JP3648607B2 - Anti-vibration bush and manufacturing method thereof - Google Patents

Anti-vibration bush and manufacturing method thereof Download PDF

Info

Publication number
JP3648607B2
JP3648607B2 JP2002140721A JP2002140721A JP3648607B2 JP 3648607 B2 JP3648607 B2 JP 3648607B2 JP 2002140721 A JP2002140721 A JP 2002140721A JP 2002140721 A JP2002140721 A JP 2002140721A JP 3648607 B2 JP3648607 B2 JP 3648607B2
Authority
JP
Japan
Prior art keywords
inner cylinder
axial direction
rubber
elastic body
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002140721A
Other languages
Japanese (ja)
Other versions
JP2003106359A (en
Inventor
正直 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2002140721A priority Critical patent/JP3648607B2/en
Publication of JP2003106359A publication Critical patent/JP2003106359A/en
Application granted granted Critical
Publication of JP3648607B2 publication Critical patent/JP3648607B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車のサスペンション機構の一部に組み込まれて、車輪側から車体側に伝達される振動等を制御するための防振ブッシュに関するものである。
【0002】
【従来の技術】
一般に、乗用車等の自動車では、車輪側から車体側に伝達される振動、あるいはエンジン側から車体側に伝達される振動等を制御するため、サスペンション機構やエンジンの支持機構の一部に、防振ブッシュが組み込まれている。
【0003】
に従来の防振ブッシュの一例を示す。この防振ブッシュは、いわゆるバルジタイプの防振ブッシュであって、軸方向に同一断面を有する筒状の内筒101と、その軸方向中央付近の外周面に固着された略半球状の膨出部104と、その外方に間隔をあけて配置された筒状の外筒102と、内筒101と外筒102との間に膨出部104を覆うように介設されたゴム状弾性体103とを備える。そして、この構成により、防振ブッシュの軸方向及び軸直角方向、並びに内外筒の中心軸同士が相対的に傾斜するこじり方向に所定のばね特性が得られるように設定されている。ここで、「軸方向」とは内筒の筒中心を通る軸の方向をいい、「軸直角方向」とは軸方向に直交する方向をいう(以下の説明において同じ意味で用いる)。
【0004】
すなわち、図に示す防振ブッシュにおいては、膨出部104の外周側を覆うゴム状弾性体103の軸直角方向の厚さが、軸方向中央付近で薄く、かつ軸方向両端付近で厚くなるように設定され、これにより、防振ブッシュは、軸直角方向のばね定数が大きく、こじり方向のばね定数が小さく、かつ軸方向に所定のばね定数となるように設定されている。
【0005】
【発明が解決しようとする課題】
ところで、図に示すような防振ブッシュは、内筒101の両端面105がブラケット等の取付部材で挟まれた状態、あるいは内筒101の一方の端面105だけが取付部材に当接された状態で、内側に軸部材が挿通されて取付部材に締結固定され、また、外筒102が別の部材に固定されることにより、両部材が防振的に連結されるようになっている。
【0006】
このような防振ブッシュにおいて、内筒の端面の面積が小さい場合、取付部材との締結による面圧が大きくなり、取付部材の陥没や内筒の外端部の座屈が生じるおそれがある。
【0007】
そこで、これを解決するために、内筒の外径を大きくして、内筒の端面の面積を大きくすることが考えられる。しかし、内筒の外径を大きくした場合、防振ブッシュのばね定数を夫々所定の値に維持するには、防振機能を果たすゴム状弾性体は上記所定の厚さを維持する必要があるため、外筒は内筒の外径を大きくした分、大きくしなければならず、結局、防振ブッシュ全体の外径が大きくなるといった問題点がある。
【0008】
また、内筒の外径を大きくして内筒の端面の面積を大きくした場合、内筒の重量が増加し、これに伴って防振ブッシュ全体の重量増加になるといった問題点がある。
【0009】
本発明は、上記課題に鑑み、いわゆるバルジタイプの防振ブッシュにおいて、小型軽量化を維持しつつ、内筒の重量を変化させずに内筒端面の面圧を小さくすることができる防振ブッシュの提供を目的としている。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明は、金属製の内筒と、該内筒の外側に間隔をおいて配置された外筒と、これら内筒と外筒との間に介設されたゴム状弾性体とを備え、前記内筒は、前記ゴム状弾性体で覆われた被覆部と、その軸方向両側に位置して前記ゴム状弾性体で覆われていない両端部とからなり、前記被覆部の外周に軸直角方向に膨出する合成樹脂製の膨出部が設けられ、前記ゴム状弾性体は、前記膨出部の外周面を覆うように前記内筒と外筒との間に介設されて、前記膨出部の厚みにより、軸方向中央部で薄く、その軸方向両側で厚く形成されており、しかも、該ゴム状弾性体の軸方向端面には、前記膨出部の軸方向端部まで達する軸方向深さを持って周方向に連続する凹部が形成され、前記内筒の前記両端部のうちの少なくとも一方の端部は前記被覆部よりも肉厚が大の拡径部とされ、前記拡径部が前記内筒の端面を軸方向に圧接することにより形成されたことを特徴とする防振ブッシュを提供するものである。
【0011】
この構成によると、内筒の端部に肉厚の大なる拡径部が形成されることで、内筒全体の外径を大きくする必要がないので小型軽量化が図れ、しかも内筒端面の面積を大きくして取付部材との締結による内筒端面の面圧を小さくすることができる。
【0012】
また、拡径部の形成は内外筒間にゴム状弾性体を加硫成形後、内筒の端面を軸方向に圧接することで形成すれば、後加工により拡径部を容易に形成することができ
【0013】
また、拡径部は、内筒の一端側のみならず、両端部に形成することも可能である。すなわち、本発明において、前記拡径部が内筒の両端部に形成された防振ブッシュも提供することができる。
【0014】
また、膨出部を合成樹脂で構成することにより、膨出部の軽量化が可能となる。この場合の合成樹脂製としては、ポリエチレンやポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリロニトリル−スチレン樹脂(AS樹脂)、ABS、アクリル系樹脂等の一般的な熱可塑性樹脂、ポリアミド、ポリカーボネート、ポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)等のポリエステル、ポリアセタール、変性ポリフェニレンエーテル等のエンジニアリングプラスチックと称される熱可塑性樹脂、ポリフェニレンサルファイド、ポリエーテルエーテルケトン(PEEK)、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリケトンサルファイド、ポリエーテルイミド、ポリ四フッ化エチレン、芳香族ポリエステル、ポリアミノビスマレイミド、トリアジン樹脂等のスーパーエンジニアリングプラスチックと称される樹脂等が例示できる。
【0015】
これらの中では、ナイロン6、ナイロン66等のポリアミドや、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイドが特に好適である。これらの樹脂は、射出成形等により、内筒の外周面に固着すればよい。
【0016】
すなわち、本発明においては、前記膨出部は合成樹脂から構成され、前記内筒の外周面に固着された防振ブッシュを提供することができ、また、その合成樹脂は、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド又はポリアミドとされた防振ブッシュも提供することができる。
【0017】
上記構成の防振ブッシュの製造方法として、本発明では、内径及び外径が軸方向で一定の筒状の内筒に対して、その軸方向の中央部付近の外周面に合成樹脂を射出することにより前記膨出部を固着し、この膨出部を固着した内筒の外側に間隔をあけて外筒を配置し、前記の内筒と外筒との間にゴム状弾性体を介在させて前記内筒の端部が前記ゴム状弾性体で被覆されないように加硫成形し、その加硫成形後に、前記内筒の軸方向一端面を圧接治具により軸方向に圧接して、内筒の端部肉厚がその他の部分よりも大となる一側拡径部を形成することを特徴とする防振ブッシュの製造方法を提供することができる。
【0018】
さらに、内筒の両端部に拡径部を形成する場合、本発明においては、前記内筒の一端部側に拡径部を形成後、内筒の他端部を圧接治具により軸方向に圧接して、内筒の端部肉厚がその他の部分よりも大となる他側拡径部を形成する防振ブッシュの製造方法を提供することができる。
【0019】
上記構成によると、前述したように、内外筒間にゴム状弾性体を加硫成形後、内筒の端面を軸方向に圧接することで形成すれば、ゴム状弾性体の加硫成形後の後加工により拡径部を容易に形成することができる。しかも、防振ブッシュを成形型から取り外すときには、拡径部が存在しないため、型抜き作業も容易に行えることになる。
【0020】
【発明の実施の形態】
以下、本発明の実施形態である防振ブッシュについて図面を参照して説明する。図1は本発明に係る防振ブッシュの斜視図、図2は図1のII−II断面図である。
【0021】
この防振ブッシュは、金属製の内筒1と、内筒1の軸直角方向外方に間隔をあけて配置された外筒2と、内筒1と外筒2との間に介設されたリング状のゴム状弾性体3とを備えており、内筒1と外筒2とがそれぞれ別の部材に取り付けられることにより、両部材を防振的に連結する。
【0022】
内筒1は、例えば鋼製のものであって、その軸方向で中央部に形成された前記ゴム状弾性体3で覆われる被覆部4と、該被覆部4の軸方向両側で肉厚を被覆部4よりも大に設定した拡径部5とが連続して筒状に形成されたものである。そして、拡径部5の端面6がブラケット等の取付部材で挟まれた状態、あるいは一方の拡径部5の端面6だけが取付部材に当接された状態で、内筒1の中央の貫通穴にボルトなどの軸部材が挿通されて取付部材に締結固定されるようになっている。
【0023】
被覆部4は、その内径及び外径が軸方向で一定とされ、つまり、軸方向で同一断面に形成されている。拡径部5は、その内径が被覆部4と略同一で、その外径が被覆部4の外径よりも大とされ、その端面6における取付部材との接触面積を大きくするように形成されている。この拡径部5は、後述するように、同一断面の内筒の端面を軸方向に圧接することにより形成される。
【0024】
さらに、内筒1は、被覆部4の外周面に合成樹脂製の膨出部7が軸直角方向に略球状に膨出するように固着されている。この膨出部7は、多くの種類の合成樹脂で成形することができるが、ナイロン6、ナイロン66等のポリアミドや、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイドで形成するのが特に好適である。
【0025】
外筒2は、例えば鋼製の筒状のものであって、取付部材の開口に圧入固定されるものである。外筒2の内径及び外径は、膨出部7の中央部の外径よりも大で、軸方向で略一定とされ、その軸方向長さは、内筒1の被覆部4よりもわずかに長く、かつ内筒の軸方向長さよりも短く設定され、内部にゴム状弾性体3が収まるようになっている。
【0026】
ゴム状弾性体3は、加硫成形によって膨出部7の外周面を覆うように内筒1と外筒2との間に介設され、内筒1の外側にある膨出部7の厚みの影響で、軸方向中央付近で薄くなり、軸方向両端付近で厚く設定されている。
【0027】
このゴム状弾性体3は、軸方向中央付近で薄くされることにより、その軸直角方向のばね定数が大きく設定され、軸方向両端付近で厚くされることにより、こじり方向のばね定数が小さく設定されることになる。なお、ゴム状弾性体3は、軸方向及び軸直角方向並びにこじり方向の3軸のばね定数を所望の値に設定するために図2に示すように、軸方向端面に周方向に連続する凹部3aを備える
【0028】
この防振ブッシュの製造方法について説明する。まず、図3に示すように、内径及び外径が軸方向で一定、つまり同一断面形状の鋼製筒状の内筒1を用意する。この内筒1は、両端に後加工によって拡径部5を形成することを考慮して、防振ブッシュの製品長さよりも長い内筒を準備する。そして、この内筒の軸方向中央付近の外周面に、例えば加熱溶融した合成樹脂を射出することによって膨出部7を略半球状に膨出させて内筒1に固着する。
【0029】
次いで、図4に示すように、内筒1の外側に間隔をあけて外筒2を配置し、この内外筒1、2間に膨出部7を覆うようにゴム状弾性体3を介在させ、ゴム状弾性体3を加硫成形することにより、内外筒1、2をゴム状弾性体3によって一体化する。
【0030】
次に、この加硫成形品を加硫成形型から取り出して、図5に示すように、内筒1の一側端部(図面上では上側端部)に圧接治具8を軸方向から圧接させながら回転させる。そうすると、内筒1の一側端部が軸方向の収縮を伴って塑性変形し、その端部肉厚が被覆部4よりも大となった円錐筒状の拡径部5が形成される。
【0031】
ここで、圧接治具8は、図5に示すように、内筒1よりも高強度の鋼製とされ、断面円形の治具本体9の端部に圧接面10が形成され、この圧接面10は円錐面の一部からなり、その中央に断面円形の突起部11が形成されたものである。
【0032】
この圧接治具8の突起部11を内筒1の一側端部から内筒1の中央穴部に挿入し、円錐状の圧接面を内筒1の一側端面6に合わせ、圧接治具8を突起部11の頂点周りに旋回連動させると、内筒1の端面6全体が圧接されつつ、軸方向に押圧されて塑性変形し、その外径が拡径される。なお、一側端部の内径は、突起部11で外方に押さえられるため縮径されず、外径のみが拡大することになる。
【0033】
内筒1の一側端部に拡径部5を形成した後、内筒1を反転させて内筒1の他端部に同様な方法で拡径部5を形成し、内筒1の両端に拡径部5を備えた防振ブッシュを完成させる。
【0034】
このような防振ブッシュの製造方法によれば、ゴム状弾性体3の加硫成形後に、内筒1の両端に拡径部5を形成するため、加硫成形時の型抜き作業が容易に行えることになる。
【0035】
なお、本発明は、上記の実施の形態に限定されるものではなく、本発明の範囲内において、適宜変更を加えることができ
【0036】
【発明の効果】
以上の説明から明らかな通り、本発明によると、バルジタイプの防振ブッシュにおいて、内筒の端部に肉厚の大なる拡径部を形成したので、内筒全体の外径を大きくする必要がなく小型軽量化が図れ、ゴムの耐久性も向上させることができ、しかも内筒端面の面積を大きくして取付部材との締結による内筒端面の面圧を小さくすることができる。
【0037】
この場合の拡径部を、ゴム状弾性体を加硫成形後、内筒の端面を軸方向に圧接することで形成するようにすれば、後加工により拡径部を容易に形成することができ、加硫成形時の型抜きも容易に行える利点を有している。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る防振ブッシュの斜視図である。
【図2】 図1のII−II断面図である。
【図3】 同じく内筒単品を軸方向で切断した状態を示す断面図である。
【図4】 同じく内筒拡径前の防振ブッシュを軸方向で切断した状態を示す断面図である。
【図5】 同じく内筒の外端部を拡径する様子を示す防振ブッシュの断面図である。
【図】 従来の防振ブッシュを軸方向に切断した状態を示す断面図である。
【符号の説明】
1 内筒
2 外筒
3 ゴム状弾性体
4 被覆部
5 拡径部
6 端面
7 膨出部
8 圧接治具
12 膨出部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anti-vibration bush that is incorporated in, for example, a part of a suspension mechanism of an automobile and controls vibrations transmitted from a wheel side to a vehicle body side.
[0002]
[Prior art]
Generally, in automobiles such as passenger cars, vibration control transmitted from the wheel side to the vehicle body side, vibration transmitted from the engine side to the vehicle body side, etc. is controlled in order to control vibrations in a part of the suspension mechanism and engine support mechanism. Bush is incorporated.
[0003]
FIG. 6 shows an example of a conventional anti-vibration bush. This anti-vibration bush is a so-called bulge-type anti-vibration bush, which is a cylindrical inner cylinder 101 having the same cross section in the axial direction, and a substantially hemispherical bulge fixed to the outer peripheral surface near the center in the axial direction. A rubber-like elastic body interposed between the inner cylinder 101 and the outer cylinder 102 so as to cover the bulging portion 104. 103. And by this structure, it sets so that a predetermined | prescribed spring characteristic may be acquired in the axial direction of an anti-vibration bush, an axial perpendicular direction, and the center axis | shaft of an inner and outer cylinder inclining relatively. Here, the “axial direction” refers to the direction of the axis passing through the center of the inner cylinder, and the “axial perpendicular direction” refers to the direction orthogonal to the axial direction (used in the same meaning in the following description).
[0004]
That is, in the anti-vibration bush shown in FIG. 6 , the thickness of the rubber-like elastic body 103 covering the outer peripheral side of the bulging portion 104 is thin near the center in the axial direction and thick near both ends in the axial direction. Accordingly, the anti-vibration bush is set so that the spring constant in the direction perpendicular to the axis is large, the spring constant in the twisting direction is small, and a predetermined spring constant is obtained in the axial direction.
[0005]
[Problems to be solved by the invention]
By the way, in the vibration isolating bush as shown in FIG. 6 , the both end surfaces 105 of the inner cylinder 101 are sandwiched between mounting members such as brackets, or only one end surface 105 of the inner cylinder 101 is in contact with the mounting member. In this state, the shaft member is inserted inside and fastened and fixed to the mounting member, and the outer cylinder 102 is fixed to another member, so that both members are connected in a vibration-proof manner.
[0006]
In such an anti-vibration bushing, when the area of the end surface of the inner cylinder is small, the surface pressure due to fastening with the mounting member increases, and there is a possibility that the mounting member is depressed or the outer end of the inner cylinder is buckled.
[0007]
In order to solve this problem, it is conceivable to increase the outer diameter of the inner cylinder to increase the area of the end surface of the inner cylinder. However, when the outer diameter of the inner cylinder is increased, in order to maintain the spring constant of the vibration isolating bush at a predetermined value, the rubber-like elastic body that performs the vibration isolating function needs to maintain the predetermined thickness. For this reason, the outer cylinder has to be increased by increasing the outer diameter of the inner cylinder, and there is a problem that the outer diameter of the entire vibration-proof bushing is increased.
[0008]
Further, when the outer diameter of the inner cylinder is increased to increase the area of the end surface of the inner cylinder, there is a problem that the weight of the inner cylinder increases, and accordingly, the weight of the entire vibration isolating bush increases.
[0009]
In view of the above problems, the present invention is a so-called bulge-type vibration-proof bushing that can reduce the surface pressure of the inner cylinder end face without changing the weight of the inner cylinder while maintaining a small size and light weight. The purpose is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention provides a metal inner cylinder, an outer cylinder arranged at intervals on the outer side of the inner cylinder, and a rubber interposed between the inner cylinder and the outer cylinder. The inner cylinder is composed of a covering portion covered with the rubber-like elastic body, and both end portions that are located on both sides in the axial direction and are not covered with the rubber-like elastic body, A synthetic resin bulging portion bulging in a direction perpendicular to the axis is provided on the outer periphery of the covering portion, and the rubber-like elastic body is provided between the inner cylinder and the outer cylinder so as to cover the outer peripheral surface of the bulging portion. The bulged portion is formed thin at the axial center and thick at both axial sides depending on the thickness of the bulged portion, and the bulged portion is formed on the axial end surface of the rubber-like elastic body. A recess that is continuous in the circumferential direction with an axial depth reaching the axial end of the inner cylinder, and at least one of the both ends of the inner cylinder. End of the wall thickness is larger expanded diameter section than the cover portion, the vibration damping bushing, characterized in that it is formed by the enlarged diameter portion is pressed against the end face of the inner cylinder in the axial direction It is to provide.
[0011]
According to this configuration, since the enlarged diameter portion having a large thickness is formed at the end of the inner cylinder, it is not necessary to increase the outer diameter of the entire inner cylinder, so that the size and weight can be reduced. The surface pressure of the inner cylinder end surface due to fastening with the mounting member can be reduced by increasing the area.
[0012]
In addition, if the rubber-like elastic body is vulcanized between the inner and outer cylinders and then formed by pressing the end face of the inner cylinder in the axial direction, the enlarged diameter part can be easily formed by post-processing. it is Ru can.
[0013]
Further, the enlarged diameter portion can be formed not only at one end side of the inner cylinder but also at both end portions. That is, in the present invention, it is also possible to provide an anti-vibration bush in which the enlarged diameter portion is formed at both end portions of the inner cylinder.
[0014]
Moreover, the bulging part can be reduced in weight by configuring the bulging part with synthetic resin. In this case, synthetic resins such as polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyvinylidene chloride, acrylonitrile-styrene resin (AS resin), ABS, acrylic resins, and other general thermoplastic resins, polyamide, polycarbonate Polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), thermoplastic resins called engineering plastics such as polyacetal and modified polyphenylene ether, polyphenylene sulfide, polyether ether ketone (PEEK), polyarylate, polysulfone, Polyethersulfone, Polyketone sulfide, Polyetherimide, Polytetrafluoroethylene, Aromatic polyester, Polyaminobismaleimide, Triazi Super engineering plastics called resin such as a resin can be exemplified.
[0015]
Of these, polyamides such as nylon 6 and nylon 66, polyethylene terephthalate, polybutylene terephthalate, and polyphenylene sulfide are particularly suitable. These resins may be fixed to the outer peripheral surface of the inner cylinder by injection molding or the like.
[0016]
That is, in the present invention, the bulging portion is made of a synthetic resin and can provide an anti-vibration bush fixed to the outer peripheral surface of the inner cylinder. The synthetic resin includes polyethylene terephthalate, polybutylene. An anti-vibration bush made of terephthalate, polyphenylene sulfide or polyamide can also be provided.
[0017]
As a manufacturing method of the vibration-proof bushing having the above-described configuration, in the present invention, a synthetic resin is injected onto the outer peripheral surface near the central portion in the axial direction with respect to a cylindrical inner cylinder whose inner diameter and outer diameter are constant in the axial direction. Thus, the bulging portion is fixed, an outer cylinder is disposed outside the inner cylinder to which the bulging portion is fixed, and a rubber-like elastic body is interposed between the inner cylinder and the outer cylinder. Then , the end portion of the inner cylinder is vulcanized and molded so as not to be covered with the rubber-like elastic body, and after the vulcanization molding, the one end surface in the axial direction of the inner cylinder is pressed in the axial direction by a pressure welding jig. It is possible to provide a method for manufacturing a vibration-proof bushing characterized by forming a one-side enlarged diameter portion in which the end wall thickness of the cylinder is larger than that of other portions.
[0018]
Further, in the case of forming an enlarged diameter portion at both end portions of the inner cylinder, in the present invention, after forming the enlarged diameter portion on one end portion side of the inner cylinder, the other end portion of the inner cylinder is axially moved by a pressure welding jig. It is possible to provide a method for manufacturing a vibration-proof bushing that presses and forms the other-side enlarged diameter portion in which the end wall thickness of the inner cylinder is larger than the other portions.
[0019]
According to the above configuration, as described above, after the rubber-like elastic body is vulcanized between the inner and outer cylinders, the end face of the inner cylinder is pressed in the axial direction. The enlarged diameter portion can be easily formed by post-processing. In addition, when the vibration isolating bush is removed from the mold, there is no enlarged diameter portion, so that the die cutting operation can be easily performed.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an anti-vibration bush according to an embodiment of the present invention will be described with reference to the drawings. 1 is a perspective view of an anti-vibration bush according to the present invention, and FIG. 2 is a sectional view taken along the line II-II in FIG.
[0021]
This anti-vibration bush is interposed between the inner cylinder 1 made of metal, the outer cylinder 2 arranged at an interval outward in the direction perpendicular to the axis of the inner cylinder 1, and the inner cylinder 1 and the outer cylinder 2. A ring-shaped rubber-like elastic body 3 is provided, and the inner cylinder 1 and the outer cylinder 2 are attached to different members, respectively, so that both members are connected in a vibration-proof manner.
[0022]
The inner cylinder 1 is made of, for example, steel, and has a covering portion 4 covered with the rubber-like elastic body 3 formed in the central portion in the axial direction, and a thickness on both sides in the axial direction of the covering portion 4. The enlarged diameter part 5 set larger than the coating | coated part 4 is continuously formed in the cylinder shape. Then, in the state in which the end surface 6 of the enlarged diameter portion 5 is sandwiched between mounting members such as brackets, or in the state where only the end surface 6 of one enlarged diameter portion 5 is in contact with the attachment member, the central penetration of the inner cylinder 1 is achieved. A shaft member such as a bolt is inserted into the hole and fastened and fixed to the mounting member.
[0023]
The covering portion 4 has an inner diameter and an outer diameter that are constant in the axial direction, that is, is formed in the same cross section in the axial direction. The enlarged diameter portion 5 has an inner diameter that is substantially the same as that of the covering portion 4, an outer diameter that is larger than the outer diameter of the covering portion 4, and is formed so as to increase the contact area of the end surface 6 with the mounting member. ing. As will be described later, the enlarged diameter portion 5 is formed by pressing the end surface of the inner cylinder having the same cross section in the axial direction.
[0024]
Further, the inner cylinder 1 is fixed to the outer peripheral surface of the covering portion 4 so that a bulging portion 7 made of synthetic resin bulges in a substantially spherical shape in a direction perpendicular to the axis. The bulging portion 7 can be formed of many types of synthetic resins, but is particularly preferably formed of polyamide such as nylon 6 or nylon 66, polyethylene terephthalate, polybutylene terephthalate, or polyphenylene sulfide.
[0025]
The outer cylinder 2 is, for example, a steel cylinder, and is press-fitted and fixed to the opening of the mounting member. The inner diameter and outer diameter of the outer cylinder 2 are larger than the outer diameter of the central portion of the bulging portion 7 and are substantially constant in the axial direction, and the axial length is slightly smaller than the covering portion 4 of the inner cylinder 1. And is set shorter than the axial length of the inner cylinder so that the rubber-like elastic body 3 is accommodated therein.
[0026]
The rubber-like elastic body 3 is interposed between the inner cylinder 1 and the outer cylinder 2 so as to cover the outer peripheral surface of the bulging part 7 by vulcanization molding, and the thickness of the bulging part 7 outside the inner cylinder 1. Due to the above, it is set to be thin near the center in the axial direction and thick near both ends in the axial direction.
[0027]
This rubber-like elastic body 3 is thinned near the center in the axial direction to set a large spring constant in the direction perpendicular to the axis, and thickened near both ends in the axial direction to set a small spring constant in the twisting direction. It will be. The rubber-like elastic body 3 is continuous with the axial end surface in the circumferential direction as shown in FIG. 2 in order to set the axial constant, the axial perpendicular direction, and the triaxial spring constant in the twisting direction to desired values. A recess 3a is provided .
[0028]
A method of manufacturing the vibration isolating bush will be described. First, as shown in FIG. 3, an inner cylinder 1 having a constant inner diameter and an outer diameter in the axial direction, that is, a steel cylinder having the same cross-sectional shape is prepared. The inner cylinder 1 is prepared with an inner cylinder longer than the product length of the vibration-proof bushing in consideration of forming the enlarged diameter portion 5 by post-processing at both ends. The bulging portion 7 is swelled into a substantially hemispherical shape and fixed to the inner cylinder 1 by, for example, injecting heat-melted synthetic resin onto the outer peripheral surface near the center in the axial direction of the inner cylinder.
[0029]
Next, as shown in FIG. 4, the outer cylinder 2 is arranged outside the inner cylinder 1 with a space therebetween, and a rubber-like elastic body 3 is interposed between the inner and outer cylinders 1 and 2 so as to cover the bulging portion 7. The rubber-like elastic body 3 is vulcanized and molded to integrate the inner and outer cylinders 1 and 2 with the rubber-like elastic body 3.
[0030]
Next, the vulcanized molded product is taken out from the vulcanization mold, and as shown in FIG. 5, a pressure welding jig 8 is pressure-welded from the axial direction to one end portion (upper end portion in the drawing) of the inner cylinder 1. Rotate while rotating. Then, one end portion of the inner cylinder 1 is plastically deformed with axial contraction, and a conical cylindrical diameter-enlarged portion 5 having an end portion thickness larger than that of the covering portion 4 is formed.
[0031]
Here, as shown in FIG. 5, the pressure welding jig 8 is made of steel having a higher strength than the inner cylinder 1, and a pressure welding surface 10 is formed at the end of the jig body 9 having a circular cross section. Reference numeral 10 is a part of a conical surface, and a protrusion 11 having a circular cross section is formed at the center thereof.
[0032]
The protrusion 11 of the pressure welding jig 8 is inserted into the central hole of the inner cylinder 1 from one end of the inner cylinder 1, and the conical pressure welding surface is aligned with the one side end face 6 of the inner cylinder 1. When 8 is pivotally interlocked around the apex of the protrusion 11, the entire end surface 6 of the inner cylinder 1 is pressed against and pressed in the axial direction to be plastically deformed, and its outer diameter is increased. It should be noted that the inner diameter of the one end is not reduced because it is pressed outward by the protrusion 11, and only the outer diameter is expanded.
[0033]
After forming the enlarged diameter portion 5 at one end portion of the inner cylinder 1, the inner cylinder 1 is reversed and the enlarged diameter portion 5 is formed at the other end portion of the inner cylinder 1 in the same manner. The vibration isolating bush having the enlarged diameter portion 5 is completed.
[0034]
According to such a method for manufacturing an anti-vibration bush, after the rubber-like elastic body 3 is vulcanized and formed, the enlarged diameter portions 5 are formed at both ends of the inner cylinder 1, so that the die-cutting operation during vulcanization and molding is easy. It will be possible.
[0035]
The present invention is not limited to the embodiment described above, within the scope of the present invention, Ru can be appropriately modified.
[0036]
【The invention's effect】
As is clear from the above description, according to the present invention, in the bulge type vibration-proof bushing, since the enlarged diameter portion having a large thickness is formed at the end of the inner cylinder, it is necessary to increase the outer diameter of the entire inner cylinder. Therefore, it is possible to reduce the size and weight, improve the durability of the rubber, increase the area of the inner cylinder end surface, and reduce the surface pressure of the inner cylinder end surface by fastening with the mounting member.
[0037]
In this case, if the diameter-enlarged portion is formed by pressing the end surface of the inner cylinder in the axial direction after vulcanization molding of the rubber-like elastic body, the diameter-enlarged portion can be easily formed by post-processing. It has the advantage that it can be easily removed during vulcanization molding.
[Brief description of the drawings]
FIG. 1 is a perspective view of an anti-vibration bush according to an embodiment of the present invention.
2 is a cross-sectional view taken along the line II-II in FIG.
FIG. 3 is a cross-sectional view showing a state in which a single inner cylinder is similarly cut in the axial direction.
FIG. 4 is a cross-sectional view showing a state where an anti-vibration bush before expansion of the inner cylinder is cut in the axial direction.
FIG. 5 is a cross-sectional view of an anti-vibration bush showing a state in which the outer end of the inner cylinder is similarly enlarged.
FIG. 6 is a cross-sectional view showing a state in which a conventional vibration-proof bushing is cut in the axial direction.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inner cylinder 2 Outer cylinder 3 Rubber-like elastic body 4 Covering part 5 Expanded part 6 End surface 7 Swelling part 8 Pressure welding jig 12 Swelling part

Claims (3)

金属製の内筒と、該内筒の外側に間隔をおいて配置された外筒と、これら内筒と外筒との間に介設されたゴム状弾性体とを備え、
前記内筒は、前記ゴム状弾性体で覆われた被覆部と、その軸方向両側に位置して前記ゴム状弾性体で覆われていない両端部とからなり、
前記被覆部の外周に軸直角方向に膨出する合成樹脂製の膨出部が設けられ、
前記ゴム状弾性体は、前記膨出部の外周面を覆うように前記内筒と外筒との間に介設されて、前記膨出部の厚みにより、軸方向中央部で薄く、その軸方向両側で厚く形成されており、しかも、該ゴム状弾性体の軸方向端面には、前記膨出部の軸方向端部まで達する軸方向深さを持って周方向に連続する凹部が形成され、
前記内筒の前記両端部のうちの少なくとも一方の端部は前記被覆部よりも肉厚が大の拡径部とされ、前記拡径部が前記内筒の端面を軸方向に圧接することにより形成されたことを特徴とする防振ブッシュ。
A metal inner cylinder, an outer cylinder arranged at intervals on the outer side of the inner cylinder, and a rubber-like elastic body interposed between the inner cylinder and the outer cylinder,
The inner cylinder is composed of a covering portion covered with the rubber-like elastic body, and both end portions that are located on both sides in the axial direction and are not covered with the rubber-like elastic body ,
A synthetic resin bulging portion that bulges in the direction perpendicular to the axis is provided on the outer periphery of the covering portion,
The rubber-like elastic body is interposed between the inner cylinder and the outer cylinder so as to cover the outer peripheral surface of the bulging portion, and is thin in the axial center portion due to the thickness of the bulging portion. In addition, the rubber-like elastic body is formed with a concave portion continuous in the circumferential direction with an axial depth reaching the axial end of the bulging portion. ,
At least one end portion of the both end portions of the inner cylinder is an enlarged diameter portion having a larger thickness than the covering portion, and the enlarged diameter portion presses the end surface of the inner cylinder in the axial direction. An anti-vibration bush characterized by being formed .
請求項1記載の防振ブッシュの製造方法であって、It is a manufacturing method of the vibration proof bush of Claim 1,
内径及び外径が軸方向で一定の筒状の内筒に対して、その軸方向の中央部付近の外周面に合成樹脂を射出することにより前記膨出部を固着し、For the cylindrical inner cylinder whose inner diameter and outer diameter are constant in the axial direction, the bulging portion is fixed by injecting synthetic resin to the outer peripheral surface near the central portion in the axial direction,
この膨出部を固着した内筒の外側に間隔をあけて外筒を配置し、Place the outer cylinder at an interval on the outside of the inner cylinder to which the bulging portion is fixed,
前記の内筒と外筒との間にゴム状弾性体を介在させて前記内筒の端部が前記ゴム状弾性体で被覆されないように加硫成形し、A rubber-like elastic body is interposed between the inner cylinder and the outer cylinder, and vulcanization molding is performed so that the end of the inner cylinder is not covered with the rubber-like elastic body,
その加硫成形後に、前記内筒の軸方向一端面を圧接治具により軸方向に圧接して、内筒の端部肉厚がその他の部分よりも大となる一側拡径部を形成することを特徴とする防振ブッシュの製造方法。After the vulcanization molding, one end surface of the inner cylinder in the axial direction is pressed in the axial direction with a pressure welding jig to form a one-side enlarged diameter portion where the end wall thickness of the inner cylinder is larger than the other parts. A method of manufacturing a vibration-proof bush.
前記内筒の一端部側に拡径部を形成後、内筒の軸方向他端面を圧接治具により軸方向に圧接して、内筒の端部肉厚がその他の部分よりも大となる他側拡径部を形成する請求項記載の防振ブッシュの製造方法。After forming the enlarged diameter portion on one end side of the inner cylinder, the other end surface in the axial direction of the inner cylinder is pressed in the axial direction by a pressure welding jig, and the end wall thickness of the inner cylinder becomes larger than the other portions. The manufacturing method of the vibration-proof bushing of Claim 2 which forms an other side enlarged diameter part.
JP2002140721A 2001-07-26 2002-05-15 Anti-vibration bush and manufacturing method thereof Expired - Lifetime JP3648607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140721A JP3648607B2 (en) 2001-07-26 2002-05-15 Anti-vibration bush and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-225272 2001-07-26
JP2001225272 2001-07-26
JP2002140721A JP3648607B2 (en) 2001-07-26 2002-05-15 Anti-vibration bush and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004180742A Division JP2004257570A (en) 2001-07-26 2004-06-18 Vibration control bushing

Publications (2)

Publication Number Publication Date
JP2003106359A JP2003106359A (en) 2003-04-09
JP3648607B2 true JP3648607B2 (en) 2005-05-18

Family

ID=26619284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140721A Expired - Lifetime JP3648607B2 (en) 2001-07-26 2002-05-15 Anti-vibration bush and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3648607B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8505889B2 (en) 2007-01-22 2013-08-13 Toyo Tire & Rubber Co., Ltd. Vibration-isolating bush
JP7094199B2 (en) * 2018-10-26 2022-07-01 Toyo Tire株式会社 Anti-vibration bush
KR20210010205A (en) 2019-07-19 2021-01-27 현대자동차주식회사 Bush With Improved Tuning Freedom and Suspension System Thereby

Also Published As

Publication number Publication date
JP2003106359A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
JP6867138B2 (en) Anti-vibration bush
KR101225742B1 (en) Ball joint assembly for vehicle
US20030020223A1 (en) Vibration-isolating bushing and method of manufacturing the same
WO1994022684A1 (en) Adjustable bushing
EP0805055B1 (en) Positioning device for stabilizing bars, stabilizing bar and stabilization system for vehicles using this device
EP0953787A2 (en) Thermoplastic elastomer air spring
JP3648607B2 (en) Anti-vibration bush and manufacturing method thereof
JPH11336817A (en) Vibration control device
JP2004144150A (en) Vibration control bush
JP2004257570A (en) Vibration control bushing
JP2001295887A (en) Vibration control device
JPH0798034A (en) Structure of sliding bush
JP3743578B2 (en) Soundproof cover and manufacturing method thereof
JPH0547306Y2 (en)
JPH0331928B2 (en)
JPH0474569B2 (en)
JP3649260B2 (en) Manufacturing method of dynamic damper
JPS6334111A (en) Manufacture of connecting rod equipped with rubber bushing
JPS637719Y2 (en)
JPH07158675A (en) Vibration control device
JP4471909B2 (en) Vibration isolator
JPH0622639U (en) Anti-vibration bush
JPH0361844B2 (en)
JPH08159216A (en) Vibration control device
JP3645016B2 (en) Suspension bush

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3648607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term