JP3648986B2 - insulator - Google Patents

insulator Download PDF

Info

Publication number
JP3648986B2
JP3648986B2 JP18589498A JP18589498A JP3648986B2 JP 3648986 B2 JP3648986 B2 JP 3648986B2 JP 18589498 A JP18589498 A JP 18589498A JP 18589498 A JP18589498 A JP 18589498A JP 3648986 B2 JP3648986 B2 JP 3648986B2
Authority
JP
Japan
Prior art keywords
mortar
porcelain
insulator
columnar member
hole diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18589498A
Other languages
Japanese (ja)
Other versions
JP2000021646A (en
Inventor
秀勇 松原
真司 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18589498A priority Critical patent/JP3648986B2/en
Publication of JP2000021646A publication Critical patent/JP2000021646A/en
Application granted granted Critical
Publication of JP3648986B2 publication Critical patent/JP3648986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)
  • Insulators (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、金具をモルタルで磁器に接着された碍子に関し、該モルタルが変質しにくい碍子を得るものである。
【0002】
【従来の技術】
従来の碍子を図3及び図4を参照して説明する。図3は碍子の平面図、図4は図3の矢視IV−IVの断面図である。図3及び図4において、変圧器の1次ブッシング電線を締め付けるための碍子1を例に示しており、この碍子1は、断面視凹状の孔径部3aを有する磁器3と、この孔径部3aにモルタル7により接着されると共に、空洞部5aを有する柱状部材としての金具5とからなっている。
【0003】
上記のように構成された碍子1の製造方法を以下に説明する。磁器3の孔径部3aに金具5を挿入し、水とセメントと骨材である砂を適当な割合にて混合したモルタル7を磁器3の孔径部3aと金具5との隙間に充填し、大気中にて自然乾燥して、モルタル7を硬化させることにより磁器3と金具5を接着して碍子1が完成する。
【0004】
【発明が解決しようとする課題】
しかしながら、上記のように構成された碍子1のモルタル7には、経年的に、金具3から外側に向かって放射状のひび割れ(以下、ヘアクラックという。)が生じることがあり、碍子1に機能上の不具合を生じることが考えられる。
【0005】
ヘアクラックの発生原因は、モルタル7と金具5との線膨張係数の差によりモルタル7に熱応力が加わって金具5から外側に向かって放射状のひび割れ(以下、ヘアクラックという。)が生じたものと推定される。すなわち、金具5は材質が例えば黄銅であれば、線膨張係数が2.08×10-5で、同様に、磁器3のそれは0.31×10-5となり、金具5の表面部の収縮が温度により顕著になる反面、磁器3の表面部では、金具5に比べて相当小さく、この両者の差がモルタル7の熱応力となり、モルタル7にヘアクラックが生じると推定されるので、発明者はこの対策の提案として別に出願をした。
【0006】
しかしながら、その後発明者が検討したところ、モルタル7のヘアクラック発生の推定原因は、金具5の熱膨張の他に、第1に、砂のアルカリ骨材反応による膨張ひび割れ、第2に、セメントの遅れ膨張によるひび割れ、第3に、モルタル7の凍害によるひび割れ等が考えられるので、かかる他の原因に応じた対策を取らなければ、再び該へアクラックが発生するという問題点があった。
【0007】
この発明は上記課題を解決するためになされたもので、モルタルにヘアクラックが起こりにくい碍子を提供することを目的とする。
【0008】
【課題を解決するための手段】
第1の発明に係る碍子は、金属から成る柱状の柱状部材と、この柱状部材を遊挿する孔径部を有する磁器と、上記柱状部材を上記磁器の孔径部に遊挿して形成された上記柱状部材の外周面と上記磁器の孔径部との隙間に充填したモルタルとを備えた碍子であって、上記モルタル、セメント100重量%、珪砂200重量%、水70重量%、混和剤を0.8重量%の割合で配合するとともに、このモルタルを上記磁器に遊挿された上記柱状部材の表面と上記孔径部との隙間に流し込み、上記柱状部材と上記磁器とを接着したことを特徴とするものである。
【0011】
【発明の実施の形態】
実施の形態1.
まず、上記推定原因のうち、第1に、砂のアルカリ骨材反応による膨張ひび割れについて以下の実験により確認した。最新の検出感度の高いカナダの促進モルタルバー法試験(CSAA23.2−25A,1994)により、ASTM型枠(2.54×2.54×28.6cm)に、粉枠後粒度調整を行った骨材(4.75mm〜0.15mm、5段階)とセメント600g、骨材1350g、水300gで混合してモルタル7を作製し、前養生の後に80℃のアルカリ溶液中(1規定NaOH)に浸清して、モルタル7の膨張率を図5に示すように測定した。この試験では2週間後の膨張率0.15%以上を有害とみなしているから、図5の結果は有害と判定される。
【0012】
モルタル7を薄片にスライスし、偏光顕微鏡で確認したところ、図6の偏光顕微鏡の模式図に示すようにアルカリ骨材反応を示す物質としてのチャート17が確認でき、しかも、このチャート17からクラック17aを生じていたので、該クラック17aにセメントペーストの乾燥収縮が重なり、磁器3にひび割れが生じることが考えられる。
【0013】
第2に、セメントの遅れ膨張に関して以下の実験を行った。ASTM型枠(2.54×2.54×28.6cm)につめたセメントペーストを前養生の後、オートクレーブ(2Mpa=216℃)で3時間煮沸し、減圧・冷却して(90℃から23℃)長さの変化率を測定した結果、膨張率0.00(%)となりポルトランドセメントの品質規格ASTMC150によれば、0.8%以下であるので、この原因でないと推定される。
【0014】
第3に、モルタル7の凍害を確認するために、碍子1に凍結試験として冷凍状態(−20℃〜−25℃を7時間)、解凍状態(5℃〜10℃を12時間)を1周期として10サイクル実施しても、モルタル7にヘアクラックを発生しないことを確認したので、この原因ではないと推定される。
【0015】
モルタル7におけるヘアクラックの他の発生原因は、上記のようにアルカリ骨材反応による膨張ひび割れと確認したので、この対策を具現化したこの発明の一実施の形態を図1及び図2によって説明する。図1はこの発明による一実施の形態を示す碍子の平面図、図2は図1の矢視II−IIの断面図である。図中、従来と同一符号は同一又は相当部分を示し説明を省略する。
【0016】
図1及び図2おいて、碍子100のモルタル107は、アルカリ骨材反応を起こ易い物質、例えばオパール、クリストバライトなどのシリカ鉱物と火山ガラスを含まない骨材である砂を用いて生成してある。ここで、かかる砂を入手するには、例えば山口県豊浦郡豊浦超産の天然珪砂から製造される標準砂(JISセメント試験に規定−1993)が適当である。なお、金具5が黄銅等から成る場合には、金具5とモルタル107との接触部の腐食を防止するために、腐食防止剤としてのワニスを金具5の表面に塗布することが好ましい。
【0017】
コンクリート中のアルカリ濃度は、例えば3.0kg/m3以下にすることが知られている(JIS A 5005−1993)。しかしながら、モルタル107のアルカリ濃度は、磁器3の孔径部3aと金具5との隙間にモルタル107を流し込み、所定の強度で磁器3と金具5とを接着しなければらない。
【0018】
一方、モルタル107は、アルカリ濃度が低くなるに連れて接着強度が低下する特性を有しており、これと逆にアルカリ濃度が高くなるに連れて粘性が低下する特性を有している。ここで、モルタルのアルカリ濃度が3.44kg/cm3となり、金具5に250〜300kgcmのトルクを加えても、モルタル107にクラックが発生しないことを確認した。この場合のモルタル107の配合は、セメント100g、珪砂200g、水70g、混和剤を0.8gをそれぞれ配合することにより上記アルカリ濃度となる。
【0019】
【発明の効果】
第1の発明によれば、金属から成る柱状の柱状部材と、この柱状部材を遊挿する孔径部を有する磁器と、上記柱状部材を上記磁器の孔径部に遊挿して形成された上記柱状部材の外周面と上記磁器の孔径部との隙間に充填したモルタルとを備えた碍子であって、上記モルタル、セメント100重量%、珪砂200重量%、水70重量%、混和剤を0.8重量%の割合で配合するとともに、このモルタルを上記磁器に遊挿された上記柱状部材の表面と上記孔径部との隙間に流し込み、上記柱状部材と上記磁器とを接着したので、金具を磁器に取り付ける作業性が改善され、しかも、モルタルのアルカリ骨材反応が抑制されてモルタルの膨張が低減し、モルタルにへアクラックが起こりにくい碍子を得るという効果がある。
【図面の簡単な説明】
【図1】 この発明による一実施の形態を示す碍子の平面図である。
【図2】 図1の矢視II−IIの断面図である。
【図3】 従来の碍子の平面図である
【図4】 図3の矢視IV−IVの断面図である。
【図5】 モルタルのアルカリ骨材反応を示す特性曲線図である。
【図6】 モルタル部の薄片を偏光顕微鏡で撮影した写真の模式図である。
【符号の説明】
3 磁器、3a 孔径部、5 金具(柱状部材)、100 碍子、107 モルタル。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulator in which a metal fitting is bonded to a porcelain with a mortar, and obtains an insulator in which the mortar is not easily altered.
[0002]
[Prior art]
A conventional insulator will be described with reference to FIGS. 3 is a plan view of the insulator, and FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3 and 4, an insulator 1 for tightening a primary bushing wire of a transformer is shown as an example. The insulator 1 includes a porcelain 3 having a hole diameter portion 3a that is concave in cross section, and the hole diameter portion 3a. It consists of a metal fitting 5 as a columnar member which is bonded by a mortar 7 and has a hollow portion 5a.
[0003]
The manufacturing method of the insulator 1 comprised as mentioned above is demonstrated below. A metal fitting 5 is inserted into the hole diameter portion 3a of the porcelain 3, and a gap between the hole diameter portion 3a of the porcelain 3 and the metal fitting 5 is filled with mortar 7 in which water, cement, and sand as an aggregate are mixed at an appropriate ratio. The porcelain 3 and the metal fitting 5 are bonded by curing the mortar 7 by natural drying inside, and the insulator 1 is completed.
[0004]
[Problems to be solved by the invention]
However, the mortar 7 of the insulator 1 configured as described above may cause radial cracks (hereinafter referred to as hair cracks) from the metal fitting 3 to the outside over time, and the insulator 1 is functionally functional. It is conceivable that the above problem will occur.
[0005]
The cause of the occurrence of hair cracks is that thermal stress is applied to the mortar 7 due to the difference in the coefficient of linear expansion between the mortar 7 and the metal fitting 5 and radial cracks (hereinafter referred to as hair cracks) are generated from the metal fitting 5 toward the outside. It is estimated to be. That is, if the material of the metal fitting 5 is, for example, brass, the coefficient of linear expansion is 2.08 × 10 −5 . Similarly, that of the porcelain 3 is 0.31 × 10 −5 , and the surface portion of the metal fitting 5 is contracted. On the other hand, the surface portion of the porcelain 3 is considerably smaller than the metal fitting 5, and the difference between the two becomes the thermal stress of the mortar 7 and it is estimated that hair cracks occur in the mortar 7. A separate application was filed as a proposal for this measure.
[0006]
However, when the inventor subsequently studied, the cause of the occurrence of hair cracks in the mortar 7 was, in addition to the thermal expansion of the metal fitting 5, firstly expanded cracks due to the alkali-aggregate reaction of sand, and secondly, the cement Cracks due to delayed expansion, and thirdly, cracks due to frost damage of the mortar 7 are conceivable. Therefore, there is a problem that the cracks occur again unless measures are taken according to such other causes.
[0007]
This invention was made in order to solve the said subject, and it aims at providing the insulator with which a hair crack does not occur easily in mortar.
[0008]
[Means for Solving the Problems]
The insulator according to the first invention is a columnar columnar member made of metal, a porcelain having a hole diameter portion into which the columnar member is loosely inserted, and the columnar shape formed by loosely inserting the columnar member into the hole diameter portion of the porcelain. a insulator comprising a mortar filled into the gap between the outer peripheral surface and the opening part of the ceramic member, the mortar, cement 100 wt%, silica sand 200 wt%, 70 wt% water, admixtures 0. The mortar was blended at a ratio of 8% by weight , and the mortar was poured into the gap between the surface of the columnar member inserted loosely into the porcelain and the hole diameter portion, and the columnar member and the porcelain were bonded. Is.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
First, among the above estimated causes, first, expansion cracks due to alkali-aggregate reaction of sand were confirmed by the following experiment. According to the latest Canadian accelerated mortar bar test (CSAA 23.2-25A, 1994) with high detection sensitivity, ASTM formwork (2.54 × 2.54 × 28.6 cm) was subjected to post-powder particle size adjustment. Aggregate (4.75 mm to 0.15 mm, 5 stages) and 600 g of cement, 1350 g of aggregate, and 300 g of water are mixed to prepare mortar 7, and after pre-curing, in an alkaline solution at 80 ° C. (1 N NaOH) After soaking, the expansion rate of the mortar 7 was measured as shown in FIG. In this test, the expansion rate of 0.15% after 2 weeks is regarded as harmful, so the result of FIG. 5 is determined to be harmful.
[0012]
When the mortar 7 was sliced into thin pieces and confirmed with a polarizing microscope, a chart 17 as a substance showing an alkali-aggregate reaction was confirmed as shown in the schematic diagram of the polarizing microscope in FIG. Therefore, it is conceivable that drying shrinkage of the cement paste overlaps with the cracks 17a, and cracks occur in the porcelain 3.
[0013]
Second, the following experiment was conducted on delayed expansion of cement. Cement paste packed in ASTM formwork (2.54 × 2.54 × 28.6 cm) is pre-cured and then boiled in an autoclave (2 Mpa = 216 ° C.) for 3 hours, and reduced in pressure and cooled (from 90 ° C. to 23 ° C. As a result of measuring the rate of change in the length, the expansion coefficient was 0.00 (%), which is 0.8% or less according to the Portland cement quality standard ASTM C150.
[0014]
Thirdly, in order to confirm the frost damage of the mortar 7, the cocoon 1 is subjected to a freezing state (-20 ° C. to −25 ° C. for 7 hours) and a thawed state (5 ° C. to 10 ° C. for 12 hours) as one cycle. As it was confirmed that no hair cracks were generated in the mortar 7 even after 10 cycles, it is estimated that this is not the cause.
[0015]
Since the other cause of hair cracks in the mortar 7 has been confirmed as expansion cracking due to alkali aggregate reaction as described above, an embodiment of the present invention embodying this countermeasure will be described with reference to FIGS. . FIG. 1 is a plan view of an insulator showing an embodiment according to the present invention, and FIG. 2 is a sectional view taken along the line II-II in FIG. In the figure, the same reference numerals as those in the prior art denote the same or corresponding parts, and a description thereof is omitted.
[0016]
1 and 2, the mortar 107 of the insulator 100 is generated using a material that easily causes an alkali-aggregate reaction, for example, silica mineral such as opal and cristobalite and sand that is an aggregate not containing volcanic glass. . Here, in order to obtain such sand, for example, standard sand (specified in JIS cement test -1993) manufactured from natural silica sand produced in Toyoura-gun, Toyoura-gun, Yamaguchi is suitable. In addition, when the metal fitting 5 consists of brass etc., it is preferable to apply | coat the varnish as a corrosion inhibitor to the surface of the metal fitting 5 in order to prevent the corrosion of the contact part of the metal fitting 5 and the mortar 107.
[0017]
It is known that the alkali concentration in concrete is, for example, 3.0 kg / m 3 or less (JIS A 5005-1993). However, the alkali concentration of the mortar 107 must be such that the mortar 107 is poured into the gap between the hole diameter portion 3a of the porcelain 3 and the metal fitting 5 to bond the porcelain 3 and the metal fitting 5 with a predetermined strength.
[0018]
On the other hand, the mortar 107 has a characteristic that the adhesive strength decreases as the alkali concentration decreases, and conversely, the mortar 107 has a characteristic that the viscosity decreases as the alkali concentration increases. Here, the alkali concentration of the mortar was 3.44 kg / cm 3 , and it was confirmed that no cracks occurred in the mortar 107 even when a torque of 250 to 300 kgcm was applied to the metal fitting 5. In this case, the mortar 107 is mixed with 100 g of cement, 200 g of silica sand, 70 g of water, and 0.8 g of an admixture to obtain the above alkali concentration.
[0019]
【The invention's effect】
According to the first invention, a columnar columnar member made of metal, a porcelain having a hole diameter portion for loosely inserting the columnar member, and the columnar member formed by loosely inserting the columnar member into the hole diameter portion of the porcelain. The mortar is filled with a mortar filled in the gap between the outer peripheral surface of the porcelain and the pore diameter portion of the porcelain. The mortar is composed of 100% by weight of cement, 200% by weight of silica sand, 70% by weight of water, and 0.8% of an admixture. Since the mortar was poured into the gap between the surface of the columnar member loosely inserted in the porcelain and the hole diameter portion and the columnar member and the porcelain were bonded , the metal fitting was attached to the porcelain. The mounting workability is improved, and further, the alkali aggregate reaction of the mortar is suppressed, the expansion of the mortar is reduced, and there is an effect of obtaining an insulator in which the crack is unlikely to occur in the mortar.
[Brief description of the drawings]
FIG. 1 is a plan view of an insulator showing an embodiment according to the present invention.
2 is a cross-sectional view taken along the line II-II in FIG.
3 is a plan view of a conventional insulator. FIG. 4 is a cross-sectional view taken along arrows IV-IV in FIG.
FIG. 5 is a characteristic curve diagram showing an alkali aggregate reaction of mortar.
FIG. 6 is a schematic view of a photograph of a mortar flake taken with a polarizing microscope.
[Explanation of symbols]
3 Porcelain, 3a hole diameter part, 5 metal fitting (columnar member), 100 insulator, 107 mortar.

Claims (1)

金属から成る柱状の柱状部材と、この柱状部材を遊挿する孔径部を有する磁器と、上記柱状部材を上記磁器の孔径部に遊挿して形成された上記柱状部材の外周面と上記磁器の孔径部との隙間に充填したモルタルとを備えた碍子であって、
上記モルタル、セメント100重量%、珪砂200重量%、水70重量%、混和剤を0.8重量%の割合で配合するとともに、このモルタルを上記磁器に遊挿された上記柱状部材の表面と上記孔径部との隙間に流し込み、上記柱状部材と上記磁器とを接着したことを特徴とする碍子。
A columnar columnar member made of metal, a porcelain having a hole diameter portion for loosely inserting the columnar member, an outer peripheral surface of the columnar member formed by loosely inserting the columnar member into a hole diameter portion of the porcelain, and a hole diameter of the porcelain An insulator with a mortar filled in a gap with the part,
The mortar, cement 100 wt%, silica sand 200 wt%, 70 wt% water, as well as compounding the admixture in a proportion of 0.8 wt%, and the surface of the columnar member of the mortar is loosely inserted into the porcelain An insulator characterized by being poured into a gap with the hole diameter portion and bonding the columnar member and the porcelain .
JP18589498A 1998-07-01 1998-07-01 insulator Expired - Fee Related JP3648986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18589498A JP3648986B2 (en) 1998-07-01 1998-07-01 insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18589498A JP3648986B2 (en) 1998-07-01 1998-07-01 insulator

Publications (2)

Publication Number Publication Date
JP2000021646A JP2000021646A (en) 2000-01-21
JP3648986B2 true JP3648986B2 (en) 2005-05-18

Family

ID=16178747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18589498A Expired - Fee Related JP3648986B2 (en) 1998-07-01 1998-07-01 insulator

Country Status (1)

Country Link
JP (1) JP3648986B2 (en)

Also Published As

Publication number Publication date
JP2000021646A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
KR102150666B1 (en) Mortar composition for repairing concrete structure and repairing method of concrete structure thereof
KR100728175B1 (en) Fire-resistant ultrahigh-performance concrete composition
KR20010014736A (en) method for applying a barrier layer to a silicon based substrate
Oliveira et al. Stress intensity factors for axial cracks in hollow cylinders subjected to thermal shock
JP2009023340A (en) Article for high temperature service and method for manufacturing the same
JP2003192470A (en) Parts having silicon-containing substrate
KR101166792B1 (en) Restroative mortar compositions for cross section restorations and repairing method of reinforced concrete using that
EP2947059A1 (en) Exterior insulation mortar for cold weather and method for constructing exterior insulation system using same
CN112142417B (en) Plastering anti-crack waterproof mortar and preparation method thereof
WO2019210598A1 (en) Migration inhibitor for internal and external moisture of concrete
WO2013123181A1 (en) Concrete compositions and methods of making
CN110615650A (en) Reinforced flexible plastering anti-crack mortar and preparation method thereof
JP3648986B2 (en) insulator
JP2002260467A (en) Insulator
Tian et al. Alkali-activated materials as coatings deposited on various substrates: A review
KR20170014466A (en) Self-healing fine agreegate for mortar and self-healing mortar using the same.
CA2152029A1 (en) High tension insulator of ceramic
JP2010208937A (en) Process for manufacturing high-voltage electrical insulator
KR101173660B1 (en) Inorganic Ceramic Reparing Moltar Composition
CZ242097A3 (en) Insulator with sealed joint and process for producing thereof
Hock et al. The use of vitreous enamel coatings to improve bonding and reduce corrosion in concrete reinforcing steel
JPS5899180A (en) Manufacture of exhaust gas instrument for internal combustion engine
JPH02225383A (en) Bonded ceramics and iron parts and production thereof
CA2283263C (en) Construction element and process for its preparation
KR102535681B1 (en) Reinforcing polymer mortar composition and concrete repair method using crimp wire mesh

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040326

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees