JP3650973B2 - Treatment method of acidic molten fly ash - Google Patents

Treatment method of acidic molten fly ash Download PDF

Info

Publication number
JP3650973B2
JP3650973B2 JP02587195A JP2587195A JP3650973B2 JP 3650973 B2 JP3650973 B2 JP 3650973B2 JP 02587195 A JP02587195 A JP 02587195A JP 2587195 A JP2587195 A JP 2587195A JP 3650973 B2 JP3650973 B2 JP 3650973B2
Authority
JP
Japan
Prior art keywords
fly ash
molten fly
acidic
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02587195A
Other languages
Japanese (ja)
Other versions
JPH08197034A (en
Inventor
▲紘▼一郎 金藤
均 比屋根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP02587195A priority Critical patent/JP3650973B2/en
Publication of JPH08197034A publication Critical patent/JPH08197034A/en
Application granted granted Critical
Publication of JP3650973B2 publication Critical patent/JP3650973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【産業上の利用分野】
本発明は廃棄物やその焼却残渣を溶融処理する際に発生する溶融飛灰の処理方法に関する。都市ごみ、産業廃棄物、汚泥等の焼却残渣を、減容化及び無害化するために、溶融処理することが行なわれる。これらを溶融処理すると、溶融スラグの他に溶融飛灰が発生するが、一般に溶融スラグは水砕固化され、また溶融飛灰はこれに含まれる重金属類が溶出しないように薬剤で安定化処理される。本発明は上記のような溶融飛灰のうちで特に酸性溶融飛灰の処理方法に関するものである。
【0002】
【従来の技術】
従来、溶融飛灰の処理方法として、溶融飛灰に水及びキレート剤をそれぞれ所定割合で加えて混練する方法が提案されている(特開平5−87324)。ところが、この従来法は、用いるキレート剤が高価であるため、非経済的である。
【0003】
一方、焼却残渣の処理方法としては、焼却残渣に2価鉄を加え、撹拌及び加熱する方法が提案されている(特開平6−134436)。そこで、溶融飛灰についても、これに2価鉄、例えば塩化第1鉄を加えて混練することが考えられる。実際、塩化第1鉄を加えて混練する方法は、例えば都市ごみの焼却残渣のうちで焼却炉に残る焼却灰を溶融処理する場合、発生する溶融飛灰はpH11〜12程度のアルカリ性を示し、かかるアルカリ性溶融飛灰に対しては相応に効果を奏する。しかし、単に塩化第1鉄を加えて混練する方法は、都市ごみ等を焼却処理する際に排ガスと共に飛散して通常は下流側の集塵機で捕集される焼却飛灰を溶融処理する場合、プラスチックやゴム類の廃棄物を溶融処理する場合、更にはこれらを焼却灰と共に溶融処理する場合、発生する溶融飛灰はpH3〜6程度の酸性を示し、かかる酸性溶融飛灰に対しては効果を奏せず、これに含まれる重金属類の溶出を充分に防止できない。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、従来法では、非経済的であるか、或は酸性溶融飛灰に含まれる重金属類の溶出を充分に防止できない点である。
【0005】
【課題を解決するための手段】
しかして本発明は、廃棄物やその焼却残渣を溶融処理する際に発生する酸性溶融飛灰の処理方法であって、酸性溶融飛灰に消石灰を加えてpHを8.5以上にし、次に多硫化カルシウムを酸性溶融飛灰100重量部当たり0.1〜10重量部加え、更に鉱酸を加えてpHを8.5〜10.0に調整した後、水として廃棄物やその焼却残渣を溶融処理する際に発生する溶融スラグを水砕固化するのに用いた循環水又は廃棄物やその焼却残渣を溶融処理する際に発生する排ガスを水洗浄するのに用いた排水を酸性溶融飛灰100重量部当たり10〜35重量部加えて混練することを特徴とする酸性溶融飛灰の処理方法に係る。
【0006】
本発明において処理対象となる酸性溶融飛灰は、廃棄物やその焼却残渣を溶融処理する際に排ガスと共に飛散して通常は下流側の集塵機で捕集される溶融飛灰のうち、酸性を示す溶融飛灰である。かかる酸性溶融飛灰は、焼却飛灰を溶融処理する場合、プラスチックやゴム類を溶融処理する場合、更にはこれらを焼却灰と共に溶融処理する場合に発生し、pHが3〜6程度を示す。
【0007】
本発明では先ず、酸性溶融飛灰に消石灰(水酸化カルシウム)を加えて混合し、そのpHを8.5以上にする。消石灰は、粉状であり、また安価で入手し易く、しかも過剰に加えてもpHが極度に上がらず、ガスの発生もないので、使用に有利である。これに対して水酸化ナトリウムはアルカリ性が強過ぎ、粉状のものを工業的に入手し難い。また炭酸カルシウムは酸性域でガスを発生する。更に生石灰(酸化カルシウム)は安定性が悪く、炭酸カルシウムや消石灰に変化し易い。
【0008】
本発明では次に、多硫化カルシウム(CaS4)を酸性溶融飛灰100重量部当たり0.1〜10重量部加える。通常、市販されている貝殻虫駆除用の石灰硫黄含剤(28重量%程度の多硫化カルシウム含有品)を元の酸性溶融飛灰100重量部当たり多硫化カルシウム換算で0.1〜10重量部加えて混合するのが入手の容易性から見て有利である。多硫化カルシウムは硫化物作製作用を有し、酸性溶融飛灰に含まれる重金属類を硫化物の形にする。硫化物の形になった重金属類は炭酸塩や水酸化物の形の重金属類よりも水に対する溶解度が小さく、より安定である。多硫化カルシウムの加える量を酸性溶融飛灰100重量部当たり0.1重量部未満にすると、酸性溶融飛灰に通常含まれる重金属類の濃度等との関係で、その溶出を充分に防止することができず、逆に10重量部超にすると、後のpH調整との関係で重金属類によってはその溶出が増え、いずれにしても不都合である。
【0009】
多硫化カルシウムに代えて、多硫化カルシウムと硫化ナトリウム(Na2S)及び/又は硫化カリウム(K2S)との混合物を加えるのが好ましい。多硫化カルシウムは安価であるが、硫化物作製作用がやや弱く、酸性溶融飛灰に含まれる重金属類を充分に硫化物の形にすることができない場合がある。これに対して硫化ナトリウムや硫化カリウムは硫化物作製作用が強く、硫化反応が短時間で進行する。しかし、硫化ナトリウムや硫化カリウムは高価である。したがって、経済性及び硫化物作製作用の双方から見て、多硫化カルシウムと硫化ナトリウム及び/又は硫化カリウムとの混合物を加えるのが好ましいのである。
【0010】
多硫化カルシウムを加える場合でも、或は多硫化カルシウムと硫化ナトリウム及び/又は硫化カリウムとの混合物を加える場合でも、前述したように酸性溶融飛灰のpHを8.5以上にしておく。これらを酸性溶融飛灰にそのまま加えると、有毒な硫化水素ガスが発生するので、安全を見込むのである。
【0011】
本発明では更に、鉱酸を加えてpHを8.5〜10.0の範囲に調製する。多硫化カルシウム、或は多硫化カルシウムと硫化ナトリウム及び/又は硫化カリウムとの混合物を加えると、pHがよりアルカリ性に傾くので、更に鉱酸、例えば塩酸を加えて、そのpHを8.5〜10.0の範囲に調製するのである。pHが8.5〜10.0の範囲を外れると、酸性溶融飛灰に含まれる鉛や亜鉛等の両性金属は酸性域でもアルカリ性域でもその溶出が増え、またカドミウムは酸性域で、ヒ素はアルカリ性域でそれぞれその溶出が増える。
【0012】
鉱酸に代えて、塩化第1鉄を加えるのが好ましい。通常、塩化第1鉄の高濃度水溶液、例えば30重量%前後の水溶液を加えて混合し、pHを8.5〜10.0の範囲に調整する。塩化第1鉄は還元作用を有し、酸性溶融飛灰に含まれる有害な6価クロムを3価クロムに還元する。これに対して塩化第2鉄は還元作用がない。
【0013】
本発明では最後に、上記のようにpHを8.5〜10.0の範囲に調整した後、水として用いる循環水又は排水を元の酸性溶融飛灰100重量部当たり10〜35重量部加えて混練する。循環水又は排水の加える量を酸性溶融飛灰100重量部当たり10重量部未満にすると、酸性溶融飛灰を充分に泥状化することができず、逆に35重量部超にすると、酸性溶融飛灰がスラリー状になってしまい、いずれにしてもハンドリング性が悪く、不都合である。
【0014】
酸性溶融飛灰と混練する水としては、廃棄物やその焼却残渣を溶融処理する際に発生する溶融スラグを水砕固化するのに用いた循環水を用いる。廃棄物やその焼却残渣を溶融処理すると、溶融スラグが発生する。一般に溶融スラグは水砕固化される。水砕固化では通常、新たに冷却水を補充しつつ、一度使用した冷却水を循環水として再使用するが、その一方で繰り返しの再使用により汚染された循環水の一部を抜き出している。抜き出した循環水には重金属類が濃縮されており、これをそのままでは放水できない。そこで、かかる循環水を上記のような酸性溶融飛灰と混練する水として用いると、結果的に循環水に含まれる重金属類をも安定化できる。
【0015】
また酸性溶融飛灰と混練する水としては、廃棄物やその焼却残渣を溶融処理する際に発生する排ガスを水洗浄するのに用いた排水を用いる。廃棄物やその焼却残渣を溶融処理する際に発生する排ガスには各種の酸性ガス(HClやSO等)が含まれているので、これを除去するため、通常排ガスを水酸化ナトリウム水溶液で洗浄する。洗浄に用いた排水には排ガス中の重金属類、特に水銀が捕集されており、これをそのままでは放水できない。そこで、かかる排水を上記のような酸性溶融飛灰と混練する水として用いると、結果的に排水に含まれる重金属類をも安定化できる。
【0016】
【実施例】
実施例1
都市ごみの焼却灰と焼却飛灰との混合物を溶融処理したときの排ガスからバグフィルタで捕集した酸性溶融飛灰(pH5.0)を処理した。消石灰(市販の消石灰特号、JIS−R9001)を酸性溶融飛灰100重量部当たり5重量部加えて混合し、そのpHを8.5以上にした。次に多硫化カルシウム(2.75重量%の多硫化カルシウム水希釈液)を元の酸性溶融飛灰100重量部当たり0.25重量部(多硫化カルシウム換算量)加えて混練した。更に塩酸(37.2重量%の濃塩酸)を1.2重量部加えて混練し、pHを9.0に調整した。最後にこの混練物に水として前記の混合物を溶融処理したときの溶融スラグを水砕固化するのに用いた循環水を元の酸性溶融飛灰100重量部当たり20重量部加えて混練した。得られた混練物について溶出試験(昭和48年環境庁告示13号)を行なった。処理条件を表1に、また溶出試験結果を表3に示した。
【0017】
実施例2
実施例1と同様に、消石灰を酸性溶融飛灰に加えて混合し、次に多硫化カルシウムを加えて混練した。更に塩酸(37.2重量%の濃塩酸)を1.1重量部加えて混練し、pHを9.4に調整した。最後にこの混練物に水として前記の混合物を溶融処理したときの排ガスを洗浄するのに用いた排水を元の酸性溶融飛灰100重量部当たり20重量部加えて混練した。得られた混練物について実施例1と同様に溶出試験を行なった。処理条件を表1に、また溶出試験結果を表3に示した。
【0018】
参考例1〜20及び比較例1〜10
加えた薬剤等の種類及び/又はその添加量を変え、また水として工業用水を用いて、実施例1や2と同様に行なった。処理条件を表1及び表2に、また溶出試験結果を表3及び表4に示した。
【0019】
【表1】

Figure 0003650973
【0020】
【表2】
Figure 0003650973
【0021】
表1及び表2において、
添加量:元の酸性溶融飛灰100重量部当たりの添加量(水の添加量は各例いずれも20重量部)
*1:GEOSTA−F13(鐘淵化学工業社製の無機系安定化剤)
*2:NEW−エポルバ500(ミヨシ油化社製の高分子系安定化剤)
pH:最終的に得られた混練物のpH
【0022】
【表3】
Figure 0003650973
【0023】
【表4】
Figure 0003650973
【0024】
表3及び表4において、
判定:○は産業廃棄物埋立基準(平成6年11月7日付の総理府令第61号)を達成しており、重金属類が充分に不溶出化(安定化)されていることを、×は上記産業廃棄物埋立基準を達成していないことを意味する
【0025】
【発明の効果】
既に明らかなように、以上説明した本発明には、酸性溶融飛灰に含まれる重金属類の溶出を経済的且つ充分に防止でき、また結果的に溶融スラグを水砕固化するのに用いた循環水や排ガスを水洗浄するのに用いた排水に含まれる重金属類をも安定化できるという効果がある。[0001]
[Industrial application fields]
The present invention relates to a method for treating molten fly ash generated when melting waste and its incineration residue. Incineration residues such as municipal waste, industrial waste, and sludge are melted to reduce the volume and make them harmless. When these are melted, molten fly ash is generated in addition to molten slag. Generally, molten slag is granulated and solidified, and the molten fly ash is stabilized with chemicals so that the heavy metals contained in it are not eluted. The The present invention relates to a method for treating acidic molten fly ash among the above molten fly ash.
[0002]
[Prior art]
Conventionally, as a method for treating molten fly ash, a method has been proposed in which water and a chelating agent are respectively added to molten fly ash at a predetermined ratio and kneaded (Japanese Patent Laid-Open No. 5-87324). However, this conventional method is uneconomical because the chelating agent used is expensive.
[0003]
On the other hand, as a method for treating the incineration residue, a method of adding divalent iron to the incineration residue, stirring and heating has been proposed (JP-A-6-134436). Therefore, it is conceivable to melt kneaded fly ash by adding divalent iron such as ferrous chloride thereto. Actually, the method of kneading by adding ferrous chloride is, for example, when melting incineration ash remaining in the incinerator among incineration residues of municipal waste, the generated molten fly ash exhibits alkalinity of about pH 11-12, The alkaline molten fly ash has a corresponding effect. However, the method of simply adding ferrous chloride and kneading is a method of plasticizing when incineration fly ash that is scattered with exhaust gas and normally collected by a dust collector on the downstream side is incinerated when municipal waste is incinerated. When the wastes of rubber and rubber are melt-treated, and further when these are melt-treated with incinerated ash, the generated molten fly ash exhibits an acidity of about pH 3 to 6, and is effective against such an acid molten fly ash. It does not play, and the elution of heavy metals contained therein cannot be sufficiently prevented.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that the conventional method is uneconomical or cannot sufficiently prevent elution of heavy metals contained in the acidic molten fly ash.
[0005]
[Means for Solving the Problems]
Thus, the present invention is a method for treating acidic molten fly ash generated when melting waste and its incineration residue, and adding slaked lime to the acidic molten fly ash to a pH of 8.5 or higher, After adding 0.1 to 10 parts by weight of calcium polysulfide per 100 parts by weight of acidic molten fly ash and further adding mineral acid to adjust the pH to 8.5 to 10.0, the waste and its incineration residue are added as water. Acid melt fly ash used for water washing of exhaust water generated when melt processing the circulating water or waste and its incineration residue used to granulate and solidify molten slag generated during melting The present invention relates to a method for treating acidic molten fly ash characterized by adding 10 to 35 parts by weight per 100 parts by weight and kneading.
[0006]
The acidic molten fly ash to be treated in the present invention is acidic among the molten fly ash that is scattered with the exhaust gas and normally collected by the downstream dust collector when the waste and its incineration residue are melted. Molten fly ash. Such acidic molten fly ash is generated when melting incinerated fly ash, melting plastics and rubbers, and further melting them with incinerated ash, and has a pH of about 3-6.
[0007]
In the present invention, first, slaked lime (calcium hydroxide) is added to and mixed with acidic molten fly ash, and the pH is adjusted to 8.5 or higher. Slaked lime is advantageous in use because it is in powder form, is inexpensive and easily available, and even when added in excess, the pH does not increase extremely and gas is not generated. On the other hand, sodium hydroxide is too alkaline and it is difficult to obtain a powdery product industrially. Calcium carbonate generates gas in the acidic region. Furthermore, quick lime (calcium oxide) is not stable and easily changes to calcium carbonate or slaked lime.
[0008]
Next, in the present invention, calcium polysulfide (CaS 4 ) is added in an amount of 0.1 to 10 parts by weight per 100 parts by weight of the acidic molten fly ash. Usually, 0.1 to 10 parts by weight in terms of calcium polysulfide per 100 parts by weight of the original acidic molten fly ash containing commercially available lime sulfur-containing agent for combating shellworms (containing about 28% by weight of calcium polysulfide) In addition, mixing is advantageous in view of availability. Calcium polysulfide has a sulfide producing action, and turns heavy metals contained in acidic molten fly ash into a sulfide form. Heavy metals in the form of sulfides are less stable and more stable in water than heavy metals in the form of carbonates and hydroxides. When the amount of calcium polysulfide added is less than 0.1 parts by weight per 100 parts by weight of acidic molten fly ash, its elution is sufficiently prevented in relation to the concentration of heavy metals normally contained in acidic molten fly ash On the other hand, if it exceeds 10 parts by weight, the elution of some heavy metals increases due to the subsequent pH adjustment, which is inconvenient.
[0009]
Instead of calcium polysulfide, it is preferable to add a mixture of calcium polysulfide and sodium sulfide (Na 2 S) and / or potassium sulfide (K 2 S). Calcium polysulfide is inexpensive, but its sulfide preparation action is somewhat weak, and heavy metals contained in acidic molten fly ash may not be able to be made into a sufficient sulfide form. On the other hand, sodium sulfide and potassium sulfide have a strong sulfide preparation action, and the sulfurization reaction proceeds in a short time. However, sodium sulfide and potassium sulfide are expensive. Therefore, it is preferable to add a mixture of calcium polysulfide and sodium sulfide and / or potassium sulfide in view of both economy and sulfide preparation action.
[0010]
Whether calcium polysulfide is added or a mixture of calcium polysulfide and sodium sulfide and / or potassium sulfide is added, the pH of the acidic molten fly ash is set to 8.5 or more as described above. If these are added as they are to the acidic molten fly ash, toxic hydrogen sulfide gas is generated, so safety is expected.
[0011]
In the present invention, a mineral acid is further added to adjust the pH to a range of 8.5 to 10.0. When calcium polysulfide or a mixture of calcium polysulfide and sodium sulfide and / or potassium sulfide is added, the pH tends to become more alkaline, so a mineral acid such as hydrochloric acid is added to adjust the pH to 8.5-10. In the range of 0.0. When the pH is out of the range of 8.5 to 10.0, the elution of amphoteric metals such as lead and zinc contained in the acidic molten fly ash increases in both acidic and alkaline regions, cadmium is in the acidic region, and arsenic is Each elution increases in the alkaline region.
[0012]
Instead of mineral acid, it is preferable to add ferrous chloride. Usually, a high concentration aqueous solution of ferrous chloride, for example, an aqueous solution of around 30% by weight is added and mixed to adjust the pH to a range of 8.5 to 10.0. Ferrous chloride has a reducing action and reduces harmful hexavalent chromium contained in acidic molten fly ash to trivalent chromium. In contrast, ferric chloride has no reducing action.
[0013]
In the present invention, finally, after adjusting the pH to the range of 8.5 to 10.0 as described above, 10 to 35 parts by weight of circulating water or waste water used as water is added per 100 parts by weight of the original acidic molten fly ash. Knead. If the amount of circulating water or wastewater added is less than 10 parts by weight per 100 parts by weight of acidic molten fly ash, the acidic molten fly ash cannot be sufficiently mudified. Fly ash becomes a slurry, which is inconvenient and poor in handling.
[0014]
As the water to be kneaded with the acidic molten fly ash, the circulating water used to granulate and solidify the molten slag generated when melting the waste and its incineration residue is used. When waste or its incineration residue is melted, molten slag is generated. Generally, molten slag is granulated and solidified. In granulation and solidification, cooling water that has been used once is usually reused as circulating water while being replenished with cooling water. On the other hand, a part of circulating water contaminated by repeated reuse is extracted. The extracted circulating water is concentrated with heavy metals and cannot be discharged as it is. Therefore, when such circulating water is used as water to be kneaded with the acidic molten fly ash as described above, heavy metals contained in the circulating water can be stabilized as a result.
[0015]
Further, as the water to be kneaded with the acidic molten fly ash, the waste water used for washing the exhaust gas generated when the waste and its incineration residue are melted is used. The exhaust gas generated when melting waste and its incineration residue contains various acid gases (HCl, SO X, etc.). In order to remove this, the exhaust gas is usually washed with an aqueous sodium hydroxide solution. To do. The wastewater used for cleaning collects heavy metals in exhaust gas, especially mercury, and cannot be discharged as it is. Therefore, when such waste water is used as water for kneading with the above-described acidic molten fly ash, heavy metals contained in the waste water can be stabilized as a result.
[0016]
【Example】
Example 1
The acidic molten fly ash (pH 5.0) collected by the bag filter from the exhaust gas when the mixture of municipal waste incineration ash and incineration fly ash was melted was treated. Slaked lime (commercially available slaked lime, JIS-R9001) was mixed by adding 5 parts by weight per 100 parts by weight of acidic molten fly ash, and the pH was adjusted to 8.5 or higher. Next, calcium polysulfide (2.75 wt% calcium polysulfide water diluted solution) was added and kneaded by adding 0.25 parts by weight (calculated amount of calcium polysulfide) per 100 parts by weight of the original acidic molten fly ash. Further, 1.2 parts by weight of hydrochloric acid (37.2% by weight concentrated hydrochloric acid) was added and kneaded to adjust the pH to 9.0. Finally, 20 parts by weight of the circulating water used for pulverizing and solidifying the molten slag when the above mixture was melted as water was added to this kneaded product per 100 parts by weight of the original acidic molten fly ash and kneaded. The kneaded product thus obtained was subjected to a dissolution test (environmental agency notification No. 13 in 1973). The treatment conditions are shown in Table 1, and the dissolution test results are shown in Table 3.
[0017]
Example 2
As in Example 1, slaked lime was added to the acidic molten fly ash and mixed, and then calcium polysulfide was added and kneaded. Furthermore, 1.1 parts by weight of hydrochloric acid (37.2 wt% concentrated hydrochloric acid) was added and kneaded to adjust the pH to 9.4. Finally, 20 parts by weight of the waste water used to wash the exhaust gas when the mixture was melted as water was added to this kneaded product per 100 parts by weight of the original acidic molten fly ash and kneaded. The obtained kneaded product was subjected to a dissolution test in the same manner as in Example 1. The treatment conditions are shown in Table 1, and the dissolution test results are shown in Table 3.
[0018]
Reference Examples 1-20 and Comparative Examples 1-10
It carried out similarly to Example 1 and 2 using the industrial water as water, changing the kind and / or addition amount of the chemical | medical agent etc. which were added. The treatment conditions are shown in Tables 1 and 2, and the dissolution test results are shown in Tables 3 and 4.
[0019]
[Table 1]
Figure 0003650973
[0020]
[Table 2]
Figure 0003650973
[0021]
In Table 1 and Table 2,
Addition amount: Addition amount per 100 parts by weight of the original acidic molten fly ash (the addition amount of water is 20 parts by weight in each example)
* 1: GEOSTA-F13 (an inorganic stabilizer manufactured by Kaneka Corporation)
* 2: NEW-Epolva 500 (polymer stabilizer manufactured by Miyoshi Yuka)
pH: pH of the finally obtained kneaded material
[0022]
[Table 3]
Figure 0003650973
[0023]
[Table 4]
Figure 0003650973
[0024]
In Table 3 and Table 4,
Judgment: ○ indicates that industrial waste landfill standards (Prime Ministerial Ordinance No. 61 dated November 7, 1994) have been achieved, and heavy metals have been sufficiently undissolved (stabilized). Means that the above industrial waste landfill standards have not been achieved.
【The invention's effect】
As is apparent from the above, the present invention described above can economically and sufficiently prevent elution of heavy metals contained in the acidic molten fly ash and, as a result, the circulation used to granulate and solidify the molten slag. There is an effect that the heavy metals contained in the waste water used for washing water and exhaust gas can be stabilized.

Claims (3)

廃棄物やその焼却残渣を溶融処理する際に発生する酸性溶融飛灰の処理方法であって、酸性溶融飛灰に消石灰を加えてpHを8.5以上にし、次に多硫化カルシウムを酸性溶融飛灰100重量部当たり0.1〜10重量部加え、更に鉱酸を加えてpHを8.5〜10.0に調整した後、水として廃棄物やその焼却残渣を溶融処理する際に発生する溶融スラグを水砕固化するのに用いた循環水又は廃棄物やその焼却残渣を溶融処理する際に発生する排ガスを水洗浄するのに用いた排水を酸性溶融飛灰100重量部当たり10〜35重量部加えて混練することを特徴とする酸性溶融飛灰の処理方法。A method for treating acidic molten fly ash generated when melting waste and its incineration residue, adding slaked lime to the acidic molten fly ash to a pH of 8.5 or higher, and then acidic melting of calcium polysulfide Occurs when melting waste and its incineration residue as water after adding 0.1 to 10 parts by weight per 100 parts by weight of fly ash and adding mineral acid to adjust pH to 8.5 to 10.0 10 to 100 parts by weight of the acidic molten fly ash per 100 parts by weight of the acidic molten fly ash used to wash the circulating water used to hydrolyze the molten slag or waste water and waste gas generated when melting the incineration residue A method for treating acidic molten fly ash, comprising adding 35 parts by weight and kneading. 多硫化カルシウムの代わりに多硫化カルシウムと硫化ナトリウム及び/又は硫化カリウムとの混合物を加える請求項1記載の酸性溶融飛灰の処理方法。  The method for treating acidic molten fly ash according to claim 1, wherein a mixture of calcium polysulfide and sodium sulfide and / or potassium sulfide is added instead of calcium polysulfide. 鉱酸の代わりに塩化第1鉄を加える請求項1又は2記載の酸性溶融飛灰の処理方法。  The method for treating acidic molten fly ash according to claim 1 or 2, wherein ferrous chloride is added in place of the mineral acid.
JP02587195A 1995-01-20 1995-01-20 Treatment method of acidic molten fly ash Expired - Fee Related JP3650973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02587195A JP3650973B2 (en) 1995-01-20 1995-01-20 Treatment method of acidic molten fly ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02587195A JP3650973B2 (en) 1995-01-20 1995-01-20 Treatment method of acidic molten fly ash

Publications (2)

Publication Number Publication Date
JPH08197034A JPH08197034A (en) 1996-08-06
JP3650973B2 true JP3650973B2 (en) 2005-05-25

Family

ID=12177859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02587195A Expired - Fee Related JP3650973B2 (en) 1995-01-20 1995-01-20 Treatment method of acidic molten fly ash

Country Status (1)

Country Link
JP (1) JP3650973B2 (en)

Also Published As

Publication number Publication date
JPH08197034A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
JPH09299905A (en) Harmful waste treating agent and its treatment
JP2005288378A (en) Treatment method of contaminated medium including heavy metals and treatment agent
EP0767150A1 (en) Method for treating incinerated or molten fly ash
JP3650973B2 (en) Treatment method of acidic molten fly ash
JP2006015290A (en) Fixing method for heavy metal in fly ash using no mixing nor kneading apparatus
JP3867307B2 (en) Dust disposal method
JPH09239339A (en) Waste treating material and treatment of waste
JPH0760221A (en) Waste treatment material
US6645458B1 (en) Method for making an aqueous sodium chloride solution
JP3402535B2 (en) Treatment of alkaline fly ash
JP2004209372A (en) Heavy metal elution inhibitor and heavy metal elution inhibiting method
JPH09122616A (en) Treatment agent and treatment method for harmful waste
KR100258773B1 (en) Method of waste treatment
JPH07214029A (en) Recycling method of heavy metal by making incineration ash or fly ash harmless
JP3511612B2 (en) Treatment method for acidic molten fly ash
JP3724062B2 (en) Waste treatment material and waste treatment method
EP0845306A1 (en) Wastes disposing material and method for disposing of wastes
JP3850205B2 (en) Method for preventing heavy metal elution from molten fly ash and / or burned fly ash
JPH05309356A (en) Treatment of heavymetal-containing incineration ash
JP3565359B2 (en) Treatment method of fly ash of city garbage incinerator
JPH09285773A (en) Waste treating agent and treatment
JPH1142469A (en) Waste processing agent and treatment of waste
JP5147146B2 (en) Waste incineration fly ash treatment method
JPH06328063A (en) Waste stabilization agent and waste stabilization
JP3214011B2 (en) Method for treating highly alkaline dust ash and lead sequestering agent for highly alkaline dust ash

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees