JP3651534B2 - Control method of air conditioner - Google Patents

Control method of air conditioner Download PDF

Info

Publication number
JP3651534B2
JP3651534B2 JP09489197A JP9489197A JP3651534B2 JP 3651534 B2 JP3651534 B2 JP 3651534B2 JP 09489197 A JP09489197 A JP 09489197A JP 9489197 A JP9489197 A JP 9489197A JP 3651534 B2 JP3651534 B2 JP 3651534B2
Authority
JP
Japan
Prior art keywords
temperature
evaporator
heat exchange
indoor heat
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09489197A
Other languages
Japanese (ja)
Other versions
JPH10274446A (en
Inventor
隆志 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP09489197A priority Critical patent/JP3651534B2/en
Publication of JPH10274446A publication Critical patent/JPH10274446A/en
Application granted granted Critical
Publication of JP3651534B2 publication Critical patent/JP3651534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はインバータ式空気調和機の冷凍サイクルに含まれる膨張弁(電子膨張弁)の開閉度制御技術に係り、特に詳しくは圧縮機の吸入温度と蒸発器の温度との温度差(S−H量)を目標値に合わせる、いわゆるスーパーヒート制御を行う空気調和機の制御方法に関するものである。
【0002】
【従来の技術】
この種の空気調和機は、例えば図4に示すように、圧縮機1、四方弁2、室内熱交換器3、室外熱交換器4および電子膨張弁5等からなる冷凍サイクルを有する。
【0003】
冷房運転時には、四方弁2の切り替えにより冷媒を図4の破線矢印にしたがって室内熱交換器3から圧縮機1に、さらに圧縮機1から室外熱交換器4、電子膨張弁5を介して室内熱交換器3に戻す一方、リモコンの設定風量等に応じて室内側ファンを回転制御し、室内熱交換器3で熱交換した冷風を室内に吹き出し、室内温度とリモコンの設定温度との差に応じた所定運転周波数で圧縮機1を運転して室温をコントロールする。
【0004】
暖房運転時には、冷房運転時と逆に冷媒を室外熱交換器4から圧縮機1に、さらに圧縮機1から室内熱交換器3、電子膨張弁5を介して室外熱交換器4に戻す一方(図4の実線矢印参照)、リモコンの設定風量等に応じて室内ファンを回転制御し、室内熱交換器3で熱交換した風を室内に吹き出し、室内温度とリモコンの設定温度との差に応じた所定運転周波数で圧縮機1を運転して室温をコントロールする。
【0005】
そのため、図5に示すように、室内機制御部6および室外機制御部7を備え、室内機制御部6はリモコンによる指示にしたがって室内ファンを制御するとともに、室外機制御部7に所定指令(室温と設定値の差に応じた運転周波数等)を送信し、室外機制御部はその指令により圧縮機1等を制御する。
【0006】
ところで、室外機制御部7において、圧縮機1の吸入温度と蒸発器の温度(熱交温度)との差(S−H量)を目標値(一定)に合わせるスーパーヒート制御を行う、つまり電子膨張弁5の開閉度合を所定に制御する。 例えば、1分毎にS−H量を検出し、このS−H量と目標値との差に応じて電子膨張弁5のモータを制御する。これは、冷凍サイクルの急激な変化を抑え、室温の急激な変化を抑える必要があるからである。なお、目標値はリモコンの設定温度や室温等を考慮して決定される。
【0007】
そのため、室内熱交換器3の温度を検出する室内熱交サーミスタ8、圧縮機1の吸入温度を検出するサクションサーミスタ9および室外熱交換器4の温度を検出する室外熱交サーミスタ10が備えられている。
【0008】
【発明が解決しようとする課題】
しかしながら、前記空気調和機の制御方法において、蒸発器の温度を検出するセンサが1つであり、したがって蒸発器の1カ所の温度のみしか検出することができないため、スーパーヒート制御が適切に行われない場合があり、蒸発器が大幅に過熱し、最適な冷凍サイクルが行われなくなることもあり、ひいては室温調節に悪影響を及ぼすことがあった。
【0009】
例えば、冷房運転開始時には蒸発器入口が最初に冷え、中間から出口側になる程なかなか冷えず(図6参照)、また冷房運転中で室内の湿度が高い等の特殊な条件時にはその湿気を取るために蒸発器の中間が過熱したり、さらに運転中に周波数が上昇した時には冷媒入口側が湿った状態になる。
【0010】
このように、冷凍サイクルの安定していない運転開始当初、高湿度や運転周波数の変更時等の条件により、蒸発器の温度が冷媒入側、中間および出側でそれぞれ異なった値になり、1つのセンサだけでは現状のスーパーヒート制御にとって適切な蒸発器の温度を得ることができないため、例えば電子膨張弁5がどんどん絞られたりし、結果蒸発器の過熱、冷凍サイクルに支障を来すことになる。
【0011】
この発明は前記課題に鑑みなされたものであり、その目的はスーパーヒート制御において、常に蒸発器が過熱することなく、適切に膨張弁の制御を行うことができるようにした空気調和機の制御方法を提供することにある。
【0012】
【課題を解決するための手段】
前記目的を達成するために、この発明は冷凍サイクルに含まれる圧縮機の吸入温度と蒸発器の温度との温度差(S−H量)を目標値に合わせるように、前記冷凍サイクルに含まれる膨張弁の開閉度を調節する空気調和機の制御方法において、前記蒸発器の冷媒入口側と中間部分の少なくとも2個所に温度検出手段を有しており、前記複数の温度検出手段で検出した温度のうちの最も低い温度を前記蒸発器の温度に決定し、前記圧縮機の吸入温度と前記決定した蒸発器の温度との温度差によりスーパーヒート制御を行うようにしたことを特徴としている。
【0013】
【発明の実施の形態】
以下、この発明の実施の形態を図1ないし図4を参照して説明する。なお、図1中、図5と同一部分には同一符号を付して重複説明を省略する。また、冷凍サイクルについては図4を参照されたい。
【0014】
この発明の空気調和機の制御方法は、蒸発器の異なる個所にそれぞれ温度検出手段を配置すれば、これら温度検出手段によって検出した蒸発器の温度(熱交温度)のうち、現状のスーパーヒート制御にとって最良の温度を得ることができることに着目し、圧縮機の冷媒吸入温度とその適切な蒸発器の温度との差(S−H量)を検出し、このS−H量が目標値になるように膨張弁の開閉度合を制御し、スーパーヒート制御による蒸発器の過熱を防止する。
【0015】
そのために、図1に示すように、この発明の空気調和機の制御方法を適用した制御装置は、複数の室内熱交サーミスタをそれぞれ有する室内熱交サーミスタ部11および室外熱交サーミスタ部12と、図5に示す室内機制御部6の機能の他に、室内熱交サーミスタ部11によって検出した温度を室外機制御部14に転送する室内機制御部13と、図5に示す室外機制御部7の機能の他に、室内機制御部13から転送された温度のうち現状スーパーヒート制御に最適な温度を1つ決定し、この決定した温度とサクション温度とによりスーパーヒート制御を実行する室外機制御部14とを備えている。
【0016】
前記複数の室内熱交サーミスタとしては、例えば図2に示すように、室内熱交換器(冷房運転の場合の蒸発器)3の冷媒入口側の温度を検出する室内熱交サーミスタ11a,中間部分の温度を検出する室内熱交サーミスタ11bおよび出口側の温度を検出する室内熱交サーミスタ11cとする。
【0017】
なお、室内熱交サーミスタをそれ以上の数としてもよく、例えば冷媒入側と中間との間、中間と出口側との間にそれぞれ室内熱交サーミスタを追加してもよく、あるいは碁盤の目のように配置するようにしてもよい。また、コスト面を考慮すると、室内熱交サーミスタ11cを省き、冷媒入口側と中間部分の2つの室内熱交サーミスタ11a,11bだけにしてもよい。
【0018】
室外熱交サーミスタ部12は、室内熱交サーミスタ部11と同じく室外熱交換器4の複数カ所に配置した複数の室外熱交サーミスタからなるが、室外熱交換器(暖房運転の場合の蒸発器)4が過熱することが極めてまれであることから、従来同様に1つの室外熱交サーミスタであってもよい。
【0019】
次に、前記構成の空気調和機の制御装置の動作を図3のグラフ図を参照して説明すると、まずリモコンによって房運転操作が行われると、室内機制御部13は当該室温調節に必要な信号(運転周波数等)を室外機制御部14に転送する。室外機制御部14は少なくとも圧縮機1を所定に駆動し、電子膨張弁5を所定の開閉度とし、冷凍サイクルを作動する。なお、従来同様に、室内機制御13および室外機制御14は他の必要な制御(ファンの回転制御等)を行って室温調節を行う。
【0020】
このとき、室内機制御部13は室内熱交サーミスタ11a,11b,11cで検出された蒸発器の温度(室内熱交温度)を室外機制御部14に転送し、室外機制御部14は従来同様に室内熱交温度と圧縮機1の吸入温度(サクション温度)との温度差(S−H量)を検出し、このS−H量が目標値になるようにスーパーヒート制御を行う。
【0021】
この場合、室外機制御部14は、複数の室内熱交サーミスタ11a,11b,11cで検出された温度のうち、最も低い温度を決定する。例えば、運転開始直後のt1時点において、最も低い室内熱交温度が入口側に配置されている室内熱交サーミスタ11aによって検出された温度であると、サクション温度とその入口側の温度との差を検出し、この温度差にしたがってスーパーヒート制御を行う。これによれば、運転開始時で冷凍サイクルが安定していない場合でも、電子膨張弁5がどんどん絞られることもなく、蒸発器の過熱を防止することができる。
【0022】
t2時点において、前述したスーパーヒート制御により入口側温度が上昇し、中間温度が最も低くなると、中間に配置されている室内熱交サーミスタ11bによって検出された温度とサクション温度との差を検出し、この温度差にしたがってスーパーヒート制御を行う。したがって、入口側温度が上昇しても、電子膨張弁5がどんどん絞られることもなく、蒸発器の過熱を防止することができる。
【0023】
t3時点において、前述したスーパーヒート制御により出口側温度が最も低くなると、出口側に配置されている室内熱交サーミスタ11cによって検出された温度とサクション温度との差を検出し、この温度差にしたがってスーパーヒート制御を行う。この場合、冷凍サイクルが極めて安定しており、理想的に電子膨張弁5の制御を行うことができ、蒸発器が過熱することもない。また、例えば入口側温度あるいは中間温度が図3と異なって上昇していても、最も低い温度とサクション温度とによりスーパーヒート制御を行うことから、蒸発器が過熱することもない。
【0024】
また、t4時点において、例えばリモコンの設定操作(運転周波数の変更)や何等かn外乱等によって圧縮機1の運転周波数が上昇すると、冷媒流入が増加し、これにより入口側温度が急激に低下し、最も低くなる。すると、t5時点にいて、入口側に配置されている室内熱交サーミスタ11aによって検出された温度とサクション温度との差を検出し、この差にしたがってスーパーヒート制御を行う。したがって、電子膨張弁5がどんどん絞られることもなく、蒸発器の過熱を防止することができる。
【0025】
このように、冷凍サイクルの安定していない運転開始当初、高湿度や運転周波数の変更時等の条件により、蒸発器の温度が冷媒入力側、中間および出力側でそれぞれ異なった値である場合、それらの温度のうち、最も低い温度を室内熱交温度とし、つまり現状のスーパーヒート制御にとって良好な温度(室内熱交温度)を決定することができ、常に蒸発器の過熱なしに電子膨張弁5を最適に制御することができ、冷凍サイクルに支障を来すこともなく、つまり室温調節に悪影響を及ぼすようなこともない。
【0026】
なお、3つの室内熱交サーミスタ11a,11b,11cを用いれば、当該スーパーヒート制御を最適に行うことができるが、出口側の室内熱交サーミスタ11cを省略し、入口側温度を検出する室内熱交サーミスタ11aおよび中間部分の温度を検出する室内熱交サーミスタ11bの2つとしてもよい。
【0027】
この場合、出口側の室内熱交サーミスタ11cを減らしても、蒸発器の過熱を防止することができる。すなわち、蒸発器の中間の温度と出口側の温度とは常に近い値であることから、室内熱交サーミスタ11cを室内熱交サーミスタ11bで兼ねることができるからである。また、室内熱交サーミスタを1つ削減すれば、その分コストアップが小さく、コスト面からも極めて有用でもある。
【0028】
ところで、暖房運転において、蒸発器が室外熱交換器4となり、前述した冷房運転時と同様の制御が行われるため、蒸発器の過熱を防止することができる。この制御については、重複説明となるため省略する。なお、暖房運転時は外気温度が低く、前述したように蒸発器が過熱することがまれであることから、従来同様に室外熱交サーミスタを1つとしてもよい。
【0029】
【発明の効果】
以上説明したように、この発明によれば、蒸発器の冷媒入口側と中間部分の少なくとも2個所に温度検出手段を有し、これら温度検出手段で検出した温度のうちの最も低い温度を蒸発器の温度に決定し、圧縮機の吸入温度と前記決定した蒸発器の温度との温度差によりスーパーヒート制御を行うようにしたので、常に蒸発器の過熱なしに電子膨張弁5を最適に制御することができ、冷凍サイクルに支障を来すこともないという有用な効果がある。
【図面の簡単な説明】
【図1】 この発明の一実施の形態を示し、空気調和機の制御方法が適用される制御装置の概略的ブロック線図。
【図2】 この発明の空気調和機の蒸発器を説明するための概略的正面図。
【図3】 図1に示す制御装置の動作を説明するための概略的グラフ図。
【図4】 空気調和機の冷凍サイクルを説明するための概略的構成図。
【図5】 従来の空気調和機の制御装置を説明するための概略的ブロック線図。
【図6】 図5に示す制御装置の動作を説明するための概略的グラフ図。
【符号の説明】
1 圧縮機
3 室内熱交換器
4 室外熱交換器
5 電子膨張弁
6,13 室内機制御部
7,14 室外機制御部
9 サクションサーミスタ(圧縮機吸入温度センサ)
11 室内熱交サーミスタ部
11a,11b,11c 室内熱交換サーミスタ(温度センサ)
12 室外熱交サーミスタ部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an open / close degree control technique of an expansion valve (electronic expansion valve) included in a refrigeration cycle of an inverter type air conditioner, and more particularly, a temperature difference (SH) between a suction temperature of a compressor and a temperature of an evaporator. It is related with the control method of the air conditioner which performs what is called superheat control which adjusts quantity) to a target value.
[0002]
[Prior art]
For example, as shown in FIG. 4, this type of air conditioner has a refrigeration cycle including a compressor 1, a four-way valve 2, an indoor heat exchanger 3, an outdoor heat exchanger 4, and an electronic expansion valve 5.
[0003]
During the cooling operation, switching of the four-way valve 2 causes the refrigerant to flow from the indoor heat exchanger 3 to the compressor 1 according to the broken line arrow in FIG. 4, and from the compressor 1 to the outdoor heat exchanger 4 and the electronic expansion valve 5. While returning to the exchanger 3, the rotation of the indoor fan is controlled according to the air volume set by the remote controller, etc., the cold air exchanged by the indoor heat exchanger 3 is blown into the room, and the air temperature is set according to the difference between the room temperature and the remote controller set temperature. The compressor 1 is operated at a predetermined operating frequency to control the room temperature.
[0004]
In the heating operation, the refrigerant is returned from the outdoor heat exchanger 4 to the compressor 1 and from the compressor 1 to the outdoor heat exchanger 4 via the electronic expansion valve 5 (in contrast to the cooling operation) ( The rotation of the indoor fan is controlled according to the set air volume of the remote control, etc., and the hot air exchanged by the indoor heat exchanger 3 is blown into the room, and the difference between the room temperature and the set temperature of the remote control is determined. The room temperature is controlled by operating the compressor 1 at a predetermined operating frequency.
[0005]
Therefore, as shown in FIG. 5, an indoor unit control unit 6 and an outdoor unit control unit 7 are provided. The indoor unit control unit 6 controls the indoor fan according to an instruction from the remote controller, and a predetermined command ( The operation frequency according to the difference between the room temperature and the set value is transmitted, and the outdoor unit control unit controls the compressor 1 and the like according to the command.
[0006]
By the way, the outdoor unit control unit 7 performs superheat control that adjusts the difference (SH amount) between the suction temperature of the compressor 1 and the temperature of the evaporator (heat exchange temperature) to a target value (constant), that is, electronic The degree of opening / closing of the expansion valve 5 is controlled to a predetermined value. For example, the amount of SH is detected every minute, and the motor of the electronic expansion valve 5 is controlled according to the difference between the amount of SH and the target value. This suppresses abrupt changes in the refrigeration cycle, it is necessary to suppress an abrupt change in the Atsushi Muro. The target value is determined in consideration of the set temperature of the remote controller, room temperature, and the like.
[0007]
Therefore, an indoor heat exchange thermistor 8 that detects the temperature of the indoor heat exchanger 3, a suction thermistor 9 that detects the intake temperature of the compressor 1, and an outdoor heat exchange thermistor 10 that detects the temperature of the outdoor heat exchanger 4 are provided. Yes.
[0008]
[Problems to be solved by the invention]
However, in the control method for the air conditioner, there is one sensor for detecting the temperature of the evaporator, and therefore only one temperature of the evaporator can be detected. Therefore, superheat control is appropriately performed. In some cases, the evaporator was overheated and the optimum refrigeration cycle could not be performed, which in turn adversely affected room temperature control.
[0009]
For example, at the start of cooling operation, the evaporator inlet cools first and does not cool so quickly that it goes from the middle to the outlet side (see Fig. 6) , and the moisture is taken out in special conditions such as high humidity in the room during cooling operation. Therefore, when the middle of the evaporator is overheated or the frequency is increased during operation, the refrigerant inlet side becomes wet.
[0010]
Thus, stable non operation beginning of the refrigeration cycle, the conditions such as when changing the high humidity and operating frequency, temperature refrigerant inlet port side of the evaporator, will respectively different values in the middle and exit end , since only one sensor can not be obtained temperature suitable evaporator for superheat control the current, for example, or the electronic expansion valve 5 is rapidly throttled, overheating results evaporator, a problem in the refrigeration cycle come Will be.
[0011]
This invention is made in view of the said subject, The objective is the superheat control, The control method of the air conditioner which enabled it to control an expansion valve appropriately, without always overheating an evaporator Is to provide.
[0012]
[Means for Solving the Problems]
To achieve the above object, the present invention is to match the temperature difference between the temperature of the suction temperature of the compressor included in a refrigeration cycle evaporator (S-H content) in the target value, the refrigeration cycle the control method of an air conditioner for adjusting the opening degree of the expansion valve included, has a temperature detecting means at least two positions of the refrigerant inlet side and the intermediate portion of the evaporator, detected by the plurality of temperature detection means and the lowest temperature of the temperature determined in the temperature of the evaporator, characterized in that to perform the superheat controlled by the temperature difference between the temperature of the evaporator and the determined and the suction temperature of the compressor It is said.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS. In FIG. 1, the same parts as those in FIG. See FIG. 4 for the refrigeration cycle.
[0014]
In the air conditioner control method according to the present invention, if temperature detecting means are arranged at different portions of the evaporator, the current superheat control among the temperatures (heat exchange temperatures) of the evaporator detected by these temperature detecting means. Focusing on the fact that the best temperature can be obtained, the difference (S—H amount) between the refrigerant suction temperature of the compressor and the appropriate evaporator temperature is detected, and this S—H amount becomes the target value. Thus, the degree of opening and closing of the expansion valve is controlled to prevent overheating of the evaporator by superheat control.
[0015]
Therefore, as shown in FIG. 1, a control device to which the air conditioner control method of the present invention is applied includes an indoor heat exchange thermistor unit 11 and an outdoor heat exchange thermistor unit 12 each having a plurality of indoor heat exchange thermistors, In addition to the functions of the indoor unit control unit 6 shown in FIG. 5, the indoor unit control unit 13 that transfers the temperature detected by the indoor heat exchanger thermistor unit 11 to the outdoor unit control unit 14, and the outdoor unit control unit 7 shown in FIG. In addition to the above function, an outdoor unit control that determines one of the temperatures transferred from the indoor unit control unit 13 that is optimal for the current super heat control and performs the super heat control based on the determined temperature and the suction temperature. Part 14.
[0016]
As the plurality of indoor heat exchange thermistors, for example, as shown in FIG. 2, an indoor heat exchange thermistor 11a for detecting the temperature on the refrigerant inlet side of the indoor heat exchanger (evaporator in the case of cooling operation) 3 is provided. The indoor heat exchange thermistor 11b for detecting the temperature and the indoor heat exchange thermistor 11c for detecting the temperature on the outlet side are used.
[0017]
Incidentally, the indoor heat exchange thermistor may be a more number, for example between the refrigerant inlet port side and the intermediate may be added indoor heat exchange thermistor respectively between the middle and the outlet side or grid pattern, You may make it arrange | position like this. In consideration of cost, the indoor heat exchange thermistor 11c may be omitted, and only the two indoor heat exchange thermistors 11a and 11b on the refrigerant inlet side and the intermediate portion may be provided.
[0018]
The outdoor heat exchange thermistor section 12 is composed of a plurality of outdoor heat exchange thermistors arranged at a plurality of locations of the outdoor heat exchanger 4 as with the indoor heat exchange thermistor section 11, but the outdoor heat exchanger (evaporator in the case of heating operation). Since it is extremely rare for 4 to overheat, it may be one outdoor heat exchange thermistor as in the prior art.
[0019]
Next, when the operation of the control apparatus of the air conditioner of the structure will be described with reference to the graph of FIG. 3, the first cold tufts driving operation is performed by the remote control, the indoor unit control section 13 required for the climate A simple signal (such as operating frequency) is transferred to the outdoor unit control unit 14. The outdoor unit controller 14 drives at least the compressor 1 in a predetermined manner, sets the electronic expansion valve 5 to a predetermined opening / closing degree, and operates the refrigeration cycle. As in the prior art, the indoor unit control 13 and the outdoor unit control 14 perform other necessary controls (fan rotation control, etc.) to adjust the room temperature.
[0020]
At this time, the indoor unit control unit 13 transfers the evaporator temperature (indoor heat exchange temperature) detected by the indoor heat exchange thermistors 11a, 11b, and 11c to the outdoor unit control unit 14, and the outdoor unit control unit 14 is the same as the conventional unit. Then, a temperature difference (S—H amount) between the indoor heat exchange temperature and the suction temperature (suction temperature) of the compressor 1 is detected, and superheat control is performed so that this S—H amount becomes a target value.
[0021]
In this case, the outdoor unit control unit 14 determines the lowest temperature among the temperatures detected by the plurality of indoor heat exchange thermistors 11a, 11b, and 11c. For example, if the lowest indoor heat exchange temperature is the temperature detected by the indoor heat exchange thermistor 11a disposed on the inlet side at time t1 immediately after the start of operation, the difference between the suction temperature and the temperature on the inlet side is calculated. Detect and perform superheat control according to this temperature difference. According to this, even when the refrigeration cycle is not stable at the start of operation, the electronic expansion valve 5 is not squeezed more and more, and overheating of the evaporator can be prevented.
[0022]
At time t2, when the inlet side temperature rises by the super heat control described above and the intermediate temperature becomes the lowest, the difference between the temperature detected by the indoor heat exchanger thermistor 11b arranged in the middle and the suction temperature is detected, Superheat control is performed according to this temperature difference. Therefore, even if the inlet side temperature rises, the electronic expansion valve 5 is not squeezed more and more, and overheating of the evaporator can be prevented.
[0023]
At the time point t3, when the outlet side temperature becomes the lowest by the above-described superheat control, the difference between the temperature detected by the indoor heat exchanger thermistor 11c arranged on the outlet side and the suction temperature is detected, and according to this temperature difference Perform superheat control. In this case, the refrigeration cycle is extremely stable, the electronic expansion valve 5 can be ideally controlled, and the evaporator does not overheat. Further, for example, even if the inlet side temperature or the intermediate temperature rises differently from that shown in FIG. 3, superheat control is performed at the lowest temperature and the suction temperature, so that the evaporator does not overheat.
[0024]
Further, at the time t4, when the operating frequency of the compressor 1 is increased due to, for example, a remote controller setting operation (changing the operating frequency) or some n disturbance, the refrigerant inflow increases, whereby the inlet side temperature rapidly decreases. The lowest. Then, at time t5, the difference between the temperature detected by the indoor heat exchanger thermistor 11a arranged on the inlet side and the suction temperature is detected, and superheat control is performed according to this difference. Therefore, the electronic expansion valve 5 is not squeezed more and more, and the evaporator can be prevented from overheating.
[0025]
Thus, when the temperature of the evaporator has different values on the refrigerant input side, the intermediate side, and the output side due to conditions such as high humidity and changing the operation frequency at the beginning of unstable operation of the refrigeration cycle, Among these temperatures, the lowest temperature is set as the indoor heat exchange temperature, that is, a temperature favorable for the current superheat control (indoor heat exchange temperature) can be determined, and the electronic expansion valve 5 is always without overheating of the evaporator. Can be optimally controlled and does not interfere with the refrigeration cycle, that is, does not adversely affect the room temperature adjustment.
[0026]
Incidentally, the three indoor heat exchange thermistor 11a, 11b, the use of the 11c, indoor although the superheat control can be optimally performed, which omit the outlet side of the indoor heat exchange thermistor 11c, detects the inlet port side temperature The heat exchanger thermistor 11a and the indoor heat exchanger thermistor 11b for detecting the temperature of the intermediate portion may be used.
[0027]
In this case, even if the indoor heat exchanger thermistor 11c on the outlet side is reduced, overheating of the evaporator can be prevented. That is, since the intermediate temperature of the evaporator and the temperature on the outlet side are always close to each other, the indoor heat exchange thermistor 11c can also serve as the indoor heat exchange thermistor 11b. Further, if one indoor heat exchange thermistor is reduced, the cost increase is small, and it is extremely useful from the cost aspect.
[0028]
By the way, in the heating operation, the evaporator serves as the outdoor heat exchanger 4, and the same control as in the cooling operation described above is performed, so that the evaporator can be prevented from overheating. About this control, since it becomes duplication description, it abbreviate | omits. In addition, since the outside air temperature is low during the heating operation and the evaporator is rarely overheated as described above, one outdoor heat exchange thermistor may be used as in the conventional case.
[0029]
【The invention's effect】
As described above , according to the present invention, the temperature detecting means is provided in at least two locations of the refrigerant inlet side and the intermediate portion of the evaporator, and the lowest temperature among the temperatures detected by these temperature detecting means is determined. of determining the temperature, since to perform the superheat controlled by the temperature difference between the suction temperature of the compressor and the temperature of the evaporator with the determined optimum electronic expansion valve 5 without evaporator superheat always This has the useful effect of being able to control the refrigeration cycle.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of a control apparatus to which an air conditioner control method is applied according to an embodiment of the present invention.
FIG. 2 is a schematic front view for explaining an evaporator of an air conditioner according to the present invention.
FIG. 3 is a schematic graph for explaining the operation of the control device shown in FIG. 1;
FIG. 4 is a schematic configuration diagram for explaining a refrigeration cycle of an air conditioner.
FIG. 5 is a schematic block diagram for explaining a conventional control device for an air conditioner.
6 is a schematic graph for explaining the operation of the control device shown in FIG. 5;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 3 Indoor heat exchanger 4 Outdoor heat exchanger 5 Electronic expansion valve 6,13 Indoor unit control part 7,14 Outdoor unit control part 9 Suction thermistor (compressor suction temperature sensor)
11 indoor heat exchange thermistors 11a, 11b, 11c indoor heat exchange thermistors (temperature sensors)
12 Outdoor heat exchange thermistor

Claims (1)

冷凍サイクルに含まれる圧縮機の吸入温度と蒸発器の温度との温度差(S−H量)を目標値に合わせるように、前記冷凍サイクルに含まれる膨張弁の開閉度を調節する空気調和機の制御方法において、
前記蒸発器の冷媒入口側と中間部分の少なくとも2個所に温度検出手段を有しており、前記複数の温度検出手段で検出した温度のうちの最も低い温度を前記蒸発器の温度に決定し、前記圧縮機の吸入温度と前記決定した蒸発器の温度との温度差によりスーパーヒート制御を行うようにしたことを特徴とする空気調和機の制御方法。
The temperature difference between the suction temperature of the compressor included in a refrigeration cycle and temperature of the evaporator (S-H content) to match the target value, the air conditioner to adjust the opening degree of the expansion valve included in the freezing cycle In the control method of the machine,
Has a temperature detecting means at least two positions of the refrigerant inlet side and the intermediate portion of the evaporator, to determine the lowest temperature among the temperatures detected by the plurality of temperature detecting means temperature of the evaporator the control method of the air conditioner being characterized in that to perform the superheat controlled by the temperature difference between the temperature of the evaporator and the determined and the suction temperature of the compressor.
JP09489197A 1997-03-28 1997-03-28 Control method of air conditioner Expired - Fee Related JP3651534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09489197A JP3651534B2 (en) 1997-03-28 1997-03-28 Control method of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09489197A JP3651534B2 (en) 1997-03-28 1997-03-28 Control method of air conditioner

Publications (2)

Publication Number Publication Date
JPH10274446A JPH10274446A (en) 1998-10-13
JP3651534B2 true JP3651534B2 (en) 2005-05-25

Family

ID=14122673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09489197A Expired - Fee Related JP3651534B2 (en) 1997-03-28 1997-03-28 Control method of air conditioner

Country Status (1)

Country Link
JP (1) JP3651534B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349282A (en) * 2005-06-17 2006-12-28 Hoshizaki Electric Co Ltd Auger type ice making machine

Also Published As

Publication number Publication date
JPH10274446A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
JP4782941B2 (en) Air conditioner for vehicles
JPH0518630A (en) Air conditioner
JP6004670B2 (en) Air conditioner control device, air conditioner control method, air conditioner program, and air conditioner equipped with the same
JP2007192422A (en) Multi-room type air conditioner
JP3599011B2 (en) Air conditioner
JP3816782B2 (en) Air conditioner
JP3991586B2 (en) Outside air treatment unit
JP3651534B2 (en) Control method of air conditioner
JP4830399B2 (en) Air conditioner
JP4411758B2 (en) Air conditioner
JP3454299B2 (en) Air conditioner
JP4252184B2 (en) Refrigerant flow control device for air conditioner
JPH11257719A (en) Method of controlling air conditioner, and its device
JP3651536B2 (en) Control method of air conditioner
JP2002195666A (en) Control method for air conditioner
JPH09243210A (en) Control method for air conditioner and apparatus therefor
JP2002061922A (en) Method for contorlling air conditioner
JPH04288438A (en) Air conditioner
JP2765667B2 (en) Control device for air conditioner
JP2757900B2 (en) Air conditioner
JP2002048382A (en) Air conditioner
JPH09138024A (en) Air conditioner
JPH08285393A (en) Air conditioner for multi-room
JP7443887B2 (en) air conditioner
JP7400583B2 (en) air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees