JP3652978B2 - Method for producing YBa2Cu3O7-x superconducting film by electrophoretic electrodeposition method - Google Patents
Method for producing YBa2Cu3O7-x superconducting film by electrophoretic electrodeposition method Download PDFInfo
- Publication number
- JP3652978B2 JP3652978B2 JP2000311752A JP2000311752A JP3652978B2 JP 3652978 B2 JP3652978 B2 JP 3652978B2 JP 2000311752 A JP2000311752 A JP 2000311752A JP 2000311752 A JP2000311752 A JP 2000311752A JP 3652978 B2 JP3652978 B2 JP 3652978B2
- Authority
- JP
- Japan
- Prior art keywords
- yba
- superconducting
- ultrafine particles
- powder
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004070 electrodeposition Methods 0.000 title claims description 27
- 238000000034 method Methods 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910003098 YBa2Cu3O7−x Inorganic materials 0.000 title 1
- 239000011882 ultra-fine particle Substances 0.000 claims description 52
- 239000000843 powder Substances 0.000 claims description 36
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 23
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000002994 raw material Substances 0.000 claims description 17
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 15
- 229910017604 nitric acid Inorganic materials 0.000 claims description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 239000004570 mortar (masonry) Substances 0.000 claims description 8
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 7
- 229910052740 iodine Inorganic materials 0.000 claims description 7
- 239000011630 iodine Substances 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 6
- 238000001652 electrophoretic deposition Methods 0.000 claims description 3
- 239000000758 substrate Substances 0.000 description 15
- 239000002887 superconductor Substances 0.000 description 9
- 239000002244 precipitate Substances 0.000 description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000007704 transition Effects 0.000 description 5
- 238000000975 co-precipitation Methods 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241001366278 Leptotes marina Species 0.000 description 2
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 241000287463 Phalacrocorax Species 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、泳動電着法によるYBa2Cu3O7−x超伝導膜の製造方法に係り、特にYBa2Cu3O7超微粒子原料粉末を用いてYBa2Cu3O7−x超伝導膜を製造する方法に関するものである。
【0002】
【従来の技術】
超伝導体として、YBa2Cu3O7−xは、Tc(90K)と液体窒素温度より高いものであり注目されている。YBa2Cu3O7−x超伝導体は、出発原料としてY2O3,Ba(NO3)2とCuOを用い、仮焼、粉砕、ペレット焼結後、Ar+20%O2混合ガス中で、熱間静水圧加圧(HIP)処理を行い、YBa2Cu3O7−x超伝導体のバルクを製造することが知られている。
また、超電導体原料を仮焼きした後、粉砕して溶媒中に分散させ、電気泳動法により電着させて、これを本焼き900±100℃で本焼きを行うY−Ba−Cu−O系酸化物超電導体の超電導体の作成方法が提案されている(例えば特開平1−255691号公報、特開平5−78124号公報参照)。
【0003】
【発明が解決しようとする課題】
従来の泳動電着法によるYBa2Cu3O7−x超伝導膜の作製法では、平均粒径が2〜3μmの超伝導粒子を用いているために、大きな基材に電着膜を作製する場合に、電着中の粒子の沈降による膜厚の偏りが顕著に現れるという問題があった。
また、従来の電気泳動法により作成されたY−Ba−Cu−O系酸化物超電伝体では、YBa2Cu3O7−x超伝導膜についてその特性を改善する製造方法が望まれている。
【0004】
【課題を解決するための手段】
上記課題を解決するために、本発明の泳動電着法によるYBa2Cu3O7−x超伝導膜の製造方法は、BaCO3粉末、Y203粉末及びCuO粉末を熱硝酸水溶液に溶解した溶液にクエン酸を加え、次いでアンモニア水でpH6.8を越えないように中和し、この溶液を加熱して、Cu、BaO及びY2O3からなり、そのモル比がCu:BaO:Y2O3=6:4:1のYBa2Cu3O7超微粒子原料粉末を作製する工程、前記工程で作製したYBa2Cu3O7の超微粒子原料粉末を、1気圧の酸素雰囲気中で900℃〜930℃に加熱、冷却して450〜550℃に保持し、冷却する熱処理を行い、YBa2Cu3O7−x超伝導超微粒子のクラスターを作製する工程、前記工程で作製したYBa2Cu3O7−x超伝導超微粒子のクラスターを乳鉢でYBa2Cu3O7−x超伝導超微粒子に分離させる工程、前記工程で分離させた平均粒径が0.04〜0.08μmのYBa2Cu3O7−x超伝導超微粒子をヨウ素を添加したアセトン中に超音波振動を加えて分散させ、導電体または半導体上に泳動電着を行う工程、前記工程で導電体上または半導体上に泳動電着されたYBa2Cu3O7−x超伝導超微粒子からなる膜を900℃〜950℃、1気圧の酸素雰囲気中で熱処理を行う工程、からなることを特徴とするものである。
【0005】
【作用】
本発明の泳動電着法によるYBa2Cu3O7−x超伝導膜の製造方法は、
BaCO3粉末、Y203粉末及びCuO粉末を熱硝酸水溶液に溶かした溶液にクエン酸を加え、次いでアンモニアで中和を行い、この溶液を加熱して、Cu、BaO及びY2O3からなり、モル比がCu:BaO:Y2O3=6:4:1のYBa2Cu3O7超微粒子原料粉末を作製し、このYBa2Cu3O7超微粒子原料粉末を900℃〜930℃で1気圧の酸素雰囲気中で熱処理を行うことにより、YBa2Cu3O7−x超伝導超微粒子のクラスターを作製し、これを乳鉢で分離させてYBa2Cu3O7−x超伝導超微粒子にするるものである。
YBa2Cu3O7−xについてx=0のとき、すなわちYBa2Cu3O7は絶縁体であり、超伝導にはならないものである。YBa2Cu3O7超微粒子原料粉末を900℃〜930℃で1気圧の酸素雰囲気中で熱処理を行う過程において、xが0.1〜0.2となり、すなわちYBa2Cu3O6.9〜YBa2Cu3O6.8となり、ホールキャリアが生じて超伝導性を発現するものである。好ましくは、熱処理は、1気圧の酸素雰囲気中で900℃〜930℃に加熱、冷却して450〜550℃に6時間保持、冷却する過程において、xが0.1〜0.2となり、すなわちYBa2Cu3O6.9〜YBa2Cu3O6.8となり、ホールキャリアが生じて超伝導性を発現するものである。
【0006】
本発明は、BaCO3粉末、Y203粉末及びCuO粉末を熱硝酸水溶液に溶かした溶液にクエン酸を加え、次いでアンモニアで中和を行い、この溶液を加熱して、Cu、BaO及びY2O3からなり、モル比がCu:BaO:Y2O3=6:4:1のYBa2Cu3O7超微粒子原料粉末を作製することにより、平均粒径が0.04〜0.08μmのようなサブミクロンサイズ以下のYBa2Cu3O7−x超伝導超微粒子にすることができるものであり、また平均粒径が0.04〜0.08μmのようなサブミクロンサイズ以下のYBa2Cu3O7−x超伝導超微粒子を用いて泳動電着されたYBa2Cu3O7−x超伝導超微粒子からなる膜に対する熱処理を900℃〜950℃で1気圧の酸素雰囲気中で行うことでYBa2Cu3O7−x超伝導膜の作製が可能になった。
また、本発明の泳動電着法によるYBa2Cu3O7−x超伝導膜の製造方法では、電着浴であるヨウ素を添加したアセトン中に分散させる超伝導微粒子の平均粒径が0.04〜0.08μmのような超微粒子であることにより、電着浴におけるYBa2Cu3O7−x超伝導超微粒子の分散が安定であり、電着浴で電着中にYBa2Cu3O7−x超伝導超微粒子が沈降する速度が遅くなり、より均一なYBa2Cu3O7−x超伝導膜が得られる。またYBa2Cu3O7−x超伝導微粒子が平均粒径が0.04〜0.08μmのように微細であることから、YBa2Cu3O7−x超伝導膜は稠密性が高いものが得られ、またYBa2Cu3O7−x超伝導膜が基材から剥離するということがないものである。
【0007】
【発明の実施の形態】
本発明におけるCu、BaO及びY2O3からなり、モル比がCu:BaO:Y2O3=6:4:1のYBa2Cu3O7の超微粒子原料粉末を作製する工程について説明する。
まず、CuO粉末、BaCO3粉末、Y203粉末のそれぞれを、YBa2Cu4O7の超微粒子原料粉末とするために、Y:Ba:Cuが1:2:3の比率となるように秤量し、これらを混合して、熱硝酸水溶液、例えば硝酸に蒸留水を加え70〜80℃とした硝酸水溶液に溶かす。ここで硝酸水溶液は、その色がマリンブルーになるまで硝酸を足す。またここで白い沈殿物が形成された場合には、白い沈殿物が溶けるまで蒸留水を加える。次いで硝酸水溶液の温度を40℃程度に下げる。白い沈殿物が生じた場合は50℃程度まで温度を上げて、白い沈殿物が完全に溶解させる。次いで白い沈殿物が完全に溶解した状態で、クエン酸を加える。
【0008】
次にアンモニア水によってpH6.8を越えないように中和滴定を行う。pH6.8では液体は、ダークブルー色になる。アンモニア水による中和滴定のpH値は、pH6.9を越えると水酸化物や塩基性塩が現れてしまうので、pH6.9を越えないようにする。
アンモニア水によってpH6.8を越えないように中和滴定された溶液を加熱する。溶液は加熱によって水分の揮発に伴って粘性が増し、しだいにクエン酸のために大きく膨張し、最後に硝酸アンモニウムのために自発的に燃焼する。このようにしてCu、BaO及びY2O3からなり、そのモル比がCu:BaO:Y2O3=6:4:1のYBa2Cu4O7の超微粒子原料粉末を得るものである。
【0009】
本発明において、作製されたYBa2Cu3O7の超微粒子原料粉末を900℃〜930℃、1気圧の酸素雰囲気中で熱処理を行うことにより、好ましくは、1気圧の酸素雰囲気中で900℃〜930℃に加熱、冷却して450〜550℃に6時間保持し、冷却する熱処理を行うことにより、YBa2Cu3O7−x超伝導超微粒子のクラスターを作製する。YBa2Cu3O7−x超伝導超微粒子のクラスターを作製する工程は、例えば920℃で20時間、1L/minの酸素流量で熱処理を行い、YBa2Cu3O7−x超伝導超微粒子が集まったクラスターを作製するものである。
超伝導微粒子が集まったクラスターを乳鉢で分離させる工程は、自動乳鉢で2時間、分離処理を行い、平均粒径が0.04〜0.08μmのようなサブミクロンサイズ以下のYBa2Cu3O7−x超伝導超微粒子に分離させるものである。
本発明において、Cu、BaO及びY2O3からなり、モル比がCu:BaO:Y2O3=6:4:1のYBa2Cu3O7超微粒子原料粉末を、900℃〜930℃、1気圧の酸素雰囲気中で熱処理を行ってYBa2Cu3O7−x超伝導超微粒子のクラスターとし、これを乳鉢でYBa2Cu3O7−x超伝導超微粒子に分離させるもので、ボールミルにより粉砕のように機械的にすりつぶす方法で超伝導粒子にするものとは異なり、機械的応力により結晶が変形したり、結晶が劣化することも少なく、またボールミルの粉砕球からの不純物の混入も起こらない。
【0010】
また、分離させたYBa2Cu3O7−x超伝導超微粒子をヨウ素を添加したアセトン中に分散させ、導電性基材または半導体基材に泳動電着を行う工程は、YBa2Cu3O7−x超伝導超微粒子を、ヨウ素を0.05%添加したアセトン中に超音波振動を加えて分散させることにより、分散性を向上させ、5ボルトから数百ボルト程度の電圧で導電体例えば銀基板、または半導体上に泳動電着を行うものである。
また、導電体または半導体上に泳動電着されたYBa2Cu3O7−x超伝導超微粒子からなる膜を900〜950℃で1気圧の酸素雰囲気中で熱処理を行う工程は、例えば945℃で1時間、1L/minの酸素流量で熱処理を行い、YBa2Cu3O7−x超伝導膜を作製した。
【0011】
本発明において、電着基材としては、導電材料もしくは導電性膜をコーティングした絶縁材料で、例えば銀基板、絶縁体に銀メッキした基板を用いる。また導電体は、その表面に凹凸があるものでも均一に泳動電着することができる。すなわち基材の表面が平坦なものあるいは凹凸がある立体的なものに、YBa2Cu3O7−x超伝導膜を均一に泳動電着することができる。または半導体上にも同様にYBa2Cu3O7−x超伝導膜を均一に泳動電着することができる。
このように均一に泳動電着することができるので、長尺導電基材に本発明の泳動電着法により均一にYBa2Cu3O7−x超伝導膜を形成することにより超伝導テープ材として用いることができ、また表面が凹凸の立体形状の基材上に、YBa2Cu3O7−x超伝導膜を均一に形成することにより、超伝導磁気シールド材として用いることができる。
【0012】
【実施例】
本発明の実施例について、具体的データを示し説明する。
まず、BaCO3粉末78.435g、Y2O3粉末22.695g、CuO粉末47.970gを秤量し、これらを混合して硝酸185mlに1600ml程度の蒸留水を加え70〜80℃の硝酸水溶液に溶かす。次に硝酸水溶液がマリンブルーになるまで硝酸を足し、また白い沈殿物が溶けるまで蒸留水を加える。次に硝酸水溶液の温度を40℃程度に下げ。白い沈殿物が生じた場合は50℃程度まで温度を上げる。沈殿物が完全に溶解したら126.63gのクエン酸を加える。次にアンモニア水によってpH6.8を越えないように中和滴定を行う。pH6.8では液体は、ダークブルー色になる。このアンモニアで中和した溶液を加熱する。加熱により溶液の水分は揮発し、これにに伴って粘性が増し、しだいにクエン酸のために大きく膨張し、最後に硝酸アンモニウムのために自発的に燃焼する。このようにしてそのモル比がCu:BaO:Y2O3==6:4:1のYBa2Cu3O7超微粒子原料粉末を作製した。
【0013】
上述のようにして得られたYBa2Cu4O7の超微粒子原料粉末を1L/minの酸素流量の雰囲気で、920℃で20時間、冷却して450℃に6時間保持し、これを冷却してYBa2Cu3O7−x超伝導超微粒子が集まったクラスターとした。このようにYBa2Cu3O7超微粒子原料粉末を1気圧の酸素雰囲気中で900℃〜930℃に加熱、冷却して450〜550℃に6時間保持し、これを冷却する熱処理の過程で、YBa2Cu3O7−x(x=0.1〜0.2)の超伝導超微粒子が集まったクラスターとなる。すなわちYBa2Cu3O6.9〜YBa2Cu3O6.8となり、ホールキャリアが生じて超伝導性を発現した。
YBa2Cu3O7−x超伝導超微粒子が集まったクラスターを、自動乳鉢で2時間、分離処理を行い、サブミクロンサイズ以下のYBa2Cu3O7−x超伝導超微粒子に分離させた。
【0014】
図1は、分離したYBa2Cu3O7−x超伝導超微粒子を光の回折による粒度分布測定法により測定した粒度分布を示すもので、横軸は粒径(μm)、縦軸は個数(%)である。
YBa2Cu3O7−x伝導超微粒子の粒度分布は、図1に示すように約0.05μm(50nm)に極大を持って分布されており、その平均粒径は0.061μm(61nm)であった。従来の共沈法により得られたYBa2Cu4O7原料粉末は平均粒径3.44μmであり、この従来の共沈法のものに比べて、本発明で得られたYBa2Cu3O7の超微粒子原料粉末を920℃で20時間、1L/minの酸素流量で熱処理を行ったクラスターを乳鉢で2時間、分離処理を行ったYBa2Cu3O7−x超伝導超微粒子は微細なものであった。
図1に示した平均粒径0.061μmのYBa2Cu3O7−x伝導超微粒子をヨウ素40mgを添加したアセトン100ml中に超音波で分散させ、銀基板に10Vの電圧で泳動電着を行い、銀基板上に厚さ2μm〜4μmの泳動電着膜を形成させた。
銀基板上に泳動電着されたYBa2Cu3O7−x超伝導超微粒子の膜を945℃で1時間、1L/minの酸素流量で熱処理を行い、超伝導YBa2Cu3O7−x膜を得た。
【0015】
得られたYBa2Cu3O7−x超伝導超微粒子の泳動電着膜は、超伝導体の転移温度(Tc)が90Kであり、また図1に示した従来の共沈法により得られた平均粒径3.44μmのYBa2Cu3O7−x超伝導超微粒子の泳動電着膜より超伝導転移の幅が狭く、シヤープに超伝導体に転移した。
得られたYBa2Cu3O7−x超伝導超微粒子の泳動電着膜は、稠密性が高く、本発明の945℃で1時間、1L/minの酸素流量の雰囲気で熱処理を行った泳動電着膜クラックが見られなかった。これに対して従来の共沈法により得られた平均粒径3.44μmのYBa2Cu3O7−x超伝導超微粒子の泳動電着膜では多数のクラックが発生した、これは本発明のYBa2Cu3O7−x超伝導超微粒子の泳動電着膜は稠密性が高いことを反映している。
【0016】
【発明の効果】
以上説明したように、本発明の泳動電着法によるYBa2Cu3O7−x超伝導膜の製造方法によれば、ヨウ素を添加したアセトン電着浴に分散させるYBa2Cu3O7−x超伝導微粒子が超微粒子であるので、電着中にYBa2Cu3O7−x超伝導超微粒子の沈降による膜厚の偏りが軽減されて、均一なYBa2Cu3O7−x超伝導膜が得られ、大きな面積の立体的な基材にも均一なYBa2Cu3O7−x超伝導膜を作製できるという効果を有し、またYBa2Cu3O7−x超伝導膜は、その転移温度(Tc)での転移がシャープであり、さらに稠密性の高いものが得られ、超伝導状態での臨界電流が大く、機械的耐久性に優れ、振動等によりYBa2Cu3O7−x膜が剥離するということがないという効果を奏するものである。
【図面の簡単な説明】
【図1】 本発明実施例のYBa2Cu3O7−x超伝導超微粒子の粒度分布を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a YBa 2 Cu 3 O 7-x superconducting film by electrophoretic electrodeposition, and in particular, YBa 2 Cu 3 O 7-x superconductivity using YBa 2 Cu 3 O 7 ultrafine particle raw material powder. The present invention relates to a method for manufacturing a membrane.
[0002]
[Prior art]
As a superconductor, YBa 2 Cu 3 O 7-x is attracting attention because it is higher than Tc (90K) and the liquid nitrogen temperature. YBa 2 Cu 3 O 7-x superconductor uses Y 2 O 3 , Ba (NO 3 ) 2 and CuO as starting materials, and after calcining, pulverization and pellet sintering, in an Ar + 20% O 2 mixed gas It is known to perform a hot isostatic pressing (HIP) process to produce a bulk of YBa 2 Cu 3 O 7-x superconductor.
In addition, the Y-Ba-Cu-O system in which the superconductor raw material is calcined, pulverized and dispersed in a solvent, and electrodeposited by electrophoresis, followed by main baking at 900 ± 100 ° C. A method for producing a superconductor of an oxide superconductor has been proposed (see, for example, Japanese Patent Laid-Open Nos. 1-255691 and 5-78124).
[0003]
[Problems to be solved by the invention]
In the conventional method for producing a YBa 2 Cu 3 O 7-x superconducting film by electrophoretic electrodeposition, superconducting particles having an average particle diameter of 2 to 3 μm are used, so that an electrodeposited film is produced on a large substrate. In this case, there has been a problem that the unevenness of the film thickness due to the sedimentation of the particles during electrodeposition appears remarkably.
In addition, in the Y-Ba-Cu-O-based oxide superconductor prepared by the conventional electrophoresis method, a manufacturing method for improving the characteristics of the YBa 2 Cu 3 O 7-x superconducting film is desired. Yes.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the method for producing a YBa 2 Cu 3 O 7-x superconducting film by the electrophoretic electrodeposition method of the present invention involves dissolving BaCO 3 powder,
[0005]
[Action]
The method for producing a YBa 2 Cu 3 O 7-x superconducting film by the electrophoretic electrodeposition method of the present invention,
Citric acid is added to a solution obtained by dissolving BaCO 3 powder,
Regarding YBa 2 Cu 3 O 7-x , when x = 0, that is, YBa 2 Cu 3 O 7 is an insulator and does not become superconducting. In the process of heat-treating the YBa 2 Cu 3 O 7 ultrafine particle raw material powder at 900 ° C. to 930 ° C. in an oxygen atmosphere of 1 atm, x becomes 0.1 to 0.2, that is, YBa 2 Cu 3 O 6.9. ˜YBa 2 Cu 3 O 6.8 , and hole carriers are generated to express superconductivity. Preferably, in the heat treatment, in the process of heating and cooling to 900 ° C. to 930 ° C. in an oxygen atmosphere of 1 atm and holding at 450 to 550 ° C. for 6 hours and cooling, x becomes 0.1 to 0.2, YBa 2 Cu 3 O 6.9 ~YBa 2 Cu 3 O 6.8 , and the one in which hole carriers express superconductivity occurs.
[0006]
In the present invention, citric acid is added to a solution obtained by dissolving BaCO 3 powder,
Further, in the method for producing a YBa 2 Cu 3 O 7-x superconducting film by the electrophoretic electrodeposition method of the present invention, the average particle size of the superconducting fine particles dispersed in acetone as an electrodeposition bath with iodine added is 0.00. Due to the ultrafine particles of 04 to 0.08 μm, the dispersion of the YBa 2 Cu 3 O 7-x superconducting ultrafine particles in the electrodeposition bath is stable, and YBa 2 Cu 3 during electrodeposition in the electrodeposition bath is stable. The rate at which the O 7-x superconducting ultrafine particles settle is reduced, and a more uniform YBa 2 Cu 3 O 7-x superconducting film is obtained. In addition, since the YBa 2 Cu 3 O 7-x superconducting fine particles are as fine as an average particle size of 0.04 to 0.08 μm, the YBa 2 Cu 3 O 7-x superconducting film has a high density. In addition, the YBa 2 Cu 3 O 7-x superconducting film does not peel from the substrate.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The process for producing ultrafine raw material powder of YBa 2 Cu 3 O 7 composed of Cu, BaO and Y 2 O 3 and having a molar ratio of Cu: BaO: Y 2 O 3 = 6: 4: 1 will be described. .
First, in order to make each of the CuO powder, the BaCO 3 powder, and the
[0008]
Next, neutralization titration is performed with aqueous ammonia so as not to exceed pH 6.8. At pH 6.8, the liquid becomes dark blue. When the pH value of neutralization titration with aqueous ammonia exceeds pH 6.9, hydroxides and basic salts will appear, so pH 6.9 should not be exceeded.
The solution neutralized with aqueous ammonia so as not to exceed pH 6.8 is heated. The solution increases in viscosity as the water volatilizes due to heating, gradually expands greatly due to citric acid, and finally burns spontaneously due to ammonium nitrate. Thus, an ultrafine raw material powder of YBa 2 Cu 4 O 7 composed of Cu, BaO and Y 2 O 3 and having a molar ratio of Cu: BaO: Y 2 O 3 = 6: 4: 1 is obtained. .
[0009]
In the present invention, the produced ultrafine raw material powder of YBa 2 Cu 3 O 7 is heat-treated in an oxygen atmosphere of 900 ° C. to 930 ° C. and 1 atmosphere, and preferably 900 ° C. in an oxygen atmosphere of 1 atmosphere. A cluster of YBa 2 Cu 3 O 7-x superconducting ultrafine particles is produced by heating and cooling to ˜930 ° C. and holding at 450 to 550 ° C. for 6 hours, followed by cooling heat treatment. The step of producing a cluster of YBa 2 Cu 3 O 7-x superconducting ultrafine particles is performed, for example, by performing heat treatment at 920 ° C. for 20 hours at an oxygen flow rate of 1 L / min, and YBa 2 Cu 3 O 7-x superconducting ultrafine particles. This is a cluster that collects.
The process of separating the cluster in which the superconducting fine particles are collected with a mortar is performed by an automatic mortar for 2 hours, and YBa 2 Cu 3 O having a submicron size of 0.04 to 0.08 μm or less in average particle size. 7-x superconducting ultrafine particles are separated.
In the present invention, YBa 2 Cu 3 O 7 ultrafine raw material powder composed of Cu, BaO and Y 2 O 3 and having a molar ratio of Cu: BaO: Y 2 O 3 = 6: 4: 1 is used at 900 ° C. to 930 ° C. , and subjected to heat treatment in an oxygen atmosphere at 1 atm and YBa 2 Cu 3 O 7-x superconducting ultrafine clusters, which intended to separate the YBa 2 Cu 3 O 7-x superconducting ultrafine particles in a mortar, Unlike particles that are mechanically ground by ball milling to produce superconducting particles, crystals are less likely to be deformed or deteriorated by mechanical stress, and impurities from ball milling balls are mixed. Also does not happen.
[0010]
In addition, the process of dispersing the separated YBa 2 Cu 3 O 7-x superconducting ultrafine particles in acetone to which iodine is added and performing electrophoretic deposition on the conductive substrate or the semiconductor substrate is YBa 2 Cu 3 O. The 7-x superconducting ultrafine particles are dispersed by applying ultrasonic vibration in acetone to which 0.05% of iodine is added to improve dispersibility, and a conductor, for example, at a voltage of about 5 volts to several hundred volts. Electrophoretic electrodeposition is performed on a silver substrate or a semiconductor.
In addition, the step of heat-treating a film made of YBa 2 Cu 3 O 7-x superconducting ultrafine particles electrophoretically deposited on a conductor or semiconductor at 900 to 950 ° C. in an oxygen atmosphere of 1 atm is, for example, 945 ° C. Then, heat treatment was performed at an oxygen flow rate of 1 L / min for 1 hour to produce a YBa 2 Cu 3 O 7-x superconducting film.
[0011]
In the present invention, as the electrodeposition base material, a conductive material or an insulating material coated with a conductive film, for example, a silver substrate or a substrate obtained by silver plating on an insulator is used. Moreover, even if the conductor has unevenness on its surface, it can be uniformly electrophoretically deposited. That is, the YBa 2 Cu 3 O 7-x superconducting film can be uniformly electrophoretically deposited on a substrate having a flat surface or a three-dimensional surface having irregularities. Alternatively, the YBa 2 Cu 3 O 7-x superconducting film can be uniformly electrophoretically deposited on the semiconductor.
Since electrophoretic electrodeposition can be performed uniformly in this way, a superconducting tape material can be obtained by uniformly forming a YBa 2 Cu 3 O 7-x superconducting film on a long conductive substrate by the electrophoretic electrodeposition method of the present invention. It can also be used as a superconducting magnetic shield material by uniformly forming a YBa 2 Cu 3 O 7-x superconducting film on a three-dimensional substrate having an uneven surface.
[0012]
【Example】
Examples of the present invention will be described with specific data.
First, 78.435 g of BaCO 3 powder, 22.695 g of Y 2 O 3 powder, and 47.970 g of CuO powder were weighed and mixed, and about 1600 ml of distilled water was added to 185 ml of nitric acid to form an aqueous nitric acid solution at 70 to 80 ° C. Melt. Next, add nitric acid until the aqueous nitric acid solution becomes marine blue, and add distilled water until the white precipitate dissolves. Next, the temperature of the aqueous nitric acid solution is lowered to about 40 ° C. If a white precipitate forms, raise the temperature to about 50 ° C. When the precipitate is completely dissolved, add 126.63 g of citric acid. Next, neutralization titration is performed with aqueous ammonia so as not to exceed pH 6.8. At pH 6.8, the liquid becomes dark blue. The ammonia neutralized solution is heated. The water in the solution is volatilized by heating, and as a result, the viscosity increases, gradually expanding due to citric acid, and finally burning spontaneously due to ammonium nitrate. Thus, a YBa 2 Cu 3 O 7 ultrafine particle raw material powder having a molar ratio of Cu: BaO: Y 2 O 3 == 6: 4: 1 was produced.
[0013]
The ultrafine raw material powder of YBa 2 Cu 4 O 7 obtained as described above was cooled at 920 ° C. for 20 hours and held at 450 ° C. for 6 hours in an atmosphere with an oxygen flow rate of 1 L / min. The YBa 2 Cu 3 O 7-x superconducting ultrafine particles were collected. In this way, the YBa 2 Cu 3 O 7 ultrafine particle raw material powder is heated and cooled to 900 ° C. to 930 ° C. in an oxygen atmosphere of 1 atm and held at 450 to 550 ° C. for 6 hours. , YBa 2 Cu 3 O 7-x (x = 0.1 to 0.2) superconductive ultrafine particles are collected. That YBa 2 Cu 3 O 6.9 ~YBa 2 Cu 3 O 6.8 , and the Hall carrier expressed superconductivity occurs.
The cluster in which YBa 2 Cu 3 O 7-x superconducting ultrafine particles gathered was subjected to separation treatment in an automatic mortar for 2 hours, and separated into YBa 2 Cu 3 O 7-x superconducting ultrafine particles of submicron size or less. .
[0014]
FIG. 1 shows the particle size distribution of separated YBa 2 Cu 3 O 7-x superconducting ultrafine particles measured by a particle size distribution measurement method by light diffraction, the horizontal axis is the particle size (μm), and the vertical axis is the number of particles. (%).
As shown in FIG. 1, the particle size distribution of YBa 2 Cu 3 O 7-x conductive ultrafine particles is distributed with a maximum at about 0.05 μm (50 nm), and the average particle size is 0.061 μm (61 nm). Met. The YBa 2 Cu 4 O 7 raw material powder obtained by the conventional coprecipitation method has an average particle size of 3.44 μm. Compared with this conventional coprecipitation method, YBa 2 Cu 3 O obtained by the present invention. No. 7 ultrafine raw material powder was subjected to heat treatment at 920 ° C. for 20 hours at an oxygen flow rate of 1 L / min for 2 hours in a mortar, and YBa 2 Cu 3 O 7-x superconducting ultrafine particles were subjected to separation treatment. It was something.
The YBa 2 Cu 3 O 7-x conductive ultrafine particles having an average particle size of 0.061 μm shown in FIG. 1 are dispersed ultrasonically in 100 ml of acetone to which 40 mg of iodine is added, and electrophoretic electrodeposition is performed on a silver substrate at a voltage of 10V. The electrophoretic electrodeposition film having a thickness of 2 μm to 4 μm was formed on the silver substrate.
A film of YBa 2 Cu 3 O 7-x superconducting ultrafine particles electrophoretically deposited on a silver substrate was heat-treated at 945 ° C. for 1 hour at an oxygen flow rate of 1 L / min to obtain superconducting YBa 2 Cu 3 O 7- An x film was obtained.
[0015]
The electrophoretic electrodeposition film of the obtained YBa 2 Cu 3 O 7-x superconducting ultrafine particles has a superconductor transition temperature (Tc) of 90 K, and is obtained by the conventional coprecipitation method shown in FIG. Further, the width of the superconducting transition was narrower than that of the electrophoretic electrodeposition film of YBa 2 Cu 3 O 7-x superconducting ultrafine particles having an average particle size of 3.44 μm, and the superconducting transition was performed in the shape of a shear.
The obtained migration electrodeposition film of YBa 2 Cu 3 O 7-x superconducting ultrafine particles has a high density, and migration was performed in the atmosphere of the present invention at 945 ° C. for 1 hour in an oxygen flow rate of 1 L / min. Electrodeposition cracks were not observed. On the other hand, in the electrophoretic electrodeposition film of YBa 2 Cu 3 O 7-x superconducting ultrafine particles having an average particle diameter of 3.44 μm obtained by the conventional coprecipitation method, many cracks were generated. The electrophoretic electrodeposition film of YBa 2 Cu 3 O 7-x superconducting ultrafine particles reflects the high density.
[0016]
【The invention's effect】
As described above, according to the method for producing a YBa 2 Cu 3 O 7-x superconducting film by electrophoretic electrodeposition according to the present invention, YBa 2 Cu 3 O 7- dispersed in an acetone electrodeposition bath to which iodine is added. Since the x superconducting fine particles are ultrafine particles, the unevenness of the film thickness due to the precipitation of the YBa 2 Cu 3 O 7-x superconducting ultrafine particles during electrodeposition is reduced, and the uniform YBa 2 Cu 3 O 7-x conductive membrane is obtained, having the effect of a three-dimensional substrates uniform also a YBa 2 Cu 3 O 7-x superconducting film of large area can be produced, also YBa 2 Cu 3 O 7-x superconducting film , the transition at the transition temperature (Tc) is sharp, obtained those having higher compactness, the critical current in the superconducting state is large Ku, excellent mechanical durability, YBa 2 Cu due to vibration or the like 3 without that O 7-x film is peeled off It is intended to achieve the cormorants effect.
[Brief description of the drawings]
FIG. 1 is a graph showing the particle size distribution of YBa 2 Cu 3 O 7-x superconducting ultrafine particles according to an embodiment of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000311752A JP3652978B2 (en) | 2000-10-12 | 2000-10-12 | Method for producing YBa2Cu3O7-x superconducting film by electrophoretic electrodeposition method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000311752A JP3652978B2 (en) | 2000-10-12 | 2000-10-12 | Method for producing YBa2Cu3O7-x superconducting film by electrophoretic electrodeposition method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002121696A JP2002121696A (en) | 2002-04-26 |
JP3652978B2 true JP3652978B2 (en) | 2005-05-25 |
Family
ID=18791461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000311752A Expired - Fee Related JP3652978B2 (en) | 2000-10-12 | 2000-10-12 | Method for producing YBa2Cu3O7-x superconducting film by electrophoretic electrodeposition method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3652978B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7662316B2 (en) * | 2005-08-04 | 2010-02-16 | 3Gsolar Ltd. | Method for preparation of stable metal oxide nanoparticles suspensions |
-
2000
- 2000-10-12 JP JP2000311752A patent/JP3652978B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002121696A (en) | 2002-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4952557A (en) | Formation of superconducting articles by electrodeposition | |
JP3652978B2 (en) | Method for producing YBa2Cu3O7-x superconducting film by electrophoretic electrodeposition method | |
JP3971097B2 (en) | Method of manufacturing YBa2Cu4O8 superconducting film by electrophoretic electrodeposition method | |
JP2821794B2 (en) | Oxide superconductor and manufacturing method thereof | |
JP3971116B2 (en) | Method for producing Y-Ba-Cu-O-based superconducting film by electrophoretic electrodeposition method | |
JPH04500196A (en) | Superconducting metal oxide composition | |
JPH10511926A (en) | Low temperature preparation of melt textured YBCO superconductors (T below 950 ° C) | |
JP3034255B2 (en) | Superconductor, superconductor wire, and method of manufacturing superconducting wire | |
JPH0669919B2 (en) | Manufacturing method of superconducting ceramic thin film | |
JP2502682B2 (en) | Method for producing superconducting ceramic-metal composite coating | |
JPH041002A (en) | Production of oxide superconductor | |
Maiti et al. | Coating of superconducting. 123 compound on silver substrate by electrophoretic technique | |
DE19939144C2 (en) | Process for the metallic coating of high-temperature superconductors | |
JP4141666B2 (en) | Method for producing oxide high temperature superconductor needle crystal | |
JP3854364B2 (en) | Method for producing REBa2Cu3Ox-based superconductor | |
JP2004203727A (en) | Oxide superconductor having high critical current density | |
JP3590567B2 (en) | Manufacturing method of oxide superconducting wire and oxide superconducting wire | |
JP2529746B2 (en) | Method for manufacturing superconducting film | |
JP2901243B2 (en) | Method for producing oxide-based superconducting wire | |
JPH0375103A (en) | Production of superconductive layer | |
JP3924130B2 (en) | Method for forming a Y-Ba-Cu-O-based superconducting film on a circular surface of a conductive cylindrical substrate | |
JP3411048B2 (en) | Manufacturing method of oxide superconductor | |
JP2551624B2 (en) | Manufacturing method of oxide superconducting material | |
KR940003439B1 (en) | Manufacturing method of superconductor meterial | |
JP3394297B2 (en) | Method for producing superconductive composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20031031 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040108 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040223 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050224 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090304 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |