JP3648698B2 - Vehicle height sensor - Google Patents

Vehicle height sensor Download PDF

Info

Publication number
JP3648698B2
JP3648698B2 JP27185496A JP27185496A JP3648698B2 JP 3648698 B2 JP3648698 B2 JP 3648698B2 JP 27185496 A JP27185496 A JP 27185496A JP 27185496 A JP27185496 A JP 27185496A JP 3648698 B2 JP3648698 B2 JP 3648698B2
Authority
JP
Japan
Prior art keywords
ultrasonic
receiver
vehicle height
signal
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27185496A
Other languages
Japanese (ja)
Other versions
JPH1096617A (en
Inventor
裕之 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27185496A priority Critical patent/JP3648698B2/en
Publication of JPH1096617A publication Critical patent/JPH1096617A/en
Application granted granted Critical
Publication of JP3648698B2 publication Critical patent/JP3648698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両の懸架装置等に用いられる車高センサに関する。
【0002】
【従来の技術】
従来の車高センサの一例として、先に本願出願人が特開平8−170677号で提案した車高センサがある。この車高センサは、車軸側に固定されるシリンダ側に超音波反射面を設け、シリンダに対して変位自在のピストンロッド側に前記超音波反射面に対面するように超音波送・受信器を設け、略筒状をなしてシリンダの一方側(上側)を覆うようにピストンロッド側に固定されたシェル(包囲部材)を設け、超音波送信器が超音波を送信してから超音波受信器の受信信号があらかじめ定めた所定の大きさの閾値以上になった時点までの時間(超音波送受信時間)を計測し、この計測データに基づいて、シリンダとピストンロッドとの相対ストローク、ひいては車高を検出するようにしている。
【0003】
【発明が解決しようとする課題】
ところで、上述した車高センサでは、超音波送・受信器と超音波反射面との間の超音波伝搬経路が筒状のシェルに包囲されており、シェル内部(以下、超音波経路空間という。)で、定在波が発生し超音波の共鳴現象を生じる。この共鳴現象により、例えば図7に示すように、超音波送・受信器−超音波反射面間の距離(ストローク)に応じて超音波の大きさ(超音波受信器の受信レベル)が波状(略sin 波状)に変化する特性(超音波の受信レベル特性)を持つことになる。なお、前記受信レベル特性は、シェル(包囲部材)の形状により決まるものである。
【0004】
そして、図7中A部、B部(送信波がシェル内壁の反射波等により弱められた部分)のように受信レベルが小さいストローク領域では、図8に示すように、超音波受信器が受信する信号(受信信号)が例えば実線Cから点線Dに示すように小さくなる。このため、超音波受信器の受信判定に用いられる閾値以上になるポイント(検出ポイント)が例えば点Eから点Fに示すように変化し、測定誤差(図8では超音波周波数の一周期分の誤差)を生じてしまう。
【0005】
本発明は、上記事情に鑑みてなされたもので、包囲部材の内部空間に生じる超音波の共鳴現象に対処して超音波の信号を適切且つ確実に検出し測定誤差の少ない車高センサを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記目的を達成するために、車両の車体側、車軸側のうち一方に設けられる超音波用の送・受信器と、車両の車体側、車軸側のうち他方に設けられて前記送信器からの超音波を前記受信器に反射させる反射面と、前記超音波の伝搬経路を径方向から包囲するように設けられる包囲部材とを備え、前記送信器の送信時点から受信器の受信信号があらかじめ定めた閾値以上になった時点までに要する超音波送受信時間に基づいて車高を検出する車高センサであって、前記包囲部材の内部空間における共鳴現象による前記送・受信器−超音波反射面間の距離に応じた超音波の受信レベル特性に基づく前記閾値を示す信号を発生する閾値発生手段を設けたことを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明の一実施の形態の運転制御方法を図1ないし図6に基づいて説明する。図1及び図2において、ショックアブソーバ1は、シリンダ2と、これを囲むようにしてこのシリンダ2を保持するシェルケース3とを有している。このシェルケース3は、車両の車軸側(図示省略)に固定されている。シリンダ2には、ピストン(図示省略)が摺動自在に収納されており、このピストンにはピストンロッド4が取り付けられている。ピストンロッド4は、シェルケース3の端部から外部に突出している。ピストンロッド4の端部には車体取付用アイ5が固着されている。ショックアブソーバ1は上述したように車体と車軸側との間に介装されており、車体の上下動に応じて伸縮する。
【0008】
また、ピストンロッド4の端部には、治具6を介して筒状のダストカバー7が取り付けられている。ダストカバー7は、シェルケース3を覆うようにして車軸側に延びており、ピストンロッド4、シェルケース3を飛石などから保護するようにしている。前記治具6のダストカバー7内部側には、センサ取付用治具8がボルト9により取り付けられている。センサ取付用治具8には、超音波送・受信器10,11からなる超音波センサ12が取り付けられている。前記シェルケース3の端部には、反射板13(反射面)が取り付けられており、超音波送信器10からの超音波を超音波受信器11に反射させるようになっている。本実施の形態では、ダストカバー7が超音波の伝搬経路を包囲することになり、包囲部材を構成している。そして、本実施の形態は、このように包囲部材を備えていることから、前記段落「0003」で説明したように、包囲部材(ダストカバー7)内部で定在波が発生し超音波の共鳴現象を生じ、この共鳴現象により、超音波送・受信器10,11−反射板13(超音波反射面)間の距離(ストローク)に応じて超音波の大きさ(超音波受信器11の受信レベル)が波状(略 sin 波状)に変化する特性(超音波の受信レベル特性)を持つものになっている。
【0009】
超音波送信器10には、図3に示すように、駆動回路14、送信タイミング発生回路15がこの順に接続されている。送信タイミング発生回路15は、計測タイミングを示す送信タイミングパルスJを駆動回路14、後述する伝搬時間計測回路16、閾値信号発生回路17に出力する。駆動回路14は、送信タイミングパルスJを入力する毎に超音波送信器10から超音波(送信信号)Kを発生させる。なお、荷物の搭載及び凹凸路走行等によりショックアブソーバ1は伸縮し、車高が変化することになるが、この車高変化速度に比して、図5に示すように、計測周期(送信タイミングパルスJを連続して送信する場合の2つの送信タイミングパルスJ間の長さ。)は極めて短いものであり、凹凸路走行等により車高レベルが変化した際にもその車高値の検出を確実に行える。
【0010】
超音波受信器11には、超音波受信器11が受信する信号(受信信号)Lを増幅して増幅受信信号Mとして出力する増幅回路18、比較回路19がこの順で接続されている。比較回路19には、閾値信号発生回路17が接続されている。
閾値信号発生回路17は、試験によりあらかじめ求められた、図4に示すような超音波送・受信器10,11−反射板13間の距離(ストローク)に応じた超音波の大きさ(超音波受信器11の受信レベル)を示す特性(受信レベル特性)を格納している。さらに、閾値信号発生回路17は、前記受信レベル特性と略同等パターンでその受信レベルに比して小さい値のパターン化された信号(閾値信号)Nを、送信タイミングパルスJを入力した時点から所定時間(超音波の周波数に比して極めて短い時間。以下、閾値信号発生時間という。)毎に発生し、比較回路19に出力する(閾値発生手段)。すなわち、閾値信号発生回路17は、横軸をストローク量、縦軸を前記超音波の大きさに対応する電圧値として例えば図4のように示される閾値信号Nについて、その横軸(ストローク量)における、音速及び前記所定時間で定まる所定ストローク量に対応した部分毎に、発生し、これを比較回路19に出力する。換言すれば、閾値信号発生回路17は、包囲部材(ダストカバー7)の内部空間における共鳴現象による送・受信器10,11−反射板13(超音波反射面)間の距離に応じた超音波の受信レベル特性に基づく閾値信号Nを発生するようにしている。ここで、閾値信号発生回路17は閾値発生手段を構成している。
【0011】
比較回路19は、増幅回路18を介して超音波受信器11から送られる受信信号L(増幅受信信号M)と前記閾値信号Nの比較部分(後述する)とを閾値信号発生時間毎に比較し、増幅受信信号Mの大きさが閾値信号Nの所定部分の大きさに比して大きくなったとき、超音波検出信号Pを伝搬時間計測回路16に出力する。
この場合、送信タイミングパルスJ発生時点からの累積時間〔超音波送信器10からの距離(ストローク)〕が大きくなるのに応じて、閾値信号Nのうち増幅受信信号Mと比較する対象となる部分(比較部分)は、図4中右側の部分をとるようになる。そして、超音波の伝搬距離は、超音波が反射板13に対して往復することによりストロークの2倍となっていることにより、前記比較部分は、累積時間の1/2の時間に相当するストローク位置に対応した部分が閾値信号発生時間毎に選択される。このように比較部分を選択することにより、この閾値信号Nの比較部分(閾値)が、計測しようとするストロークの受信レベルに対応したものとなり、かつこの閾値信号Nの比較部分の大きさが受信レベルに比して小さい値になる。
例えば、車高(ストローク)がA部の領域のA0部分にあるとき、比較部分(閾値)としてVAが用いられ、車高(ストローク)がG部の領域のG0 部分にあるとき比較部分(閾値)としてVGが用いられ、また車高(ストローク)がB部の領域のB0部分にあるとき、比較部分(閾値)としてVAが用いられる。
なお、この閾値信号発生時間毎の比較において、累積時間が、計測すべき超音波送・受信器10,11−反射板13間距離の2倍の距離(超音波の往復分)を超音波が伝搬するのに要する時間〔ひいては当該時間に対応する距離(ストローク)〕に達するまでは、超音波受信器11は超音波を受信しないが、ノイズがのるので、前記閾値信号Nはこのノイズに比して大きい値にしておき、ノイズを受信することにより、正規の超音波を受信したと誤って検出しないようにしている。
【0012】
前記伝搬時間計測回路16は、前記比較回路19からの超音波検出信号Pを入力すると、最初の送信タイミングパルスJ入力時点から超音波検出信号P入力時点までの時間を求め、この時間に対応した幅の時間パルス信号Qをt−V変換回路20に出力する。
t−V変換回路20では、時間パルス信号Qの幅に応じた電圧を出力する。なお、この出力電圧により計測すべき距離(ストローク)、ひいては車高を求めることができる。
【0013】
以上のように構成された車高センサでは、閾値信号発生回路17が、図6に示すように送信タイミングパルスJを入力すると、受信レベル特性と略同等パターンでその受信レベルに比して小さい値の信号(閾値信号N)を、閾値信号発生時間毎に発生する。そして、比較回路19が、増幅受信信号Mと閾値信号Nの比較部分とを閾値信号発生時間毎に比較する。この際、超音波送信器10で超音波が送信されてから超音波受信器11に達するまでは、増幅受信信号Mの大きさは小さく(ノイズ分)、超音波検出信号Pは出力されない。超音波受信器11に超音波が達する段階で、増幅受信信号Mと閾値信号N(比較部分)とが実質的に比較されることになる。そして、この段階での閾値信号Nの大きさは、計測すべき距離(ストローク)における受信レベルに比して大きさが小さい閾値信号N(比較部分)が用いられる。このため、計測すべき距離(ストローク)における受信レベルが例えば図4のA部またはB部であったとしても、検出ポイントの変化を招くことがなく、適切に超音波を受信したことを検出し、超音波受信信号Jを精度高いタイミングで出力し、計測精度を向上できることになる。
【0014】
従来技術で受信信号Jをフィードバックして計測の安定化を図る装置があるが、これに比してフィードバックに要する時間が不要となり、その分、計測の迅速化を図ることができ、かつ、フィードバックのための回路が不要になることに伴い、回路構成が簡略化されてその分、故障率が低くなると共に装置の低廉化を図ることができる。
【0015】
なお、上述した実施の形態では、反射面として別途反射板13をシェルケース3に固定したものを設けたが、これに限らず、シェルケース3の端部を反射面として平坦に形成しても良い。
【0016】
【発明の効果】
本発明は、以上説明したように構成された車高センサであるから、送信器の送信時点から受信器の受信信号があらかじめ定めた閾値以上になった時点までに要する超音波送受信時間に基づいて車高を検出する一方、閾値発生手段が前記包囲部材の内部空間における共鳴現象による前記送・受信器−超音波反射面間の距離に応じた超音波の受信レベル特性に基づく前記閾値を示す信号を発生するので、前記受信信号と比較される閾値が、計測しようとする部分における受信レベルに対応したもの、すなわち包囲部材の内部空間において生じる共鳴現象に対応したものとなる。このため、包囲部材の内部空間において生じる共鳴現象に適切に対処して受信信号を適切かつ確実に検出し、ひいては計測精度の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の車高センサを示す断面図である。
【図2】図1の車高センサの送・受信器の取付状態を示す図である。
【図3】図1の車高センサを模式的に示すブロック図である。
【図4】図1の車高センサの受信レベルと閾値信号との関係を示す図である。
【図5】車高レベル変化と計測周期との関係を模式的に示す図である。
【図6】図1の車高センサの作用を示すためのタイミング波形図である。
【図7】従来の車高センサの一例における受信レベルと閾値との関係を示す図である。
【図8】受信レベルが低いストローク領域における受信信号の低下を示す図である。
【符号の説明】
10 超音波送信器
11 超音波受信器
13 反射
17 閾値信号発生回路(閾値発生手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle height sensor used in a vehicle suspension device or the like.
[0002]
[Prior art]
As an example of a conventional vehicle height sensor, there is a vehicle height sensor previously proposed by the applicant of the present invention in Japanese Patent Laid-Open No. 8-170677. This vehicle height sensor is provided with an ultrasonic reflection surface on the cylinder side fixed to the axle side, and an ultrasonic transmitter / receiver is provided on the piston rod side that is displaceable with respect to the cylinder so as to face the ultrasonic reflection surface. Provided with a shell (enclosure member) fixed to the piston rod side so as to cover one side (upper side) of the cylinder in a substantially cylindrical shape, and after the ultrasonic transmitter transmits ultrasonic waves, the ultrasonic receiver Measure the time (ultrasonic transmission / reception time) until the time when the received signal becomes equal to or greater than a predetermined threshold value, and based on this measurement data, the relative stroke between the cylinder and piston rod, and the vehicle height To detect.
[0003]
[Problems to be solved by the invention]
By the way, in the vehicle height sensor described above, the ultrasonic propagation path between the ultrasonic transmitter / receiver and the ultrasonic reflection surface is surrounded by a cylindrical shell, and the inside of the shell (hereinafter referred to as an ultrasonic path space). ), A standing wave is generated and an ultrasonic resonance phenomenon occurs. Due to this resonance phenomenon, for example, as shown in FIG. 7, the size of the ultrasonic wave (the reception level of the ultrasonic receiver) varies in a wave-like manner (in accordance with the distance (stroke) between the ultrasonic transmitter / receiver and the ultrasonic reflection surface). It has a characteristic that changes to an approximately sin wave shape (reception level characteristic of ultrasonic waves). The reception level characteristic is determined by the shape of the shell (enclosure member).
[0004]
Then, in the stroke region where the reception level is small, such as A part and B part in FIG. 7 (the part where the transmission wave is weakened by the reflected wave etc. of the shell inner wall), the ultrasonic receiver receives as shown in FIG. The signal to be received (reception signal) becomes smaller as indicated by a solid line C to a dotted line D, for example. For this reason, a point (detection point) that is equal to or higher than a threshold used for reception determination of the ultrasonic receiver changes as indicated by a point E to a point F, for example, and a measurement error (in FIG. 8, one period of the ultrasonic frequency). Error).
[0005]
The present invention has been made in view of the above circumstances, and provides a vehicle height sensor that can detect an ultrasonic signal appropriately and reliably and has little measurement error in response to an ultrasonic resonance phenomenon occurring in the internal space of the surrounding member. The purpose is to do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an ultrasonic transmitter / receiver provided on one of the vehicle body side and the axle side of the vehicle and the other of the vehicle body side and the axle side of the vehicle. A reflection surface that reflects the ultrasonic waves from the transmitter to the receiver; and an enclosing member that is provided so as to surround the propagation path of the ultrasonic waves from the radial direction, and is received by the receiver from the transmission time of the transmitter. A vehicle height sensor for detecting a vehicle height based on an ultrasonic transmission / reception time required until a signal becomes equal to or higher than a predetermined threshold, wherein the transmitter / receiver-supervisor is caused by a resonance phenomenon in an internal space of the surrounding member. Threshold generation means for generating a signal indicating the threshold based on the reception level characteristic of the ultrasonic wave according to the distance between the sound wave reflecting surfaces is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an operation control method according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2, the shock absorber 1 has a cylinder 2 and a shell case 3 that holds the cylinder 2 so as to surround the cylinder 2. The shell case 3 is fixed to the axle side (not shown) of the vehicle. A piston (not shown) is slidably accommodated in the cylinder 2, and a piston rod 4 is attached to the piston. The piston rod 4 protrudes from the end of the shell case 3 to the outside. A body mounting eye 5 is fixed to the end of the piston rod 4. As described above, the shock absorber 1 is interposed between the vehicle body and the axle side, and expands and contracts according to the vertical movement of the vehicle body.
[0008]
A cylindrical dust cover 7 is attached to the end of the piston rod 4 via a jig 6. The dust cover 7 extends toward the axle so as to cover the shell case 3 and protects the piston rod 4 and the shell case 3 from flying stones and the like. A sensor mounting jig 8 is attached to the inside of the dust cover 7 of the jig 6 with bolts 9. An ultrasonic sensor 12 including ultrasonic transmitters / receivers 10 and 11 is attached to the sensor mounting jig 8. A reflection plate 13 (reflection surface) is attached to the end of the shell case 3 so that the ultrasonic wave from the ultrasonic transmitter 10 is reflected to the ultrasonic receiver 11. In the present embodiment, the dust cover 7 surrounds the ultrasonic wave propagation path, and constitutes a surrounding member. Since the present embodiment includes the surrounding member in this way, as described in the paragraph “0003”, a standing wave is generated inside the surrounding member (dust cover 7), and the ultrasonic resonance is generated. Due to this resonance phenomenon, the size of the ultrasonic wave (reception by the ultrasonic receiver 11) depends on the distance (stroke) between the ultrasonic wave transmitter / receiver 10, 11 and the reflector 13 (ultrasonic reflection surface). Level) has a characteristic that changes in a wave shape (substantially sin wave) (acoustic wave reception level characteristic).
[0009]
As shown in FIG. 3, a drive circuit 14 and a transmission timing generation circuit 15 are connected to the ultrasonic transmitter 10 in this order. The transmission timing generation circuit 15 outputs a transmission timing pulse J indicating the measurement timing to the drive circuit 14, a propagation time measurement circuit 16, which will be described later, and a threshold signal generation circuit 17. The drive circuit 14 generates an ultrasonic wave (transmission signal) K from the ultrasonic transmitter 10 every time the transmission timing pulse J is input. The shock absorber 1 expands and contracts due to the loading of the luggage and traveling on the uneven road, and the vehicle height changes. As shown in FIG. 5, the measurement cycle (transmission timing) is compared with the vehicle height change speed. The length between two transmission timing pulses J when transmitting pulses J continuously is extremely short.) Even when the vehicle height level changes due to running on uneven roads, the vehicle height value is reliably detected. Can be done.
[0010]
An amplification circuit 18 that amplifies a signal (reception signal) L received by the ultrasonic receiver 11 and outputs it as an amplified reception signal M and a comparison circuit 19 are connected to the ultrasonic receiver 11 in this order. A threshold signal generation circuit 17 is connected to the comparison circuit 19.
The threshold signal generation circuit 17 determines the size of the ultrasonic wave (ultrasonic wave) according to the distance (stroke) between the ultrasonic transmitter / receiver 10 and 11 and the reflector 13 as shown in FIG. characteristic indicating the reception level) of the receiver 11 (reception level characteristics) that are stored. Further, the threshold value signal generation circuit 17 generates a predetermined signal (threshold value signal) N having a pattern substantially equivalent to the reception level characteristic and a value smaller than the reception level, from the time when the transmission timing pulse J is input. It is generated every time (very short time compared to the frequency of the ultrasonic wave, hereinafter referred to as threshold signal generation time) and output to the comparison circuit 19 (threshold generation means). That is, the threshold signal generation circuit 17 has a horizontal axis (stroke amount) for a threshold signal N shown as in FIG. 4, for example, with the horizontal axis representing the stroke amount and the vertical axis representing the voltage value corresponding to the magnitude of the ultrasonic wave. Is generated for each portion corresponding to the sound speed and the predetermined stroke amount determined by the predetermined time, and is output to the comparison circuit 19. In other words, the threshold value signal generation circuit 17 generates ultrasonic waves according to the distance between the transmitter / receiver 10 and 11 and the reflection plate 13 (ultrasonic reflection surface) due to a resonance phenomenon in the internal space of the surrounding member (dust cover 7). The threshold value signal N based on the reception level characteristic is generated. Here, the threshold signal generating circuit 17 constitutes a threshold generating means .
[0011]
The comparison circuit 19 compares a reception signal L (amplification reception signal M) sent from the ultrasonic receiver 11 via the amplification circuit 18 with a comparison portion (described later) of the threshold signal N for each threshold signal generation time. When the magnitude of the amplified received signal M becomes larger than the magnitude of the predetermined portion of the threshold signal N, the ultrasonic detection signal P is output to the propagation time measuring circuit 16.
In this case, the portion to be compared with the amplified received signal M in the threshold signal N as the accumulated time from the time when the transmission timing pulse J occurs [distance (stroke) from the ultrasonic transmitter 10] increases. The (comparison part) takes the part on the right side in FIG. Then, the propagation distance of the ultrasonic wave is twice as long as the ultrasonic wave reciprocates with respect to the reflecting plate 13, so that the comparison portion has a stroke corresponding to half of the accumulated time. A portion corresponding to the position is selected for each threshold signal generation time. By selecting the comparison portion in this manner, the comparison portion (threshold value) of the threshold signal N corresponds to the reception level of the stroke to be measured, and the size of the comparison portion of the threshold signal N is received. The value is smaller than the level.
For example, when the vehicle height (stroke) is in the A 0 portion of the A portion region, V A is used as the comparison portion (threshold), and when the vehicle height (stroke) is in the G 0 portion of the G portion region, the comparison is made. V G is used as the portion (threshold), and V A is used as the comparison portion (threshold) when the vehicle height (stroke) is in the B 0 portion of the region B.
In addition, in the comparison for each threshold signal generation time, the ultrasonic wave has a distance that is twice the distance between the ultrasonic transmitter / receiver 10 and 11 and the reflector 13 to be measured (reciprocal ultrasonic wave). The ultrasonic receiver 11 does not receive the ultrasonic wave until the time required for propagation [and thus the distance (stroke) corresponding to the time] is reached, but noise occurs. By setting the value to a larger value and receiving noise, it is prevented from erroneously detecting that a normal ultrasonic wave has been received.
[0012]
When the propagation time measurement circuit 16 receives the ultrasonic detection signal P from the comparison circuit 19, the propagation time measurement circuit 16 obtains the time from the first transmission timing pulse J input time to the ultrasonic detection signal P input time, and corresponds to this time. A time pulse signal Q having a width is output to the tV conversion circuit 20.
The tV conversion circuit 20 outputs a voltage corresponding to the width of the time pulse signal Q. It should be noted that the distance (stroke) to be measured and the vehicle height can be obtained from this output voltage.
[0013]
In the vehicle height sensor configured as described above, when the threshold signal generation circuit 17 inputs the transmission timing pulse J as shown in FIG. 6, the value is smaller than the reception level in a pattern substantially equivalent to the reception level characteristic. (Threshold signal N) is generated every threshold signal generation time. Then, the comparison circuit 19 compares the amplified reception signal M and the comparison portion of the threshold signal N for each threshold signal generation time. At this time, the magnitude of the amplified reception signal M is small (for noise) and the ultrasonic detection signal P is not output until the ultrasonic receiver 11 is reached after the ultrasonic wave is transmitted by the ultrasonic transmitter 10. When the ultrasonic wave reaches the ultrasonic receiver 11, the amplified received signal M and the threshold signal N (comparison part) are substantially compared. The threshold signal N (comparison portion) having a smaller magnitude than the reception level at the distance (stroke) to be measured is used as the magnitude of the threshold signal N at this stage. For this reason, even if the reception level at the distance (stroke) to be measured is, for example, the A part or B part of FIG. 4, the detection point is not changed, and it is detected that the ultrasonic wave has been properly received. Therefore, the ultrasonic reception signal J can be output at a highly accurate timing, and the measurement accuracy can be improved.
[0014]
Although there is a device that feeds back the received signal J to stabilize the measurement in the prior art, the time required for feedback is unnecessary, and the measurement can be speeded up by that amount, and the feedback Accordingly, the circuit configuration is simplified, and accordingly, the failure rate is lowered and the cost of the apparatus can be reduced.
[0015]
In the above-described embodiment, the reflection surface separately provided with the reflection plate 13 fixed to the shell case 3 is provided. However, the present invention is not limited thereto, and the end portion of the shell case 3 may be formed flat as the reflection surface. good.
[0016]
【The invention's effect】
Since the present invention is a vehicle height sensor configured as described above, it is based on the ultrasonic transmission / reception time required from the transmission time of the transmitter to the time when the reception signal of the receiver becomes a predetermined threshold value or more. While the vehicle height is detected, the threshold value generating means is a signal indicating the threshold value based on the reception level characteristic of the ultrasonic wave according to the distance between the transmitter / receiver and the ultrasonic reflection surface due to the resonance phenomenon in the internal space of the surrounding member. Therefore, the threshold value to be compared with the reception signal corresponds to the reception level in the portion to be measured , that is, the resonance phenomenon generated in the internal space of the surrounding member. For this reason, it is possible to appropriately and reliably detect the reception signal by appropriately dealing with the resonance phenomenon occurring in the internal space of the surrounding member, and to improve the measurement accuracy.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a vehicle height sensor according to an embodiment of the present invention.
FIG. 2 is a view showing a mounting state of a transmitter / receiver of the vehicle height sensor of FIG. 1;
FIG. 3 is a block diagram schematically showing the vehicle height sensor of FIG. 1;
4 is a diagram showing a relationship between a reception level of the vehicle height sensor of FIG. 1 and a threshold signal. FIG.
FIG. 5 is a diagram schematically showing a relationship between a change in vehicle height level and a measurement cycle.
6 is a timing waveform diagram for illustrating the operation of the vehicle height sensor of FIG. 1; FIG.
FIG. 7 is a diagram illustrating a relationship between a reception level and a threshold in an example of a conventional vehicle height sensor.
FIG. 8 is a diagram showing a decrease in received signal in a stroke region where the reception level is low.
[Explanation of symbols]
10 ultrasonic transmitter 11 ultrasonic receiver 13 reflector
17 threshold signal generation circuit (threshold generation means)

Claims (1)

車両の車体側、車軸側のうち一方に設けられる超音波用の送・受信器と、車両の車体側、車軸側のうち他方に設けられて前記送信器からの超音波を前記受信器に反射させる反射面と、前記超音波の伝搬経路を径方向から包囲するように設けられる包囲部材とを備え、前記送信器の送信時点から受信器の受信信号があらかじめ定めた閾値以上になった時点までに要する超音波送受信時間に基づいて車高を検出する車高センサであって、前記包囲部材の内部空間における共鳴現象による前記送・受信器−超音波反射面間の距離に応じた超音波の受信レベル特性に基づく前記閾値を示す信号を発生する閾値発生手段を設けたことを特徴とする車高センサ。An ultrasonic transmitter / receiver provided on one of the vehicle body side and axle side of the vehicle, and an ultrasonic wave from the transmitter provided on the other side of the vehicle body side and axle side of the vehicle is reflected to the receiver. And a surrounding member provided so as to surround the ultrasonic wave propagation path from the radial direction, from a transmission time of the transmitter to a time when a reception signal of the receiver becomes a predetermined threshold value or more. A vehicle height sensor for detecting a vehicle height based on an ultrasonic transmission / reception time required for an ultrasonic wave according to a distance between the transmitter / receiver and an ultrasonic reflection surface due to a resonance phenomenon in an internal space of the surrounding member . A vehicle height sensor comprising threshold value generating means for generating a signal indicating the threshold value based on reception level characteristics .
JP27185496A 1996-09-20 1996-09-20 Vehicle height sensor Expired - Fee Related JP3648698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27185496A JP3648698B2 (en) 1996-09-20 1996-09-20 Vehicle height sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27185496A JP3648698B2 (en) 1996-09-20 1996-09-20 Vehicle height sensor

Publications (2)

Publication Number Publication Date
JPH1096617A JPH1096617A (en) 1998-04-14
JP3648698B2 true JP3648698B2 (en) 2005-05-18

Family

ID=17505813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27185496A Expired - Fee Related JP3648698B2 (en) 1996-09-20 1996-09-20 Vehicle height sensor

Country Status (1)

Country Link
JP (1) JP3648698B2 (en)

Also Published As

Publication number Publication date
JPH1096617A (en) 1998-04-14

Similar Documents

Publication Publication Date Title
US6073491A (en) Method and arrangement for making contactless distance and pressure measurements within an air spring
US4437032A (en) Sensor for distance measurement by ultrasound
US5936161A (en) Arrangement for making contactless distance measurements
CN111183368B (en) Object detection device
US6304179B1 (en) Ultrasonic occupant position sensing system
KR101675190B1 (en) Environment monitoring device in a motor vehicle and method for monitoring the environment using a correlation
JP2977898B2 (en) Shock absorber with sonar position sensor
CN1603859A (en) Ultrasonic sensor
JP4377121B2 (en) Distance measurement and pressure measurement inside air spring
CN102141608A (en) Method and device for estimating the transmission characteristics and compensating for transducer-induced variance in characteristics
US6804168B2 (en) Method for measuring distance
JP2005112155A (en) Suspension device
JPH1054872A (en) Ultrasonic distance meter
CN111373251B (en) Method and device for processing echo signals received by an acoustic sensor
JP3648698B2 (en) Vehicle height sensor
US6865137B2 (en) Method for pulse offset calibration in time of flight ranging systems
JP2001246918A (en) Load measuring device and pressure measuring device of air suspension for vehicle
JP2000088959A (en) Ultrasonic wave distance measurement device and method in transmission/reception separation type reflection system
US5239516A (en) Ultrasonic ground speedometer utilizing doppler effect of ultrasonic waves
JPH08136643A (en) Ultrasonic distance measuring instrument
JP2019138688A (en) Sonar circuit and sonar
JP2006003124A (en) Ultrasonic sensor device
KR0152725B1 (en) Distance measurement method and apparatus using ultrasonic wave
CN103635956A (en) Method and appparatus for actively damping an acoustic transducer
JP3296985B2 (en) Ultrasonic snow gauge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees