多数有する多孔質層であると、微細孔を有する多孔質膜や多孔質材として、種々の用途展開が可能である。もちろん、より大きな開孔を多数有する多孔質膜や多孔質材も製造可能であり、本発明の製造方法によれば、用途に応じて態様を適宜変更することができる。
【0009】
【発明の実施の形態】
本発明のゲル化物の製造方法は、微粒子が水性媒体中に安定に分散している水分散体を支持体上に塗布して水分散体層を形成した後、該層中の全て水が飛散する前に、これらの微粒子の分散状態を不安定化させて、その粒子状態をほぼ維持したまま凝集させるところに最大のポイントを有するものである。本発明のゲル化物の形成過程と、一般的なポリマー粒子のエマルションを被膜化したときの違いを図を用いて説明する。図1のAは、通常のエマルションの被膜化機構、BおよびCは本発明のゲル化物の形成機構をモデル的に示した図である。
【0010】
通常のエマルションは、
(1) エマルションを塗工することによってエマルション層を形成した後、乾燥段階の初期では、この層中に水が充分存在しているので、ポリマー粒子はブラウン運動によって自由に動き回っている。
(2) 乾燥が進んで水の量がかなり減少すると、ポリマー粒子は水の表面張力によって互いに引き寄せられ、最密充填状態となる。
(3) 最密充填状態となったポリマー粒子は、残存している水の毛細管圧によって、あるいはポリマー分子鎖(セグメント)が運動して相互拡散することによって、またはポリマー分子鎖の粘性流動によって、該粒子が変形しながら融着する。
(4) ポリマー粒子の界面が消失し、均一な連続被膜が形成される。
という機構で被膜化する。
【0011】
一方、本発明のゲル化物は、Bのパターンにおいては、
(1) ポリマー粒子のみに限定されず、無機または有機微粒子が水分散体中に存在している点以外は、Aと同じである。
(2) 水分散体層中にまだ水が充分存在している段階で、水分散体を不安定化させることにより、微粒子が、その粒子形状を保持したまま、ゲル化して、凝集し、各粒子は間隙を残した状態で結合する。
(3) 粒子が間隙を残して結合した状態のまま、水が飛散することによってゲル化物が形成される。
というものであるか、または微粒子として融着可能なものを用いた場合には、Cとして示す様に、
(1)、(2) はBと同じである。
(3) (2) において、粒子は間隙を残して結合するが、水を飛散させるための加熱乾燥時に、粒子の一部が隣接する粒子と融着することがある。しかし粒子間の空隙が残存する程度の僅かな変形・融着であるので、やはりゲル化物が形成される。
というものである。
【0012】
なお、このCパターンの場合は粒子の一部が変形融着するので、Bのパターンよりもゲル化物としての物理的強度は優れたものになることが多い。Bのパターンによって生成するゲル化物において、粒子と粒子の結合を確実にし堅固なゲル化物を形成する目的で、粒子間架橋システムを用いてもよい。
【0013】
この様に本発明の製法では、水分散体中の無機または有機微粒子が、その粒子状態をほぼ維持した(以下、上記BのパターンとCのパターンを合わせて「粒子状態をほぼ維持した」と表現する)まま凝集するため、粒子同士が間隙を有した状態で結合し、その後、水が飛散することによって被膜化する。このため、粒子と粒子の間の空隙がそのまま開孔として残存したゲル化物を得ることができるのである。
【0014】
本発明法では、水分散体中の微粒子の凝集を、水分散体を不安定化させることにより行う。すなわち粒子の凝集は、水が乾燥して被膜化された後ではなく、水分散体を支持体に塗布して水分散体層を形成した後、該水分散体層から全ての水が飛散してしまう前に、行わなければならない。そこで本発明法では、水分散体を不安定化させて、それまで安定に分散していた微粒子を凝集させる方法として、感熱ゲル化法を用いることが推奨される。またゲル化方法として、後述する光ゲル化法を用いることもできる。
【0015】
感熱ゲル化法は、▲1▼水分散体自体に温度変化によって不安定化する性質を与える方法、例えば曇点を持ったノニオン系乳化剤を利用して水分散体を製造し、曇点以上に加温して水分散体をゲル化させる方法、▲2▼感熱ゲル化剤を添加して、該感熱ゲル化剤のゲル化温度以上に加温することによって水分散体をゲル化させる方法、等が挙げられる。なお、ここでいう水分散体の「製造」には、有機微粒子(例えばポリマー粒子)を乳化重合によって製造する方法や、他の重合方法で重合したポリマー、あるいは無機粉末等を、分散剤や乳化剤を用いて水性媒体中に安定に微粒子状に分散させることによって水分散体化する方法も含まれる。
【0016】
感熱ゲル化方法において、上記▲1▼の方法を採用するには、曇点を有するノニオン系乳化剤を利用して乳化重合するか、別に製造したポリマーや無機化合物をノニオン系乳化剤(分散剤)を用いて強制的に分散させて水分散体を製造する方法を用いるとよい。
【0017】
ノニオン系乳化剤の具体例としては、ポリビニルアルコール、変性ポリビニルアルコール、脂肪酸・ポリエチレングリコールエステル、高級アルコール・ポリエチレングリコールエーテル、アルキルフェノール・ポリエチレングリコールエーテル、アルキルアミン・ポリエチレングリコール縮合物、アルキルアミド・ポリエチレングリコール縮合物、ソルビタン脂肪酸モノエステル・ポリエチレングリコール縮合物等が挙げられる。これらの乳化剤は、種類によって、30℃前後から100℃以上の曇点を有する。曇点が98℃以下の乳化剤は、ゲル化させる時に、水の飛散の制御が容易であり、均一な開孔が形成されたゲル化物を得易いので好ましく使用できるが、100℃以上の曇点を有する乳化剤であっても、水溶性の物質を加えることによって曇点を下げることが可能なため、この様な乳化剤も本発明法で用いることができる。
【0018】
▲2▼の方法で利用できる感熱ゲル化剤は、ケイフッ化ナトリウム、ケイフッ化カリウム等のケイフッ化物、硫酸アンモニウム亜鉛錯体、炭酸アンモニウム亜鉛錯体等の金属錯体、酸化亜鉛と無機または有機アンモニウム塩(これらの錯体)、ニトロパラフィン、有機エステル類、ポリビニルメチルエーテル、ポリプロピレングリコール、ポリエーテルポリホルマール、ポリエーテル変性ポリシロキサン、アルキルフェノールホルマリン縮合物のアルキレンオキサイド付加物、官能性ポリシロキサン、水溶性変性シリコーン油、シリコーングリコール共重合体、水溶性ポリアミド、デンプン、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、たんぱく質、ポリリン酸あるいは前述の曇点を有するノニオン系乳化剤等が挙げられ、これらの1種または2種以上を混合して用いることができる。感熱ゲル化剤を2種以上混合して用いる方が、ゲル化温度の制御が容易となるため好ましく、ニトロパラフィン、有機エステル類等は酸化亜鉛との併用が効果的である。
【0019】
感熱ゲル化剤の好ましいゲル化温度は、10〜98℃である。10℃より低いゲル化温度では、水分散体と感熱ゲル化剤を混合した後の保存安定性、ポットライフが確保できないため好ましくない。また98℃を超えるゲル化温度の場合、ゲル化反応よりも水の飛散速度が大きくなり、均一な開孔が形成されたゲル化物が得にくいため好ましくない。なお「感熱ゲル化」とは、常温で全くゲル化が進まないという意味ではなく、ゲル化温度以上に加温することによって、ゲル化反応の進行が著しく促進されるという広義の意味の「感熱ゲル化」作用をいうものとする。
【0020】
本発明法では、水分散体を不安定化させる方法として、感熱ゲル化法以外に、光ゲル化法を採用してもよい。光ゲル化法は、光分解性の乳化剤を用いて水分散体を製造し(前記した通り、「製造」には「乳化重合」および「強制分散」のいずれも含まれる)、ゲル化させる時には光を照射して乳化剤を分解させ、その粒子安定化機能を失活させる方法である。
【0021】
水分散体の組成自体は、感熱ゲル化法、光ゲル化法、いずれを用いる場合においても特に限定されないが、有機系の場合は、微粒子としてはポリマー粒子が好ましく用いられ、具体例を示せば、(メタ)アクリル酸およびそのエステルを主体とし、種々の重合可能な1官能や多官能モノマーを共重合したアクリル系エマルション;SBR、NBR、IR、NR等のゴム系ラテックス;ポリエステルやポリウレタンの水分散体させたもの等が挙げられる。また、2種以上のエマルションのブレンドも可能であり、コア・シェル型の粒子を有するエマルションであってもよい。無機系微粒子の水分散体としては、無機化合物や無機顔料等を、ノニオン系の分散剤や乳化剤、あるいはその他の分散剤や乳化剤を用いて分散させたものが利用可能である。
【0022】
本発明のゲル化物は、種々の用途展開が可能であるので、用途に応じて水分散体の組成を選択することが望ましい。例えば、常温レベルで使用されるゲル化物を製造するのに、常温で保存したときにゲル化物中の粒子が粘性流動を起こし、多孔性が失われてしまう様な構成では問題なので、Tgが0℃以上の組成のポリマーエマルションを使用するか、あるいはTgがもっと低くても、架橋によって被膜化した後の易動性(変形能)を抑制した構成のポリマーのエマルション、または無機粒子の水分散体を選択する、という様に、用途に応じてゲル化物を構成する粒子の分子設計をすることが推奨される。
【0023】
本発明法では、均一なゲル化物を得るために、水分散体エマルション層から水を飛散させるときに、該水分散体のゲル化温度以上で、かつこのゲル化温度における飽和水蒸気圧と同じ水蒸気圧以上の雰囲気下で行うことが好ましい。この雰囲気条件では、ゲル化温度以上であるので、感熱ゲル化作用によって水分散体中の粒子のゲル化・凝集が進行し、一方、ゲル化温度における飽和水蒸気圧と同じ水蒸気圧以上に雰囲気を調整することによって、塗布された水分散体層からの水の飛散が抑制されるからである。特に、支持体上への塗布厚が小さい、または水分散体の不揮発分が高く、飛散させる水の量が少ない場合、あるいは用いる感熱ゲル化剤のゲル化温度が高い場合は、ゲル化の進行度合いより水の飛散の方が速くなることがあり、均一なゲル化物が得られないことがあるので、上記雰囲気下で水の飛散を抑えながら、ゲル化・凝集を行うことが好ましい。ゲル化・凝集が完了した後は、上記雰囲気下ではなく、積極的に水が飛散する条件へと変更すればよい。
【0024】
なお、ゲル化速度が速い、あるいはゲル化温度の低い感熱ゲル化剤を利用すれば、ゲル化反応進行中に、水分散体層からの水の飛散が並行して起っても均一なゲル化物が得られる。一方、光ゲル化方法では、低温で光照射を行って粒子を凝集させてから、水分散体層の水を飛散させればよい。
【0025】
水分散体は、その不揮発分を20重量%以上にすることが好ましい。20重量%より低いと、水分散体中の微粒子の絶対数が少なくなるので、粒子同士が凝集しにくくなると共に、被膜に乾燥収縮によるクラック等が入り易く、均一なゲル化物が得にくい。不揮発分の上限は特に限定されないが、70重量%を超えると高粘度になって、支持体に塗布するときの作業性が悪いため好ましくない。
【0026】
本発明法で得られるゲル化物は、これまで説明した様に、エマルション中の無機または有機微粒子が、その粒子状態をほぼ維持しながら凝集・ゲル化して被膜化するため、略球状の粒子と粒子の間の空隙が、開孔として被膜中に存在する特殊なゲル化物となるのである。このため、得られるゲル化物の開孔の大きさは、水分散体中の無機または有機微粒子の大きさに影響を受ける。例えば、水分散体中の微粒子(凝集する前)の平均粒径が10μm以下のものを使用すると、得られるゲル化物は、平均直径500nm以下の微細でかつ均一な開孔が多数形成されたものとなる。
【0027】
また水分散体中の微粒子の粒径分布をシャープにすれば、開孔径の分布度合いをシャープにすることができる。また、水分散体中の粒子の大きさや固形分濃度をコントロールすれば、開孔の大きさや密度(単位体積当たりの開孔数)を自由にコントロールすることが可能である。さらに粒子の素材・性質を用途に応じて適宜選択することにより、本発明の多孔質膜を様々な分野に適用することができる。
【0028】
例えば、エアーフィルター、濾過膜・半透膜や選択的透過性を有する特殊膜関連分野や、バッテリーセパレーター、あるいは被記録材等の分野にも有用である。
【0029】
【実施例】
以下実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術範囲に包含される。なお、以下の実施例で、「%」、「部」とあるのは特に断らない限り、「重量%」、「重量部」を表すものとする。
【0030】
実施例1
滴下ロート、撹拌機、窒素導入管、温度計および還流冷却器を備えたフラスコに、イオン交換水170部、ノニポール200(三洋化成工業社製のポリエチレングリコールノニルフェニルエーテル系乳化剤)を17部、ニューポールPE−64(三洋化成工業社製のポリエチレングリコール−ポリプロピレングリコールブロック共重合体系乳化剤)を2部仕込み、緩やかに窒素を吹き込みながら45℃に加熱した。滴下ロートに、メタクリル酸メチル292部、アクリル酸ブチル23部、スチレン135部からなるモノマー混合物を入れ、そのうちの25%をフラスコ内に滴下した。
【0031】
続いて亜硫酸水素ナトリウムの1%水溶液を15部と過硫酸アンモニウムの3%水溶液15部をフラスコ内に加えた。30分後、残りのモノマー混合物と亜硫酸水素ナトリウムの1%水溶液62部、過硫酸アンモニウムの1%水溶液62部をそれぞれ3時間に亘って滴下した。滴下中は、フラスコ内温度を50〜54℃に保持し、さらに滴下終了後同温度で1時間撹拌して、重合を終了させた。不揮発分50.2%、pH2.1、平均粒子径120nmのポリマー粒子が分散した水性樹脂分散液〔1〕を得た。
【0032】
この水性樹脂分散液〔1〕100部に、予め硫酸亜鉛100部に対して25%アンモニア水108部加えて作製した硫酸アンモニウム亜鉛錯体48%水溶液を6部加え、よく撹拌し、塗布用水分散体〔1〕を得た。3μmのポリビニルアルコールがプライマー層として塗布されている100μmのPETフィルムに、#20のバーコーターを用いて塗布用水分散体〔1〕を塗工し、すぐに80℃、湿度60%の恒温恒湿機中に15分間入れ、水分散体層中のポリマー粒子のゲル化と被膜の乾燥を行った。乾燥膜厚が25μmのゲル化物〔1〕を得た。
【0033】
実施例2
滴下ロート、撹拌機、窒素導入管、温度計および還流冷却器を備えたフラスコに、イオン交換水322部を仕込み、緩やかに窒素を吹き込みながら80℃に加熱した。メタクリル酸メチル265部、ジビニルベンゼン117部、γ−メタクリロキシプロピルトリメトキシシラン8部、下記式で代表される乳化剤の20%水溶液70部、イオン交換水175部および25%アンモニア水3部を撹拌混合して、滴下用プレエマルションを調製し、そのうちの2%をフラスコに滴下した。
【0034】
【化1】

Figure 0003653859
【0035】
(ただし、aとbの合計は乳化剤の平均として20、cは1または2である。また各単量体ユニットは、乳化剤の分子内でランダムに結合しているものとする。)
続いて過硫酸カリウムの5%水溶液20部をフラスコに注入し、30分後、残りのプレエマルションの滴下を開始し、5時間後に滴下を終了した。滴下中はフラスコ内温度を78〜82℃に保持し、滴下終了後に過硫酸カリウムの2%水溶液を20部追加投入して、さらに同温度で1時間撹拌し、重合を終了させ、不揮発分40.4%、pH8.1、平均粒子径176nmのポリマー粒子が分散した水性樹脂分散液〔2〕を得た。
【0036】
この水性樹脂分散液〔2〕100部に、実施例1と同様にして作製した硫酸アンモニウム亜鉛錯体48%水溶液を7.5部と、TPA−4380(東芝シリコーン社製のポリエーテル変性シリコーン系感熱ゲル化剤)を1部加え、よく撹拌し、塗布用水分散体〔2〕を得た。#26のバーコーターを用いた以外は、実施例1と同様にして、塗布用水分散体〔2〕を塗工・ゲル化・乾燥したところ、乾燥膜厚25μmのゲル化物〔2〕が得られた。
【0037】
実施例3
滴下ロート、撹拌機、窒素導入管、温度計および還流冷却器を備えたフラスコに、イオン交換水183部と、アクアロンHS−10(第一工業製薬性の反応性乳化剤)1部を仕込み、緩やかに窒素を吹き込みながら70℃に加熱した。メタクリル酸メチル298部、アクリル酸2−エチルヘキシル141部、スチレン50部、アクリル酸6部、メタクリル酸グリシジル5部と、アクアロンHS−10を7部、イオン交換水194部を混合撹拌して、滴下用プレエマルションを調製し、そのうちの5%をフラスコ内に滴下した。
【0038】
続いて亜硫酸水素ナトリウムの1%水溶液を20部と過硫酸カリウムの3%水溶液20部をフラスコ内に加えた。15分後、残りのプレエマルションと亜硫酸水素ナトリウムの1%水溶液37部、過硫酸カリウムの3%水溶液37部をそれぞれ3時間に亘って滴下した。滴下中は、フラスコ内温度を68〜72℃に保持し、さらに滴下終了後同温度で1時間撹拌して、重合を終了させた。不揮発分50.9%、pH1.7、平均粒子径118nmのポリマー粒子が分散した水性樹脂分散液〔3〕が得られた。
【0039】
この水性樹脂分散液〔3〕100部に、予め、酸化亜鉛46部、炭酸水素アンモニウム49部、25%アンモニア水116部を加えて作った炭酸アンモニウム亜鉛錯体45%水溶液を10部加え、よく撹拌し、塗布用水分散体〔3〕を得た。3μmのポリビニルアルコールがプライマー層として塗布されている100μmのPETフィルムに、#20のバーコーターを用いて塗布用水分散体〔3〕を塗工し、すぐに80℃、湿度96%の恒温恒湿機中に1分間入れ、次いで80℃の乾燥機内で1分乾燥し、水分散体層中のポリマー粒子のゲル化と被膜の乾燥を行った。乾燥膜厚が25μmのゲル化物〔3〕を得た。
【0040】
実施例4
滴下ロート、撹拌機、窒素導入管、温度計および還流冷却器を備えたフラスコに、イオン交換水275部を仕込み、緩やかに窒素を吹き込みながら70℃に加熱した。アクリル酸ブチル315部、ジビニルベンゼン135部、ノニポール200(三洋化成工業製のポリエチレングリコールノニルフェニルエーテル系の乳化剤)を27部と、アニオン系乳化剤であるハイテノールN−08(第一工業製薬製ポリエチレングリコールアルキルフェニルエーテル硫酸アンモニウム)16部をイオン交換水214部と混合撹拌して、滴下用プレエマルションを調製し、、そのうちの5%をフラスコ内に滴下した。
【0041】
次いで、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩の5%水溶液を5部をフラスコ内に加えた。20分後、残りのプレエマルションを3時間に亘って滴下した。滴下中は、フラスコ内温度を68〜72℃に保持し、さらに滴下終了後同温度で1時間撹拌して、重合を終了させた。不揮発分49.8%、pH1.8、平均粒子径132nmのポリマー粒子が分散した水性樹脂分散液〔4〕が得られた。
【0042】
この水性樹脂分散液〔4〕100部に、実施例1と同様にして作製した硫酸アンモニウム亜鉛錯体48%水溶液を10部加え、よく撹拌し、塗布用水分散体〔4〕を作製し、実施例1と同様にして、乾燥膜厚が25μmのゲル化物〔4〕を得た。
【0043】
実施例5
滴下ロート、撹拌機、窒素導入管、温度計および還流冷却器を備えたフラスコに、イオン交換水223部、実施例2で用いた乳化剤の20%水溶液80部と25%アンモニア水3部を仕込み、緩やかに窒素を吹き込みながら80℃に加熱した。メタクリル酸メチル324部、ジビニルベンゼン36部、実施例2で用いた乳化剤の20%水溶液36部、25%アンモニア水2部とイオン交換水142部を撹拌混合して、滴下用プレエマルションを調製し、そのうちの15%をフラスコに滴下した。
【0044】
続いて亜硫酸水素ナトリウムの1%水溶液10部と過硫酸カリウムの5%水溶液24部をフラスコ内に加えた。30分後、残りのプレエマルションの滴下を始め、4時間かけて滴下を終了した。滴下中は、フラスコ内温度を78〜82℃に保持し、滴下開始2時間後には2%過硫酸カリウム水溶液を20部追加投入した。さらに滴下終了後、2%の過硫酸カリウム水溶液を20部投入し3時間撹拌した。
【0045】
次に、アクリル酸エチル30部、N−ビニルピロリドン8部、メタクリル酸グリシジル2部、実施例2で用いた乳化剤の20%水溶液4部とイオン交換水16部を撹拌して調製しておいたプレエマルションを、フラスコ内に30分かけて滴下した。滴下中はフラスコ内温度を68〜72℃に保持し、滴下終了後に過硫酸カリウムの2%水溶液を20部投入して、さらに同温度で1時間撹拌し、重合を終了させた。不揮発分42.3%、pH8.0、平均粒子径50nmのポリマー粒子が分散した水性樹脂分散液〔5〕を得た。
【0046】
この水性樹脂分散液〔5〕100部に、TPA−4390(東芝シリコーン社製のポリエーテル変性シリコーン系感熱ゲル化剤)を3部加え、よく撹拌し、塗布用水分散体〔5〕を作製し、実施例2と同様にして、乾燥膜厚25μmのゲル化物〔5〕を得た。
【0047】
実施例6
滴下ロート、撹拌機、窒素導入管、温度計および還流冷却器を備えたフラスコに、イオン交換水183部と、アクアロンHS−10を1部仕込み、緩やかに窒素を吹き込みながら70℃に加熱した。メタクリル酸メチル155部、アクリル酸2−エチルヘキシル284部、スチレン50部、アクリル酸6部、メタクリル酸グリシジル5部と、アクアロンHS−10を7部、イオン交換水194部を混合撹拌して、滴下用プレエマルションを調製し、そのうちの5%をフラスコ内に滴下した。
【0048】
続いて亜硫酸水素ナトリウムの1%水溶液を20部と過硫酸カリウムの3%水溶液20部をフラスコ内に加えた。15分後、残りのプレエマルションと亜硫酸水素ナトリウムの1%水溶液37部、過硫酸カリウムの3%水溶液37部をそれぞれ3時間に亘って滴下した。滴下中は、フラスコ内温度を68〜72℃に保持し、さらに滴下終了後同温度で1時間撹拌して、重合を終了させた。不揮発分50.6%、pH1.8、平均粒子径128nmのポリマー粒子が分散した水性樹脂分散液〔6〕が得られた。
【0049】
この水性樹脂分散液〔6〕10部と、実施例2で得られた水性樹脂分散液〔2〕90部を加え、TPA−4380(東芝シリコーン社製のポリエーテル変性シリコーン系感熱ゲル化剤)を1部と、実施例1と同様にして作製した硫酸アンモニウム亜鉛錯体48%水溶液を5部加え、よく撹拌し、塗布用水分散体〔6〕を得た。3μmのポリビニルアルコールがプライマー層として塗布されている100μmのPETフィルムに、#24のバーコーターを用いて塗布用水分散体〔4〕を塗工し、すぐに80℃、湿度96%の恒温恒湿機中に1分間入れゲル化させた後、80℃の熱風乾燥機内で1分乾燥させ、乾燥膜厚が25μmのゲル化物〔6〕を作製した。
【0050】
実施例7
実施例1で得られた水性樹脂分散液〔1〕87部に、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート13部を添加し、よく撹拌した。この水性樹脂分散液に、実施例1と同様にして作製した硫酸アンモニウム亜鉛錯体48%水溶液を5部加え、よく撹拌し、塗布用水分散体〔7〕を得た。3μmのポリビニルアルコールがプライマー層として塗布されている100μmのPETフィルムに、#26のバーコーターを用いて塗布用水分散体〔7〕を塗工し、すぐに80℃、湿度96%の恒温恒湿機中に1分間入れゲル化させた後、80℃の熱風乾燥機内で1分乾燥させ、乾燥膜厚が25μmのゲル化物〔7〕を作製した。
【0051】
比較例1
実施例3で得られた水性樹脂分散液〔3〕をそのまま塗布用水分散体〔8〕として用い、#30のバーコーターで3μmのポリビニルアルコールがプライマー層として塗布されている100μmのPETフィルムに塗布し、80℃の熱風乾燥機で1分間乾燥した。乾燥膜厚が25μmの比較用シート〔8〕を作製した。
【0052】
各実施例1〜7で得られたゲル化物〔1〕〜〔7〕と比較例1で得られた比較用シート〔8〕の表面状態を走査型電子顕微鏡(SEM)を用いて2万倍に拡大して、孔の形成状態を観察し、結果を表1にまとめた。また、実施例1および3と比較例1の生成物の観察結果を図2〜4に示した。表および図から明らかな様に、実施例1では、図1におけるパターンBの様な多孔質のゲル化物が得られ、実施例3ではパターンCの様な若干融着した多孔質のゲル化物が得られた。しかし比較例1のものは、パターンAの様な孔のない被膜となったことがわかる。
【0053】
【表1】
Figure 0003653859
【0054】
【発明の効果】
本発明法は、水分散体中の無機または有機微粒子を、その粒子状態をほぼ維持したまま凝集させて、被膜化することにより粒子同士の間隙による微細孔を多数形成させたゲル化物を得る方法である。特に、水分散体中の無機または有機微粒子の凝集を、ゲル化温度以上、かつゲル化温度における飽和水蒸気圧と同じ水蒸気圧以上の雰囲気下で行うと、より一層均一なゲル化物を製造することができる。本発明法で得られるゲル化物は、微細孔が多数形成されたものであるので、膜関連分野やその他種々の用途に展開可能である。
【図面の簡単な説明】
【図1】通常の水分散体の被膜化機構と、本発明法におけるゲル化物形成機構のモデル図である。
【図2】比較例1で得られた被膜の図面代用SEM写真である。
【図3】本発明実施例1で得られたゲル化物の粒子構造を示す図面代用SEM写真である。
【図4】本発明実施例3で得られたゲル化物の粒子構造を示す図面代用SEM写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a gelled product having a large number of fine and uniform pores, and more specifically, in an aqueous dispersion in which inorganic or organic fine particles are stably dispersed in an aqueous medium. The present invention relates to a new method for producing a gelled product in which a gap between particles is left as an open hole by agglomeration and gelation while maintaining almost the particle state without fusing fine particles. The production method of the present invention is useful as a method of forming a porous film or a porous material that can be developed for various uses.
[0002]
[Prior art]
The mechanism (film forming mechanism) by which polymer particles in an aqueous dispersion such as an emulsion or latex form a uniform continuous film is considered as follows.
{Circle around (1)} After the formation of the aqueous dispersion layer, the emulsion particles move freely by Brownian motion as long as there is sufficient water in this layer.
(2) When drying progresses and the amount of water decreases considerably, the particles are attracted to each other by the surface tension of the water, and the fusion of the particles starts from the point where the particles are in the closest packed state.
(3) Fusion of particles is caused by the capillary pressure of water remaining after the protective layer that has contributed to the stabilization of the dispersion is destroyed, even in the closest packing state, or by polymer molecular chains. When the (segment) moves and interdiffuses, or by the viscous flow of polymer molecular chains, the particles are fused while deforming to form a continuous film.
[0003]
Even now, not all of the requirements for the deformation of the particles after the fusion of the particles in (3) above are theoretically clarified, but water dispersions such as emulsions are handled. A person skilled in the art of coatings and adhesives knows the Tg or minimum film-forming temperature, and forms a uniform continuous film by adding a film-forming aid or the like as necessary.
[0004]
On the other hand, in the case of an application where a relatively thick film is obtained using an emulsion or latex, a thermal gelation system is used. For example, JP-A-4-261453 discloses the use of a heat-sensitive gelling agent for efficiently drying latex. In other words, water, which is a latex medium, has a high boiling point and a large specific heat. In particular, in the case of a thick film, a difference between the drying speed of the coating film surface and the drying speed inside the coating film tends to occur. Cause the phenomenon. However, when a heat-sensitive gelling agent is added to the latex, the latex in the coating solution aggregates during heating and drying, thus speeding up drying inside the coating film. The technical idea is that a coating film excellent in water resistance can be produced by cross-linking of a valent metal complex.
[0005]
In the heat-sensitive gelling agent in this technique, among the above-mentioned film forming mechanisms, the water attracts the particles in (2) and the fusion after the closest packing, or the deformation and fusion of the particles in (3). It is promoted by utilizing the gelling and aggregating action of the gelling agent in a state where it is not sufficiently dried. Therefore, it is considered that the agglomerated particles are already considerably deformed and fused to form a continuous film.
[0006]
By the way, in recent years, membranes, filters, and the like having fine pores have been used as functional materials in various applications. Currently used as a method for producing a porous film of a polymer material include a method using phase separation in a polymer solution, a method of etching a polymer film with high energy rays, and a method using stretching of a polymer film. In addition, a sintering method is also used as a method for producing a porous film of an inorganic powder such as ceramics.
[0007]
[Problems to be solved by the invention]
In the present invention, an aqueous dispersion of inorganic or organic fine particles is used as a raw material for producing a gelled product, and the optimum production conditions for producing a gelled product by gelling and aggregating these fine particles in the aqueous dispersion are found, An object of the present invention is to provide a gelled product obtained by this production method as a porous film or a porous material that can be developed for various uses.
[0008]
[Means for Solving the Problems]
In the method for producing a gelled product of the present invention, an aqueous dispersion in which fine particles are stably dispersed in an aqueous medium is applied on a support to form an aqueous dispersion layer, and all of the aqueous dispersion layer is formed. The main point is that the fine particles in the aqueous dispersion are aggregated and then dried by destabilizing the aqueous dispersion before the water is scattered. The aqueous dispersion is preferably destabilized by heating. It is a preferable embodiment of the method of the present invention that the aggregation of the fine particles in the aqueous dispersion is carried out in an atmosphere that is equal to or higher than the gelation temperature and equal to or higher than the water vapor pressure equal to the saturated water vapor pressure at the gelation temperature. . When the gelled product obtained by the method of the present invention is a porous layer having a large number of pores having an average diameter of 500 nm or less, various uses can be developed as a porous film or a porous material having fine pores. Of course, a porous film or a porous material having a large number of larger pores can also be produced, and according to the production method of the present invention, the mode can be appropriately changed according to the application.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing a gelled product of the present invention, an aqueous dispersion in which fine particles are stably dispersed in an aqueous medium is applied on a support to form an aqueous dispersion layer, and then all the water in the layer is scattered. Before the particles are dispersed, the dispersion state of these fine particles is destabilized, and the largest point is that the particles are aggregated while substantially maintaining the particle state. The formation process of the gelled product of the present invention and the difference when a general polymer particle emulsion is formed into a film will be described with reference to the drawings. FIG. 1A is a diagram showing a model of a film formation mechanism of a normal emulsion, and B and C are model views of the formation mechanism of a gelled product of the present invention.
[0010]
Normal emulsion is
(1) After the emulsion layer is formed by coating the emulsion, at the beginning of the drying stage, there is sufficient water in this layer, so the polymer particles move freely by Brownian motion.
(2) When drying progresses and the amount of water decreases significantly, the polymer particles are attracted to each other by the surface tension of the water and are in a close packed state.
(3) The polymer particles in the close-packed state are caused by the capillary pressure of the remaining water, the movement of the polymer molecular chains (segments) and interdiffusion, or the viscous flow of the polymer molecular chains. The particles fuse while deforming.
(4) The interface of the polymer particles disappears and a uniform continuous film is formed.
It becomes a film by the mechanism.
[0011]
On the other hand, in the pattern B, the gelled product of the present invention is
(1) It is the same as A except that it is not limited to polymer particles but inorganic or organic fine particles are present in the aqueous dispersion.
(2) By destabilizing the aqueous dispersion at a stage where water is still sufficiently present in the aqueous dispersion layer, the fine particles are gelled and agglomerated while maintaining the particle shape. The particles are combined with a gap left.
(3) A gelled product is formed by the scattering of water while the particles are bonded together leaving a gap.
Or if a fine particle that can be fused is used, as shown as C,
(1) and (2) are the same as B.
(3) In (2), the particles are bonded with leaving a gap, but a part of the particles may be fused with the adjacent particles at the time of heat drying for scattering water. However, since it is a slight deformation and fusion so that the voids between the particles remain, a gelled product is also formed.
That's it.
[0012]
In the case of this C pattern, since some of the particles are deformed and fused, the physical strength as a gelled product is often superior to that of the B pattern. In the gelled product produced by the pattern of B, an interparticle crosslinking system may be used for the purpose of ensuring the bonding of particles and forming a firm gelled product.
[0013]
As described above, in the production method of the present invention, the inorganic or organic fine particles in the aqueous dispersion substantially maintained their particle state (hereinafter, “the particle state was substantially maintained” by combining the pattern B and C above). The particles are agglomerated as they are expressed), so that the particles are bonded together with a gap, and then water is scattered to form a film. For this reason, it is possible to obtain a gelled product in which the voids between the particles remain as open pores.
[0014]
In the method of the present invention, the aggregation of the fine particles in the aqueous dispersion is performed by destabilizing the aqueous dispersion. That is, the aggregation of the particles is not after the water is dried and formed into a film, but after the water dispersion is applied to the support to form the water dispersion layer, all the water is scattered from the water dispersion layer. It must be done before it ends. Therefore, in the method of the present invention, it is recommended to use the thermal gelation method as a method of destabilizing the aqueous dispersion and aggregating the finely dispersed fine particles. Further, as the gelation method, a photogelation method described later can be used.
[0015]
The heat-sensitive gelation method is as follows: (1) A method of giving the water dispersion itself a property of destabilization due to temperature change, for example, producing a water dispersion using a nonionic emulsifier having a cloud point. A method of gelling the aqueous dispersion by heating; (2) a method of gelling the aqueous dispersion by adding a heat-sensitive gelling agent and heating to a temperature equal to or higher than the gelation temperature of the heat-sensitive gelling agent; Etc. The “manufacturing” of the aqueous dispersion referred to here includes a method for producing organic fine particles (for example, polymer particles) by emulsion polymerization, a polymer obtained by polymerization by another polymerization method, an inorganic powder, and the like. A method of forming an aqueous dispersion by stably dispersing fine particles in an aqueous medium using an aqueous solution is also included.
[0016]
In the heat-sensitive gelation method, in order to adopt the method (1), emulsion polymerization is performed using a nonionic emulsifier having a cloud point, or a non-ionic emulsifier (dispersant) is prepared by separately preparing a polymer or an inorganic compound. It is preferable to use a method in which the aqueous dispersion is produced by forcibly dispersing it.
[0017]
Specific examples of nonionic emulsifiers include polyvinyl alcohol, modified polyvinyl alcohol, fatty acid / polyethylene glycol ester, higher alcohol / polyethylene glycol ether, alkylphenol / polyethylene glycol ether, alkylamine / polyethylene glycol condensate, alkylamide / polyethylene glycol condensate. And sorbitan fatty acid monoester / polyethylene glycol condensate. These emulsifiers have a cloud point of about 30 ° C. to 100 ° C. or more depending on the type. An emulsifier having a cloud point of 98 ° C. or lower can be preferably used because it is easy to control the scattering of water when gelling, and a gelled product with uniform pores is easily formed. Even if it is an emulsifier which has this, since a cloud point can be lowered | hung by adding a water-soluble substance, such an emulsifier can also be used by this invention method.
[0018]
The heat-sensitive gelling agent that can be used in the method (2) is a silicofluoride such as sodium silicofluoride or potassium silicofluoride, a metal complex such as an ammonium sulfate zinc complex or an ammonium zinc carbonate complex, zinc oxide and an inorganic or organic ammonium salt (these Complex), nitroparaffin, organic esters, polyvinyl methyl ether, polypropylene glycol, polyether polyformal, polyether-modified polysiloxane, alkylene oxide addition product of alkylphenol formalin condensate, functional polysiloxane, water-soluble modified silicone oil, silicone Glycol copolymer, water-soluble polyamide, starch, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, protein, polyphosphoric acid or nonionic milk having the above-mentioned cloud point Agents and the like, can be used as a mixture of two or more thereof. It is preferable to use a mixture of two or more heat-sensitive gelling agents because the gelling temperature can be easily controlled, and nitroparaffins, organic esters, etc. are effective when used in combination with zinc oxide.
[0019]
The preferable gelation temperature of the heat-sensitive gelling agent is 10 to 98 ° C. A gelation temperature lower than 10 ° C. is not preferable because the storage stability and pot life after mixing the aqueous dispersion and the heat-sensitive gelling agent cannot be ensured. A gelation temperature exceeding 98 ° C. is not preferable because the water scattering rate is higher than the gelation reaction, and it is difficult to obtain a gelled product in which uniform pores are formed. “Thermal gelation” does not mean that the gelation does not proceed at room temperature at all, but the heating in excess of the gelation temperature significantly promotes the progress of the gelation reaction. It shall refer to “gelling” action.
[0020]
In the method of the present invention, as a method for destabilizing the aqueous dispersion, a photogelation method may be adopted in addition to the thermal gelation method. In the photogelation method, an aqueous dispersion is produced using a photodegradable emulsifier (as described above, “production” includes both “emulsion polymerization” and “forced dispersion”), and the gelation is performed. This is a method in which the emulsifier is decomposed by irradiating light to deactivate its particle stabilizing function.
[0021]
The composition of the aqueous dispersion itself is not particularly limited in the case of using either the thermal gelation method or the photogelation method, but in the case of an organic system, polymer particles are preferably used as fine particles. , Acrylic emulsions mainly composed of (meth) acrylic acid and esters thereof and copolymerized with various polymerizable monofunctional and polyfunctional monomers; rubber latex such as SBR, NBR, IR, NR; water of polyester and polyurethane Examples thereof include a dispersion. Two or more types of emulsions can be blended, and an emulsion having core-shell type particles may be used. As the aqueous dispersion of inorganic fine particles, a dispersion obtained by dispersing an inorganic compound, an inorganic pigment, or the like using a nonionic dispersant or emulsifier, or another dispersant or emulsifier can be used.
[0022]
Since the gelled product of the present invention can be used in various applications, it is desirable to select the composition of the aqueous dispersion according to the application. For example, in order to produce a gelled product to be used at a normal temperature level, a structure in which particles in the gelled product cause viscous flow when stored at normal temperature and the porosity is lost is a problem. Polymer emulsion having a composition with a composition of ℃ or higher, or an emulsion of a polymer having a structure in which mobility (deformability) after forming a film by crosslinking is suppressed even when Tg is lower, or an aqueous dispersion of inorganic particles It is recommended to design the molecules of the particles that make up the gelled product according to the application.
[0023]
In the method of the present invention, in order to obtain a uniform gelled product, when water is scattered from the water dispersion emulsion layer, the water vapor is equal to or higher than the gelation temperature of the water dispersion and equal to the saturated water vapor pressure at this gelation temperature. It is preferable to carry out in the atmosphere more than a pressure. Under this atmospheric condition, since the temperature is equal to or higher than the gelation temperature, the gelation / aggregation of particles in the aqueous dispersion proceeds due to the heat-sensitive gelation action, while the atmosphere has a water pressure higher than the saturated water vapor pressure at the gelation temperature. It is because scattering of water from the applied water dispersion layer is suppressed by adjusting. In particular, when the coating thickness on the support is small, or when the non-volatile content of the water dispersion is high and the amount of water to be scattered is small, or when the gelation temperature of the heat-sensitive gelling agent used is high, the gelation proceeds. Water scattering may be faster than the degree, and a uniform gelled product may not be obtained. Therefore, it is preferable to perform gelation and aggregation while suppressing water scattering in the above atmosphere. After the gelation / aggregation is completed, the condition may be changed to a condition in which water is actively scattered instead of the above atmosphere.
[0024]
If a heat-sensitive gelling agent having a high gelation speed or a low gelation temperature is used, a uniform gel can be obtained even when water from the aqueous dispersion layer is scattered in parallel during the gelation reaction. The compound is obtained. On the other hand, in the photogelation method, light irradiation is performed at a low temperature to aggregate particles, and then water in the water dispersion layer may be scattered.
[0025]
The aqueous dispersion preferably has a nonvolatile content of 20% by weight or more. If it is lower than 20% by weight, the absolute number of fine particles in the aqueous dispersion is reduced, so that the particles are less likely to aggregate and cracks due to drying shrinkage tend to enter into the coating, making it difficult to obtain a uniform gelled product. The upper limit of the non-volatile content is not particularly limited, but if it exceeds 70% by weight, the viscosity becomes high and the workability when applied to the support is poor, which is not preferable.
[0026]
As described above, the gelled product obtained by the method of the present invention is formed into a substantially spherical particle and particle because the inorganic or organic fine particles in the emulsion are aggregated and gelled while substantially maintaining the particle state. The voids between them become special gelled products that exist in the coating as openings. For this reason, the size of the pores of the obtained gelled product is affected by the size of the inorganic or organic fine particles in the aqueous dispersion. For example, if the average particle size of the fine particles (before aggregation) in the aqueous dispersion is 10 μm or less, the resulting gelled product has many fine and uniform apertures with an average diameter of 500 nm or less. It becomes.
[0027]
Further, if the particle size distribution of the fine particles in the aqueous dispersion is sharpened, the degree of distribution of the pore diameter can be sharpened. Further, if the size and solid content concentration of the particles in the aqueous dispersion are controlled, the size and density of the pores (the number of pores per unit volume) can be freely controlled. Furthermore, the porous film of the present invention can be applied to various fields by appropriately selecting the material and properties of the particles according to the application.
[0028]
For example, it is also useful in fields such as air filters, filtration membranes / semipermeable membranes and special membranes having selective permeability, battery separators, and recording materials.
[0029]
【Example】
The present invention will be described in further detail with reference to the following examples. However, the following examples are not intended to limit the present invention, and all modifications that are made without departing from the spirit of the preceding and following description are all included in the technical scope of the present invention. The In the following examples, “%” and “parts” represent “% by weight” and “parts by weight” unless otherwise specified.
[0030]
Example 1
In a flask equipped with a dropping funnel, a stirrer, a nitrogen inlet tube, a thermometer and a reflux condenser, 170 parts of ion exchange water, 17 parts of Nonipol 200 (polyethylene glycol nonylphenyl ether emulsifier manufactured by Sanyo Chemical Industries), 2 parts of Pole PE-64 (polyethylene glycol-polypropylene glycol block copolymer emulsifier manufactured by Sanyo Chemical Industries) was charged and heated to 45 ° C. while gently blowing nitrogen. A monomer mixture composed of 292 parts of methyl methacrylate, 23 parts of butyl acrylate, and 135 parts of styrene was placed in the dropping funnel, and 25% of the mixture was dropped into the flask.
[0031]
Subsequently, 15 parts of a 1% aqueous solution of sodium hydrogen sulfite and 15 parts of a 3% aqueous solution of ammonium persulfate were added to the flask. After 30 minutes, the remaining monomer mixture, 62 parts of a 1% aqueous solution of sodium bisulfite and 62 parts of a 1% aqueous solution of ammonium persulfate were added dropwise over 3 hours. During the dropwise addition, the temperature in the flask was maintained at 50 to 54 ° C., and after completion of the dropwise addition, the mixture was stirred at the same temperature for 1 hour to complete the polymerization. An aqueous resin dispersion [1] in which polymer particles having a nonvolatile content of 50.2%, pH 2.1, and an average particle size of 120 nm were dispersed was obtained.
[0032]
To 100 parts of this aqueous resin dispersion [1], 6 parts of an aqueous solution of 48% ammonium zinc complex prepared by adding 108 parts of 25% aqueous ammonia to 100 parts of zinc sulfate in advance was added and stirred well. 1] was obtained. A 100 μm PET film coated with 3 μm polyvinyl alcohol as a primer layer was coated with an aqueous dispersion for coating [1] using a # 20 bar coater, immediately followed by constant temperature and humidity at 80 ° C. and 60% humidity. The mixture was placed in the machine for 15 minutes to gel the polymer particles in the aqueous dispersion layer and dry the coating. A gelled product [1] having a dry film thickness of 25 μm was obtained.
[0033]
Example 2
A flask equipped with a dropping funnel, a stirrer, a nitrogen inlet tube, a thermometer, and a reflux condenser was charged with 322 parts of ion-exchanged water and heated to 80 ° C. while gently blowing nitrogen. 265 parts of methyl methacrylate, 117 parts of divinylbenzene, 8 parts of γ-methacryloxypropyltrimethoxysilane, 70 parts of a 20% aqueous solution of an emulsifier represented by the following formula, 175 parts of ion-exchanged water and 3 parts of 25% aqueous ammonia are stirred. Mixing was performed to prepare a pre-emulsion for dripping, 2% of which was dripped into the flask.
[0034]
[Chemical 1]
Figure 0003653859
[0035]
(However, the sum of a and b is 20 as an average of the emulsifier, and c is 1 or 2. Also, each monomer unit is assumed to be randomly bonded within the molecule of the emulsifier.)
Subsequently, 20 parts of a 5% aqueous solution of potassium persulfate was poured into the flask, and after 30 minutes, dropping of the remaining pre-emulsion was started, and dropping was finished after 5 hours. During the dropwise addition, the temperature in the flask was maintained at 78 to 82 ° C., and after completion of the dropwise addition, 20 parts of a 2% aqueous solution of potassium persulfate was added, and the mixture was stirred at the same temperature for 1 hour to complete the polymerization. An aqueous resin dispersion [2] in which polymer particles having a dispersion of 0.4%, pH 8.1, and average particle diameter of 176 nm were obtained was obtained.
[0036]
To 100 parts of this aqueous resin dispersion [2], 7.5 parts of a 48% aqueous solution of ammonium sulfate zinc complex prepared in the same manner as in Example 1, and TPA-4380 (polyether-modified silicone-based thermosensitive gel manufactured by Toshiba Silicone Co., Ltd.) 1 part of the agent was added and stirred well to obtain an aqueous dispersion for coating [2]. The coating water dispersion [2] was coated, gelled and dried in the same manner as in Example 1 except that the # 26 bar coater was used, and a gelled product [2] having a dry film thickness of 25 μm was obtained. It was.
[0037]
Example 3
A flask equipped with a dropping funnel, a stirrer, a nitrogen inlet tube, a thermometer and a reflux condenser was charged with 183 parts of ion-exchanged water and 1 part of Aqualon HS-10 (Daiichi Kogyo Seiyaku Co., Ltd. reactive emulsifier). The mixture was heated to 70 ° C. while blowing nitrogen. 298 parts of methyl methacrylate, 141 parts of 2-ethylhexyl acrylate, 50 parts of styrene, 6 parts of acrylic acid, 5 parts of glycidyl methacrylate, 7 parts of Aqualon HS-10 and 194 parts of ion-exchanged water are mixed and stirred dropwise. Pre-emulsions were prepared, 5% of which was dropped into the flask.
[0038]
Subsequently, 20 parts of a 1% aqueous solution of sodium bisulfite and 20 parts of a 3% aqueous solution of potassium persulfate were added to the flask. After 15 minutes, the remaining pre-emulsion, 37 parts of a 1% aqueous solution of sodium bisulfite and 37 parts of a 3% aqueous solution of potassium persulfate were added dropwise over 3 hours. During the dropwise addition, the temperature in the flask was maintained at 68 to 72 ° C., and after completion of the dropwise addition, the mixture was stirred at the same temperature for 1 hour to complete the polymerization. An aqueous resin dispersion [3] in which polymer particles having a nonvolatile content of 50.9%, pH 1.7, and an average particle size of 118 nm were dispersed was obtained.
[0039]
To 100 parts of this aqueous resin dispersion [3], add 10 parts of 45% aqueous solution of ammonium zinc carbonate complex prepared in advance by adding 46 parts of zinc oxide, 49 parts of ammonium hydrogen carbonate and 116 parts of 25% aqueous ammonia, and stir well. An aqueous dispersion for coating [3] was obtained. A 100 μm PET film coated with 3 μm polyvinyl alcohol as a primer layer was coated with an aqueous dispersion for coating [3] using a # 20 bar coater, immediately followed by constant temperature and humidity at 80 ° C. and humidity of 96%. The mixture was placed in the machine for 1 minute and then dried in a dryer at 80 ° C. for 1 minute to gel the polymer particles in the aqueous dispersion layer and dry the coating. A gelled product [3] having a dry film thickness of 25 μm was obtained.
[0040]
Example 4
A flask equipped with a dropping funnel, a stirrer, a nitrogen inlet tube, a thermometer, and a reflux condenser was charged with 275 parts of ion-exchanged water and heated to 70 ° C. while gently blowing nitrogen. 315 parts of butyl acrylate, 135 parts of divinylbenzene, 27 parts of Nonipol 200 (polyethylene glycol nonylphenyl ether emulsifier manufactured by Sanyo Chemical Industries) and Haitenol N-08 (Daiichi Kogyo Seiyaku Polyethylene, an anionic emulsifier) 16 parts of glycol alkylphenyl ether ammonium sulfate) was mixed and stirred with 214 parts of ion-exchanged water to prepare a pre-emulsion for dripping, 5% of which was dropped into the flask.
[0041]
Next, 5 parts of a 5% aqueous solution of 2,2′-azobis (2-amidinopropane) dihydrochloride was added to the flask. After 20 minutes, the remaining pre-emulsion was added dropwise over 3 hours. During the dropwise addition, the temperature in the flask was maintained at 68 to 72 ° C., and after completion of the dropwise addition, the mixture was stirred at the same temperature for 1 hour to complete the polymerization. An aqueous resin dispersion [4] in which polymer particles having a nonvolatile content of 49.8%, a pH of 1.8, and an average particle diameter of 132 nm were dispersed was obtained.
[0042]
To 100 parts of this aqueous resin dispersion [4], 10 parts of a 48% aqueous solution of ammonium sulfate zinc complex prepared in the same manner as in Example 1 was added and stirred well to prepare an aqueous dispersion for coating [4]. In the same manner as above, a gelled product [4] having a dry film thickness of 25 μm was obtained.
[0043]
Example 5
A flask equipped with a dropping funnel, a stirrer, a nitrogen inlet tube, a thermometer and a reflux condenser was charged with 223 parts of ion-exchanged water, 80 parts of a 20% aqueous solution of an emulsifier used in Example 2 and 3 parts of 25% aqueous ammonia. The mixture was heated to 80 ° C. while gently blowing nitrogen. 324 parts of methyl methacrylate, 36 parts of divinylbenzene, 36 parts of 20% aqueous solution of emulsifier used in Example 2, 2 parts of 25% aqueous ammonia and 142 parts of ion-exchanged water were mixed with stirring to prepare a pre-emulsion for dropping. 15% of the solution was dropped into the flask.
[0044]
Subsequently, 10 parts of a 1% aqueous solution of sodium bisulfite and 24 parts of a 5% aqueous solution of potassium persulfate were added to the flask. After 30 minutes, the remaining pre-emulsion was dripped and the dripping was completed over 4 hours. During the dropping, the temperature in the flask was maintained at 78 to 82 ° C., and 20 parts of a 2% potassium persulfate aqueous solution was additionally charged 2 hours after the start of dropping. Furthermore, 20 parts of 2% potassium persulfate aqueous solution was thrown in after completion | finish of dripping, and it stirred for 3 hours.
[0045]
Next, 30 parts of ethyl acrylate, 8 parts of N-vinylpyrrolidone, 2 parts of glycidyl methacrylate, 4 parts of a 20% aqueous solution of the emulsifier used in Example 2 and 16 parts of ion-exchanged water were prepared by stirring. The pre-emulsion was dropped into the flask over 30 minutes. During the dropwise addition, the temperature in the flask was maintained at 68 to 72 ° C., and after completion of the dropwise addition, 20 parts of a 2% aqueous solution of potassium persulfate was added and further stirred for 1 hour at the same temperature to complete the polymerization. An aqueous resin dispersion [5] in which polymer particles having a nonvolatile content of 42.3%, pH of 8.0, and an average particle size of 50 nm were dispersed was obtained.
[0046]
To 100 parts of this aqueous resin dispersion [5], 3 parts of TPA-4390 (polyether-modified silicone-based heat-sensitive gelling agent manufactured by Toshiba Silicone Co., Ltd.) is added and stirred well to prepare an aqueous dispersion for coating [5]. In the same manner as in Example 2, a gelled product [5] having a dry film thickness of 25 μm was obtained.
[0047]
Example 6
A flask equipped with a dropping funnel, a stirrer, a nitrogen inlet tube, a thermometer, and a reflux condenser was charged with 183 parts of ion exchange water and 1 part of Aqualon HS-10, and heated to 70 ° C. while gently blowing nitrogen. 155 parts of methyl methacrylate, 284 parts of 2-ethylhexyl acrylate, 50 parts of styrene, 6 parts of acrylic acid, 5 parts of glycidyl methacrylate, 7 parts of Aqualon HS-10 and 194 parts of ion-exchanged water are mixed and stirred dropwise. Pre-emulsions were prepared, 5% of which was dropped into the flask.
[0048]
Subsequently, 20 parts of a 1% aqueous solution of sodium bisulfite and 20 parts of a 3% aqueous solution of potassium persulfate were added to the flask. After 15 minutes, the remaining pre-emulsion, 37 parts of a 1% aqueous solution of sodium bisulfite and 37 parts of a 3% aqueous solution of potassium persulfate were added dropwise over 3 hours. During the dropwise addition, the temperature in the flask was maintained at 68 to 72 ° C., and after completion of the dropwise addition, the mixture was stirred at the same temperature for 1 hour to complete the polymerization. An aqueous resin dispersion [6] in which polymer particles having a nonvolatile content of 50.6%, a pH of 1.8, and an average particle size of 128 nm were dispersed was obtained.
[0049]
10 parts of the aqueous resin dispersion [6] and 90 parts of the aqueous resin dispersion [2] obtained in Example 2 were added, and TPA-4380 (polyether-modified silicone-based heat-sensitive gelling agent manufactured by Toshiba Silicone) And 5 parts of a 48% aqueous solution of ammonium sulfate zinc complex prepared in the same manner as in Example 1 were added and stirred well to obtain an aqueous dispersion [6] for coating. A 100 μm PET film coated with 3 μm polyvinyl alcohol as a primer layer was coated with an aqueous dispersion for coating [4] using a # 24 bar coater, immediately followed by constant temperature and humidity at 80 ° C. and humidity of 96%. After putting into a machine for 1 minute to gel, it was dried in a hot air dryer at 80 ° C. for 1 minute to produce a gelled product [6] having a dry film thickness of 25 μm.
[0050]
Example 7
To 87 parts of the aqueous resin dispersion [1] obtained in Example 1, 13 parts of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate was added and stirred well. To this aqueous resin dispersion, 5 parts of a 48% aqueous solution of ammonium sulfate zinc complex prepared in the same manner as in Example 1 was added and stirred well to obtain an aqueous dispersion [7] for coating. A 100 μm PET film coated with 3 μm polyvinyl alcohol as a primer layer was coated with an aqueous dispersion for coating [7] using a # 26 bar coater, immediately followed by constant temperature and humidity at 80 ° C. and humidity of 96%. After putting into a machine for 1 minute to gel, it was dried in a hot air drier at 80 ° C. for 1 minute to produce a gelled product [7] having a dry film thickness of 25 μm.
[0051]
Comparative Example 1
Using the aqueous resin dispersion [3] obtained in Example 3 as it is as an aqueous dispersion for coating [8], it was applied to a 100 μm PET film coated with 3 μm polyvinyl alcohol as a primer layer using a # 30 bar coater. And dried for 1 minute with an 80 ° C. hot air dryer. A comparative sheet [8] having a dry film thickness of 25 μm was prepared.
[0052]
Using a scanning electron microscope (SEM), the surface states of the gelled products [1] to [7] obtained in Examples 1 to 7 and the comparative sheet [8] obtained in Comparative Example 1 were 20,000 times. The results are summarized in Table 1. The observation results of the products of Examples 1 and 3 and Comparative Example 1 are shown in FIGS. As is apparent from the tables and figures, in Example 1, a porous gelled product like pattern B in FIG. 1 was obtained, and in Example 3, a slightly fused porous gelled product like pattern C was obtained. Obtained. However, it can be seen that the film of Comparative Example 1 was a film having no holes as in Pattern A.
[0053]
[Table 1]
Figure 0003653859
[0054]
【The invention's effect】
The method of the present invention is a method for obtaining a gelled product in which a large number of fine pores are formed by interstices between particles by agglomerating inorganic or organic fine particles in an aqueous dispersion while maintaining the state of the particles to form a film. It is. In particular, when aggregation of inorganic or organic fine particles in an aqueous dispersion is carried out in an atmosphere that is equal to or higher than the gelation temperature and equal to or higher than the water vapor pressure equal to the saturated water vapor pressure at the gelation temperature, a more uniform gelled product is produced. Can do. Since the gelled product obtained by the method of the present invention has a large number of fine pores, it can be developed in membrane-related fields and other various uses.
[Brief description of the drawings]
FIG. 1 is a model diagram of a film formation mechanism of a normal aqueous dispersion and a gelation product formation mechanism in the method of the present invention.
2 is a SEM photograph substituting for a drawing of the coating obtained in Comparative Example 1. FIG.
FIG. 3 is a drawing-substitute SEM photograph showing the particle structure of the gelled product obtained in Example 1 of the present invention.
FIG. 4 is a SEM photograph substituting for a drawing showing the particle structure of the gelled product obtained in Example 3 of the present invention.

Claims (3)

微粒子が水性媒体中に安定に分散している水分散体を、支持体上に塗布して水分散体層を形成し、該水分散体層中の全ての水が飛散する前に、水分散体を、水分散体のゲル化温度以上、かつゲル化温度における飽和水蒸気圧と同じ水蒸気圧以上の雰囲気下で不安定化させることによって前記微粒子を凝集させ、次いで乾燥させることを特徴とするゲル化物の製造方法。An aqueous dispersion in which fine particles are stably dispersed in an aqueous medium is applied on a support to form an aqueous dispersion layer, and before all the water in the aqueous dispersion layer is scattered, the aqueous dispersion A gel characterized by agglomerating the fine particles by destabilizing the body under an atmosphere at a temperature equal to or higher than the gelation temperature of the aqueous dispersion and equal to or higher than the water vapor pressure equal to the saturated water vapor pressure at the gelation temperature. Method for producing chemicals. 水分散体が加熱によって不安定化するものである請求項1に記載の製造方法。 The production method according to claim 1, wherein the aqueous dispersion is destabilized by heating. ゲル化物が、平均直径500nm以下の開孔を多数有する多孔質膜である請求項1または2に記載の製造方法。The production method according to claim 1 or 2 , wherein the gelled product is a porous film having a large number of pores having an average diameter of 500 nm or less.
JP10996296A 1996-04-30 1996-04-30 Method for producing gelled product Expired - Fee Related JP3653859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10996296A JP3653859B2 (en) 1996-04-30 1996-04-30 Method for producing gelled product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10996296A JP3653859B2 (en) 1996-04-30 1996-04-30 Method for producing gelled product

Publications (2)

Publication Number Publication Date
JPH09296068A JPH09296068A (en) 1997-11-18
JP3653859B2 true JP3653859B2 (en) 2005-06-02

Family

ID=14523566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10996296A Expired - Fee Related JP3653859B2 (en) 1996-04-30 1996-04-30 Method for producing gelled product

Country Status (1)

Country Link
JP (1) JP3653859B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014658A1 (en) 2002-08-08 2004-02-19 Mitsui Chemicals, Inc. Ink-jet recording medium
JP5231884B2 (en) * 2007-07-04 2013-07-10 宇部日東化成株式会社 Porous membrane, coating solution for forming porous membrane, laminated substrate and wiring material

Also Published As

Publication number Publication date
JPH09296068A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
JP2614707B2 (en) Method for producing emulsion polymer having hollow structure
US6235394B1 (en) Heat-expandable microcapsules, process for producing the same, and method of utilizing the same
TWI381001B (en) Moisture absorbing-desorbing ultrafine particle and product using the same
JP5351758B2 (en) Microcapsules modified with polyelectrolytes
JPH08503408A (en) Filter element with dimensionally stable, transparent and porous plastic molding
CN104289161B (en) A kind of aluminium hydroxide microcapsule of melamine formaldehyde resin cladding and preparation method thereof
JP5478824B2 (en) Polymer particles
TW200305580A (en) Process for preparing emulsion polymers and polymers formed therefrom
KR101774079B1 (en) Hollow polymer particle and method for manufacturing the same
CN104587924B (en) Oligomer precoating prepares low-density without permeability porous or the method for hollow microsphere
JPS63278943A (en) Production of porous body
JP3653859B2 (en) Method for producing gelled product
JP2005513250A (en) Stepwise production method of porous beads
EP0305378B1 (en) Toner particles for electrophotographic copying and processes for their preparation
JP3711623B2 (en) Recording material using porous film
JP2009234848A (en) Method for producing silica-based hollow particle and method for producing silica-based hollow particle dispersion
Zhai et al. One-pot facile synthesis of half-cauliflower amphiphilic Janus particles with pH-switchable emulsifiabilities
JPH06508792A (en) Products for separation and purification and methods for adjusting their porosity
JPH0925303A (en) Production of joined microgel particles and article treated therewith
JP2016052613A (en) Core-shell particle
US6265059B1 (en) Porous film, process for the production thereof and recording subject comprising the porous film
Lattuada Synthesis of dimpled polymer particles and polymer particles with protrusions–Past, present, and future
KR20150138011A (en) Amphiphilic anisotropic particles and method for manufacturing the same
Ma et al. Uniform Polymer Composite Microspheres: Preparation
JP6796325B2 (en) Hierarchical particles and their manufacturing methods

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Effective date: 20040810

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041008

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees