JP3650748B2 - Semiconductor package and manufacturing method thereof - Google Patents

Semiconductor package and manufacturing method thereof Download PDF

Info

Publication number
JP3650748B2
JP3650748B2 JP2001319218A JP2001319218A JP3650748B2 JP 3650748 B2 JP3650748 B2 JP 3650748B2 JP 2001319218 A JP2001319218 A JP 2001319218A JP 2001319218 A JP2001319218 A JP 2001319218A JP 3650748 B2 JP3650748 B2 JP 3650748B2
Authority
JP
Japan
Prior art keywords
carrier substrate
semiconductor element
gap
resin
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001319218A
Other languages
Japanese (ja)
Other versions
JP2003124402A (en
Inventor
博之 倉田
健司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2001319218A priority Critical patent/JP3650748B2/en
Publication of JP2003124402A publication Critical patent/JP2003124402A/en
Application granted granted Critical
Publication of JP3650748B2 publication Critical patent/JP3650748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子に形成したバンプがキャリア用基板にフェースダウンボンディングされて成る半導体パッケージにおいて、特にパッケージング後の半導体集積回路の特性変動を小さくできる半導体パッケージの構造およびその製造方法に関する。
【0002】
【従来の技術】
従来の半導体パッケージの一例として、LCC(Leadless Chip Carrier)構造の半導体パッケージの断面図を図3に示す。
図3において、チップ状の半導体素子1の各電極に設けられた金属バンプ2が、キャリア用基板3の第1層基板3a表面に設けられている導電パタ一ン4と電気的に接続されるようにフェースダウンボンディングされている。第1層基板3aの裏面側には第2層基板3bが貼着されており、導電パターン4と電気的に接続するようにその側壁から裏面にかけて導電性の外部接続端子(ランド用パターン)5が設けられている。半導体素子1とキャリア用基板3との隙間はフィラー6を含むアンダーフィル樹脂7で充填され、全体をアンダーフィル樹脂7と同様にフィラー6を含むオーバーコート樹脂8で被覆された構造となっている。(低弾性樹脂膜9については後述する。)
【0003】
図3の半導体パッケージの製造方法は、半導体素子1の金属バンプ2を超音波熱圧着によりキャリア用基板3の導電パターン4にフェースダウンボンディングした後、半導体素子1とキャリア用基板の隙間よりも小さい粒径のフィラー6を含むアンダーフィル樹脂7をディスペンス装置などを使用して前記隙間に注入・充填し、全体をアンダーフィル樹脂7と同様にフィラー6を含むオーバーコート樹脂8をポッティング法を使って封止し硬化する方法で行われている。
ここで、フィラー6を添加した樹脂を使用することにより、半導体装置の耐湿性や放熱性を向上させることができる。
【0004】
一方、このような半導体パッケージの構造および製造方法では、樹脂を硬化する場合の熱処理時に、半導体素子1とキャリア用基板3の隙間に充填されたフィラー6を含むアンダーフィル樹脂7と半導体素子1との熱膨張係数差などに基づき、半導体素子1にストレスが加わり、半導体素子1の特性が変動してしまうという問題がある。
【0005】
このような特性の変動を抑制するため、図3に示されるように、半導体素子1の表面に低弾性樹脂膜9を形成して、樹脂の熱硬化収縮での影響を緩和する構造のものも用いられている。
【0006】
【発明が解決しようとする課題】
従来のような半導体パッケージおよびその製造方法では、樹脂を硬化する場合の熱処理時に、フィラー6を含むアンダーフィル樹脂7から半導体素子1にストレスが加わり、半導体素子の特性が変動してしまうという問題がある。
一方、アンダーフィル樹脂7の成分からフィラー6を除去すればパッケージ単体としては低弾性となるが、反りの発生による組立の難しさ、およびパッケージの放熱性低下や、吸湿に弱くなるといった問題がある。
【0007】
また、半導体素子1の表面に低弾性樹脂膜9を形成する場合、ウェハプロセスのどこかで追加工程を設けないと実現することができないため、コストアップに繋がるという問題がある。
本発明はこのような問題を解決するためになされたもので、特性のバラツキが少なく、かつ、小型の半導体パッケージおよびその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の半導体パッケージは、キャリア用基板と、該キャリア用基板表面の導電パターンに、表面に形成された金属バンプがフェースダウンで接続される半導体素子と、前記キャリア用基板と前記半導体素子の隙間にアンダーフィル樹脂が充填されるとともに前記半導体素子全体および前記アンダーフィル樹脂を含む前記キャリア用基板表面を被覆するオーバーコート樹脂からなる半導体パッケージにおいて、前記アンダーフィル樹脂に含有するフィラーの粒径が前記キャリア用基板表面と前記半導体素子表面の間隔より大きく、前記キャリア用基板と前記半導体素子の隙間には前記フィラーを含まない前記アンダーフィル樹脂により充填され、かつ前記隙間の外周は前記フィラーを含む前記アンダーフィル樹脂で覆われ、前記半導体素子全体および前記アンダーフィル樹脂を含む前記キャリア用基板表面が前記オーバーコート樹脂で覆われていることを特徴とするものである。
また、本発明の半導体パッケージの製造方法として、キャリア用基板表面の導電パターンに半導体素子表面に形成した金属バンプをフェースダウンで接続する工程と、前記キャリア用基板表面と前記半導体素子表面の間隔より粒径が大きいフィラーを含有するアンダーフィル樹脂を用いて前記キャリア用基板表面と前記半導体素子の隙間に前記アンダーフィル樹脂を充填することにより、前記隙間には前記フィラーを含まない前記アンダーフィル樹脂を充填し、かつ前記隙間以外の外周は前記フィラーを含む前記アンダーフィル樹脂で被覆する工程と、前記半導体素子全体および前記アンダーフィル樹脂を含む前記キャリア用基板表面をオーバーコート樹脂で被覆する工程とを含むことを特徴とするものである。
【0009】
【作用】
本発明による半導体パッケージおよび製造方法を適用することにより、半導体素子とキャリア用基板の隙間が小さくなり組立工程で最も特性変動に影響を与える樹脂に関してチップ面への絶対量を少なくすることが出来る。またフィラーを大きくすることにより、キャリア基板と半導体素子の隙間へはフィラーを除くエポキシ樹脂成分と応力緩和剤成分が充填されることになり、低弾性構造が実現される。
そのため、製造工程で樹脂熱硬化収縮時のストレスがかかっても、そのストレスを緩和することができ、特性の変動を抑制できる。
【0010】
【発明の実施の形態】
本発明による半導体パッケージの構造の一例として、LCC構造の半導体パッケージの断面図を図1に示す。
半導体パッケージのキャリア用基板3は、たとえばアルミナセラミック基板などからなる絶縁基板に銅などの金属メッキ層などにより導電パターン4が形成された第1層基板3aと、導電パターン4から側壁を経て裏面側に電気的に接続されるように銅などの金属メッキ層からなる外部電極端子(ランド用パターン)5が形成された第2層基板3bとから形成されている。このキャリア用基板3は、第1層基板3aと第2層基板3bとの2層構造であるが、1層あるいは3層以上の接合で形成したものでもよい。
【0011】
半導体素子1の金属バンプ2を、キャリア用基板3表面の導電パターン4に、フェースダウンボンディングすることにより、キャリア用基板3の側壁を経てその裏面側に導出される外部接続端子5に電気的に接続され、実装基板などにマウントできる構造になっている。
【0012】
半導体素子1とキャリア用基板3の隙間(ギャップ)の間隔は例えば25μmにする。なお、この間隔はフリップチップ下のボイド発生を防ぐ為、チップ面積等を考慮してフィラー10を除くアンダーフィル樹脂7が隙間に充填されるだけの最小限の高さを確保する必要があるとともに、特性変動に影響を与える樹脂のチップ面への絶対量を少なくすることも考慮し、例えば、10〜30μm程度であれば良い。
【0013】
一方、アンダーフィル樹脂7に含まれるフィラー10の粒径は半導体素子1とキャリア用基板3の隙間より大きいもの(例えば30μm)を使用するようにする。これにより、注入時にフィラー10が隙間にせき止められ、半導体素子1とキャリア用基板3の隙間にはフィラー10を除くエポキシ樹脂成分とシリコーン等の応力緩和剤成分のみの樹脂が充填されており、一方、半導体素子1とキャリア用基板3の隙間以外の周辺の樹脂にはせき止められたフィラー10を含んでいることになる。
そして半導体素子1を含むキャリア用基板3表面全体は、フィラー6を含むエポキシ樹脂などのオーバーコート樹脂8で被覆されている。なお、オーバーコート樹脂8のフィラー6の粒径は特に規定しなくても良い。
【0014】
次に本発明の具体的な製造方法の例を示す。
図1のキャリア用基板3の第1層基板3aは、たとえばヤング率の高いアルミナセラミック基板などからなる絶縁基板を用い、導電ぺ一ストあるいは銅などの金属メッキ層などにより導電パターン4を形成する。一方、第2層基板3bは、同じくアルミナセラミック基板などからなる絶縁基板を用い、側壁を経て裏面側に電気的に接続されるように銅などの金属メッキ層からなる外部電極端子(ランド用パターン)5を形成し、第1層基板3aとラミネート工法などで貼着することで、導電パターン4から外部接続端子5まで電気的に接続されたキャリア用基板3を形成する。キャリア用基板3は、第1層基板3aと第2層基板3bとの接合により形成したが、1層あるいは3層以上の接合で形成したものでもよい。
【0015】
半導体集積回路が形成されたベアチップ状の半導体素子1表面の各電極には金などからなる金属バンプ2を設け、金属バンプ2をキャリア用基板3の表面側の導電パターン4に、超音波熱圧着によりフェースダウンボンディングを行う。
なお、図1では1個の半導体素子1のみ示しているが、この段階では、キャリア用基板3は集合基板として、マトリックス状に複数の半導体素子1がフェイスダウンボンディングされる。
【0016】
ここで、金属バンプ2の高さは、半導体素子1とキャリア用基板3の隙間(ギャップ)の間隔が例えば25μmになるような高さに形成する。なお、この間隔はフリップチップ下のボイド発生を防ぐ為、チップ面積等を考慮してフィラー10を除くアンダーフィル樹脂7が隙間に充填されるだけの最小限の高さを確保する必要があるとともに、特性変動に影響を与える樹脂のチップ面への絶対量を少なくすることも考慮し、例えば、10〜30μmであれば良い。
【0017】
次に、半導体素子1とキャリア用基板3の隙間にディスペンス装置を使用してアンダーフィル樹脂7を注入、硬化して封止を行う。このときアンダーフィル樹脂7に含まれるのフィラー10の粒径は、半導体素子1とキャリア用基板3の隙間より大きい、例えば30μmのものを用いる。
【0018】
このことで注入時に隙間に制限されるような形でシリカまたはアルミナなどからなるフィラー10がせき止められ、半導体素子1とキャリア用基板3の隙間にはフィラー10を除くエポキシ樹脂成分とシリコーン等の応力緩和剤成分のみの樹脂が充填される。一方、半導体素子1とキャリア用基板3の隙間以外の周辺の部分の樹脂には隙間によりせき止められたフィラー10を含んでいるため、耐湿性や放熱性などの信頼性の問題も防ぐことが出来る。
【0019】
そして半導体素子1を含むキャリア用基板3表面全体を、フィラー6を含むエポキシ樹脂などによるオーバーコート樹脂8でポッティング法などを使って被覆後硬化させる。なお、オーバーコート樹脂8のフィラー6の粒径は特に規定しなくて良い。
最後に、この段階では集合基板状になっているため、個別の半導体パッケージにダイシングして分割することで本発明のLCC構造の半導体パッケージが形成される。
【0020】
図1では、LCC構造の半導体パッケージの例を挙げたが、本発明の構造およびその製造方法は、このパッケージにこだわるものではなく、半導体素子をキャリア用基板にフェイスダウンで接続する構造のパッケージであれば適用することができる。
【0021】
図2に、シャントレギュレータの半導体素子を使って、従来の構造と本発明の構造でパッケージを組み立てて、基準電圧分布を比較したデータを示す。
本発明の構造での基準電圧の特性のバラツキは、従来構造の約50%であり、半導体素子本来のピーク値(1.225V)からのずれもほとんどなくなっていることがわかる。
【0022】
【発明の効果】
本発明の半導体パッケージの構造およびその製造方法により、組立工程で樹脂熱硬化収縮時のストレスがかかっても、そのストレスが緩和されるため、半導体装置の特性の変動を抑制でき、半導体素子上に低弾性樹脂膜を形成する必要がなくなりコストが上昇するという問題も発生しない。
以上のように、本発明によれば、半導体装置の製品コストを下げるとともに特性バラツキが少なく、かつ、小型の半導体装置およびその製造方法を提供することが出来る。
【図面の簡単な説明】
【図1】本発明によるLCC構造の半導体パッケージの断面図である。
【図2】本発明と従来の半導体パッケージでのシャントレギュレータの基準電圧分布である。
【図3】従来のLCC構造の半導体パッケージの断面図である。
【符号の説明】
1. 半導体素子
2. 金属バンプ
3. キャリア用基板
3a.第1層基板
3b.第2層基板
4. 導電パターン
5. 外部接続端子
6、10 フィラー
7. アンダーフィル樹脂
8. オーバーコート樹脂
9. 低弾性樹脂膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor package structure in which bumps formed on a semiconductor element are face-down bonded to a carrier substrate, and particularly to a structure of a semiconductor package that can reduce characteristic fluctuations of a semiconductor integrated circuit after packaging, and a manufacturing method thereof.
[0002]
[Prior art]
As an example of a conventional semiconductor package, FIG. 3 shows a cross-sectional view of a semiconductor package having an LCC (Leadless Chip Carrier) structure.
In FIG. 3, the metal bumps 2 provided on the respective electrodes of the chip-shaped semiconductor element 1 are electrically connected to the conductive pattern 4 provided on the surface of the first layer substrate 3a of the carrier substrate 3. It is face-down bonded. A second layer substrate 3b is adhered to the back surface side of the first layer substrate 3a, and conductive external connection terminals (land patterns) 5 from the side walls to the back surface so as to be electrically connected to the conductive pattern 4. Is provided. The gap between the semiconductor element 1 and the carrier substrate 3 is filled with an underfill resin 7 containing a filler 6, and the whole is covered with an overcoat resin 8 containing a filler 6 in the same manner as the underfill resin 7. . (The low elastic resin film 9 will be described later.)
[0003]
3 is smaller than the gap between the semiconductor element 1 and the carrier substrate after the metal bumps 2 of the semiconductor element 1 are face-down bonded to the conductive pattern 4 of the carrier substrate 3 by ultrasonic thermocompression bonding. An underfill resin 7 containing a particle size filler 6 is poured and filled into the gap using a dispensing device or the like, and the entire overcoat resin 8 containing the filler 6 is potted using the potting method in the same manner as the underfill resin 7. It is performed by a method of sealing and curing.
Here, by using the resin to which the filler 6 is added, the moisture resistance and heat dissipation of the semiconductor device can be improved.
[0004]
On the other hand, in such a semiconductor package structure and manufacturing method, the underfill resin 7 including the filler 6 filled in the gap between the semiconductor element 1 and the carrier substrate 3 and the semiconductor element 1 during the heat treatment for curing the resin, There is a problem that stress is applied to the semiconductor element 1 based on the difference in thermal expansion coefficient between the two and the characteristics of the semiconductor element 1 fluctuate.
[0005]
In order to suppress such fluctuations in characteristics, as shown in FIG. 3, a structure having a structure in which a low elastic resin film 9 is formed on the surface of the semiconductor element 1 so as to alleviate the influence of the thermosetting shrinkage of the resin. It is used.
[0006]
[Problems to be solved by the invention]
In the conventional semiconductor package and the manufacturing method thereof, there is a problem that stress is applied to the semiconductor element 1 from the underfill resin 7 including the filler 6 during the heat treatment when the resin is cured, and the characteristics of the semiconductor element fluctuate. is there.
On the other hand, if the filler 6 is removed from the components of the underfill resin 7, the package itself has low elasticity, but there are problems such as difficulty in assembly due to warpage, reduced heat dissipation of the package, and weakness in moisture absorption. .
[0007]
Further, when the low-elasticity resin film 9 is formed on the surface of the semiconductor element 1, it cannot be realized unless an additional process is provided somewhere in the wafer process, leading to a problem that the cost is increased.
The present invention has been made to solve such a problem, and an object of the present invention is to provide a small-sized semiconductor package and a method for manufacturing the same with little variation in characteristics.
[0008]
[Means for Solving the Problems]
The semiconductor package of the present invention includes a carrier substrate, a semiconductor element in which metal bumps formed on the surface are connected face-down to the conductive pattern on the surface of the carrier substrate, and a gap between the carrier substrate and the semiconductor element. In the semiconductor package made of an overcoat resin that covers the entire surface of the semiconductor element and the substrate substrate for the carrier containing the underfill resin, the particle size of the filler contained in the underfill resin is The gap between the carrier substrate surface and the semiconductor element surface is larger, the gap between the carrier substrate and the semiconductor element is filled with the underfill resin not containing the filler, and the outer periphery of the gap contains the filler Covered with underfill resin, all the semiconductor elements And the carrier substrate surface including the underfill resin is characterized in that it is covered with the overcoat resin.
According to another aspect of the present invention, there is provided a semiconductor package manufacturing method comprising: a step of connecting a metal bump formed on a semiconductor element surface face-down to a conductive pattern on a carrier substrate surface; and a distance between the carrier substrate surface and the semiconductor element surface. By filling the underfill resin in the gap between the carrier substrate surface and the semiconductor element using an underfill resin containing a filler having a large particle size, the gap does not contain the filler. Filling the outer periphery other than the gap with the underfill resin containing the filler, and covering the entire semiconductor element and the carrier substrate surface containing the underfill resin with an overcoat resin. It is characterized by including.
[0009]
[Action]
By applying the semiconductor package and the manufacturing method according to the present invention, the gap between the semiconductor element and the carrier substrate is reduced, and the absolute amount on the chip surface can be reduced with respect to the resin that most affects the characteristic variation in the assembly process. Further, by increasing the filler, the gap between the carrier substrate and the semiconductor element is filled with the epoxy resin component and the stress relaxation agent component excluding the filler, thereby realizing a low elastic structure.
For this reason, even when a stress is applied during the thermosetting shrinkage of the resin in the manufacturing process, the stress can be alleviated and the variation in characteristics can be suppressed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As an example of the structure of a semiconductor package according to the present invention, a cross-sectional view of a semiconductor package having an LCC structure is shown in FIG.
The substrate 3 for the carrier of the semiconductor package includes a first layer substrate 3a in which a conductive pattern 4 is formed on an insulating substrate made of, for example, an alumina ceramic substrate by a metal plating layer such as copper, and the back surface side through the side wall from the conductive pattern 4 And a second layer substrate 3b on which external electrode terminals (land patterns) 5 made of a metal plating layer such as copper are formed so as to be electrically connected to the substrate. The carrier substrate 3 has a two-layer structure of a first layer substrate 3a and a second layer substrate 3b, but may be formed by bonding one layer or three or more layers.
[0011]
The metal bumps 2 of the semiconductor element 1 are electrically bonded to the external connection terminals 5 led out to the back side through the side walls of the carrier substrate 3 by face-down bonding to the conductive pattern 4 on the surface of the carrier substrate 3. It is connected and can be mounted on a mounting board.
[0012]
The gap (gap) between the semiconductor element 1 and the carrier substrate 3 is set to 25 μm, for example. In addition, in order to prevent void generation under the flip chip, it is necessary to secure a minimum height that allows the underfill resin 7 excluding the filler 10 to be filled in the gap in consideration of the chip area and the like. In consideration of reducing the absolute amount of the resin on the chip surface that affects the characteristic variation, for example, it may be about 10 to 30 μm.
[0013]
On the other hand, the filler 10 contained in the underfill resin 7 has a particle size larger than the gap between the semiconductor element 1 and the carrier substrate 3 (for example, 30 μm). As a result, the filler 10 is blocked in the gap at the time of injection, and the gap between the semiconductor element 1 and the carrier substrate 3 is filled with an epoxy resin component excluding the filler 10 and a resin containing only a stress relaxation component such as silicone, The peripheral resin other than the gap between the semiconductor element 1 and the carrier substrate 3 contains the filler 10 that is blocked.
The entire surface of the carrier substrate 3 including the semiconductor element 1 is covered with an overcoat resin 8 such as an epoxy resin including a filler 6. Note that the particle size of the filler 6 of the overcoat resin 8 may not be specified.
[0014]
Next, an example of a specific production method of the present invention will be shown.
The first substrate 3a of the carrier substrate 3 in FIG. 1 uses an insulating substrate made of, for example, an alumina ceramic substrate having a high Young's modulus, and the conductive pattern 4 is formed by a conductive paste or a metal plating layer such as copper. . On the other hand, the second layer substrate 3b is an insulating substrate made of an alumina ceramic substrate or the like, and external electrode terminals (land pattern) made of a metal plating layer such as copper so as to be electrically connected to the back side through the side wall. ) 5 is formed and bonded to the first layer substrate 3a by a laminating method or the like, thereby forming the carrier substrate 3 electrically connected from the conductive pattern 4 to the external connection terminal 5. The carrier substrate 3 is formed by bonding the first layer substrate 3a and the second layer substrate 3b, but may be formed by bonding one layer or three or more layers.
[0015]
A metal bump 2 made of gold or the like is provided on each electrode on the surface of the bare chip-shaped semiconductor element 1 on which the semiconductor integrated circuit is formed, and the metal bump 2 is ultrasonically thermocompression bonded to the conductive pattern 4 on the surface side of the carrier substrate 3. Then, face down bonding is performed.
Although only one semiconductor element 1 is shown in FIG. 1, at this stage, a plurality of semiconductor elements 1 are face-down bonded in a matrix with the carrier substrate 3 as an aggregate substrate.
[0016]
Here, the height of the metal bump 2 is formed such that the gap between the semiconductor element 1 and the carrier substrate 3 is, for example, 25 μm. In addition, in order to prevent void generation under the flip chip, it is necessary to secure a minimum height that allows the underfill resin 7 excluding the filler 10 to be filled in the gap in consideration of the chip area and the like. In consideration of reducing the absolute amount of the resin on the chip surface that affects the characteristic variation, for example, it may be 10 to 30 μm.
[0017]
Next, the underfill resin 7 is injected into the gap between the semiconductor element 1 and the carrier substrate 3 by using a dispensing device, and cured and sealed. At this time, the particle size of the filler 10 contained in the underfill resin 7 is larger than the gap between the semiconductor element 1 and the carrier substrate 3, for example, 30 μm.
[0018]
As a result, the filler 10 made of silica or alumina is damped in such a manner that the gap is limited at the time of injection, and the gap between the semiconductor element 1 and the carrier substrate 3 is a stress such as an epoxy resin component excluding the filler 10 and silicone. The resin of only the relaxation agent component is filled. On the other hand, since the resin in the peripheral portion other than the gap between the semiconductor element 1 and the carrier substrate 3 contains the filler 10 blocked by the gap, problems of reliability such as moisture resistance and heat dissipation can be prevented. .
[0019]
Then, the entire surface of the carrier substrate 3 including the semiconductor element 1 is cured after being coated with an overcoat resin 8 such as an epoxy resin including a filler 6 using a potting method or the like. The particle size of the filler 6 of the overcoat resin 8 does not have to be specified.
Finally, since it is in the form of a collective substrate at this stage, the semiconductor package having the LCC structure of the present invention is formed by dicing and dividing into individual semiconductor packages.
[0020]
In FIG. 1, an example of a semiconductor package having an LCC structure is given. However, the structure of the present invention and the manufacturing method thereof are not limited to this package. If applicable, it can be applied.
[0021]
FIG. 2 shows data comparing reference voltage distributions by assembling a package with a conventional structure and the structure of the present invention using a semiconductor element of a shunt regulator.
It can be seen that the variation in the characteristics of the reference voltage in the structure of the present invention is about 50% of that in the conventional structure, and there is almost no deviation from the original peak value (1.225 V) of the semiconductor element.
[0022]
【The invention's effect】
With the structure of the semiconductor package and the manufacturing method thereof according to the present invention, even when stress is applied during resin thermosetting shrinkage in the assembly process, the stress is alleviated, so that fluctuations in the characteristics of the semiconductor device can be suppressed and There is no need to form a low-elasticity resin film, and there is no problem of increased costs.
As described above, according to the present invention, it is possible to provide a small-sized semiconductor device and a method for manufacturing the same, which reduce the product cost of the semiconductor device and reduce the characteristic variation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semiconductor package having an LCC structure according to the present invention.
FIG. 2 is a reference voltage distribution of a shunt regulator in the present invention and a conventional semiconductor package.
FIG. 3 is a cross-sectional view of a conventional semiconductor package having an LCC structure.
[Explanation of symbols]
1. 1. Semiconductor element Metal bump 3. Carrier substrate 3a. First layer substrate 3b. Second layer substrate 4. 4. Conductive pattern External connection terminals 6, 10 Filler 7. Underfill resin8. 8. Overcoat resin Low elastic resin film

Claims (2)

キャリア用基板と、該キャリア用基板表面の導電パターンに、表面に形成された金属バンプがフェースダウンで接続される半導体素子と、前記キャリア用基板と前記半導体素子の隙間にアンダーフィル樹脂が充填されるとともに前記半導体素子全体および前記アンダーフィル樹脂を含む前記キャリア用基板表面を被覆するオーバーコート樹脂からなる半導体パッケージにおいて、前記アンダーフィル樹脂に含有するフィラーの粒径が前記キャリア用基板表面と前記半導体素子表面の間隔より大きく、前記キャリア用基板と前記半導体素子の隙間には前記フィラーを含まない前記アンダーフィル樹脂により充填され、かつ前記隙間の外周は前記フィラーを含む前記アンダーフィル樹脂で覆われ、前記半導体素子全体および前記アンダーフィル樹脂を含む前記キャリア用基板表面が前記オーバーコート樹脂で覆われていることを特徴とする半導体パッケージ。A carrier substrate, a semiconductor element in which metal bumps formed on the surface are connected face down to the conductive pattern on the surface of the carrier substrate, and an underfill resin is filled in a gap between the carrier substrate and the semiconductor element. In addition, in the semiconductor package made of an overcoat resin that covers the entire semiconductor element and the carrier substrate surface including the underfill resin, the particle size of the filler contained in the underfill resin is different from that of the carrier substrate surface and the semiconductor. The gap between the element surface is larger than the gap between the carrier substrate and the semiconductor element is filled with the underfill resin without the filler, and the outer periphery of the gap is covered with the underfill resin with the filler, The entire semiconductor device and the underfill tree A semiconductor package substrate surface for the carrier is characterized in that it is covered with the overcoat resin containing. キャリア用基板表面の導電パターンに半導体素子表面に形成した金属バンプをフェースダウンで接続する工程と、前記キャリア用基板表面と前記半導体素子表面の間隔より粒径が大きいフィラーを含有するアンダーフィル樹脂を用いて前記キャリア用基板表面と前記半導体素子の隙間に前記アンダーフィル樹脂を充填することにより、前記隙間には前記フィラーを含まない前記アンダーフィル樹脂を充填し、かつ前記隙間以外の外周は前記フィラーを含む前記アンダーフィル樹脂で被覆する工程と、前記半導体素子全体および前記アンダーフィル樹脂を含む前記キャリア用基板表面をオーバーコート樹脂で被覆する工程とを含むことを特徴とする半導体パッケージの製造方法。A step of connecting a metal bump formed on the surface of the semiconductor element to the conductive pattern on the surface of the carrier substrate in a face-down manner; and By using the underfill resin to fill the gap between the carrier substrate surface and the semiconductor element, the gap does not contain the filler, and the outer periphery other than the gap is the filler. A method of manufacturing a semiconductor package, comprising: coating with the underfill resin including: and coating the entire semiconductor element and the carrier substrate surface including the underfill resin with an overcoat resin.
JP2001319218A 2001-10-17 2001-10-17 Semiconductor package and manufacturing method thereof Expired - Fee Related JP3650748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001319218A JP3650748B2 (en) 2001-10-17 2001-10-17 Semiconductor package and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001319218A JP3650748B2 (en) 2001-10-17 2001-10-17 Semiconductor package and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003124402A JP2003124402A (en) 2003-04-25
JP3650748B2 true JP3650748B2 (en) 2005-05-25

Family

ID=19136796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001319218A Expired - Fee Related JP3650748B2 (en) 2001-10-17 2001-10-17 Semiconductor package and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3650748B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620553B2 (en) * 2005-08-30 2011-01-26 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
JP5273745B2 (en) * 2010-09-10 2013-08-28 信越化学工業株式会社 Overcoat material and semiconductor device using the same
JP6147549B2 (en) * 2013-04-12 2017-06-14 日本メクトロン株式会社 Manufacturing method of printed wiring board with built-in component and printed wiring board with built-in component

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745754A (en) * 1993-07-30 1995-02-14 Kyocera Corp Ic sealing resin
JP3648277B2 (en) * 1995-01-12 2005-05-18 株式会社東芝 Semiconductor device
JP3568402B2 (en) * 1998-03-26 2004-09-22 富士通株式会社 Semiconductor device
JP2000031345A (en) * 1998-07-13 2000-01-28 Ricoh Co Ltd Semiconductor device
JP2000124262A (en) * 1998-10-16 2000-04-28 Ricoh Co Ltd Semiconductor device
JP3707531B2 (en) * 1999-06-08 2005-10-19 信越化学工業株式会社 Flip chip type semiconductor device sealing material and flip chip type semiconductor device
JP2001110947A (en) * 1999-10-05 2001-04-20 Toppan Printing Co Ltd Ic sealing material, manufacturing method of inlet for non-contact ic card, and ic card manufactured thereby
JP2001198928A (en) * 2000-01-20 2001-07-24 Mitsui High Tec Inc Method for producing resin-sealed semiconductor device

Also Published As

Publication number Publication date
JP2003124402A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
JP3546131B2 (en) Semiconductor chip package
US11289346B2 (en) Method for fabricating electronic package
US6779260B1 (en) Overmolded electronic package including circuit-carrying substrate
US20020140085A1 (en) Semiconductor package including passive elements and method of manufacture
US20040070083A1 (en) Stacked flip-chip package
JPWO2014112167A1 (en) Module and manufacturing method thereof
TW201304018A (en) Stacked semiconductor package and manufacturing method thereof
JP2007281129A (en) Stacked semiconductor device
JPH11260851A (en) Semiconductor device and its manufacture
US7276800B2 (en) Carrying structure of electronic components
TW571406B (en) High performance thermally enhanced package and method of fabricating the same
JP2004253693A (en) Semiconductor device
JP3650748B2 (en) Semiconductor package and manufacturing method thereof
US8872318B2 (en) Through interposer wire bond using low CTE interposer with coarse slot apertures
CN109427725B (en) Interposer substrate and method of manufacturing the same
US20020187591A1 (en) Packaging process for semiconductor package
JP2006253315A (en) Semiconductor apparatus
US6710434B1 (en) Window-type semiconductor package and fabrication method thereof
TW591727B (en) Method for producing a protection for chip edges and arrangement for the protection of chip edges
TW202137425A (en) Chip package structure and manufacturing method thereof
KR100443516B1 (en) Stack package and manufacturing method thereof
US7635642B2 (en) Integrated circuit package and method for producing it
JP4416618B2 (en) Semiconductor device package and manufacturing method thereof
JP2002231856A (en) Semiconductor device and its manufacturing method
KR100762871B1 (en) method for fabricating chip scale package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees