JP3648584B2 - Water purifier - Google Patents

Water purifier Download PDF

Info

Publication number
JP3648584B2
JP3648584B2 JP10647497A JP10647497A JP3648584B2 JP 3648584 B2 JP3648584 B2 JP 3648584B2 JP 10647497 A JP10647497 A JP 10647497A JP 10647497 A JP10647497 A JP 10647497A JP 3648584 B2 JP3648584 B2 JP 3648584B2
Authority
JP
Japan
Prior art keywords
detection unit
residual chlorine
flow rate
water purifier
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10647497A
Other languages
Japanese (ja)
Other versions
JPH10296242A (en
Inventor
弘之 高野
直哉 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP10647497A priority Critical patent/JP3648584B2/en
Publication of JPH10296242A publication Critical patent/JPH10296242A/en
Application granted granted Critical
Publication of JP3648584B2 publication Critical patent/JP3648584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は浄水器、殊に残留塩素濃度を検出する検出部を備えている浄水器に関するものである。
【0002】
【従来の技術】
活性炭や中空糸膜フィルターなどによって水の濾過を行う浄水器に、残留塩素濃度を検出する検出部を設けたものが提供されている。濾過後の残留塩素濃度を表示したり、濾過前の水と濾過後の水の両方の残留塩素濃度を表示したりすることができるようにしたこの種の浄水器においては、検出部として、白金や銀などから形成した一対の電極を水中に浸漬して、両電極間に一定電圧を印加した時に両電極間に流れる電流値をもとに残留塩素濃度を求めるものを用いている。残留塩素濃度Cと電流値Iとがほぼ比例(C=a×I a:定数)することを利用しているわけであるが、ここにおける定数aは、電極の状態によって変動することから、長期間の使用によって電極が汚れた場合、検出部から得られる残留塩素濃度の値は本来の値から大きく外れてしまうことになる。
【0003】
実開昭62−114692号公報や実開昭62−109796号公報には検出部の流路内にガラスなどの小球を入れて水流による小球の流動で小球が電極表面に接触するようにしたものや、水流で回転する水車の羽根の先端部が電極に接触するようにしたものが示されている。上記接触によって電極表面の機械的な研磨洗浄を行うのである。
【0004】
【発明が解決しようとする課題】
しかし、上記機械的な研磨で電極表面の汚れを落とす場合、電極の摩滅が問題となるほか、小球や水車の羽根の摩滅によって研磨効果が低下してしまう。また、水流が無い場合には電極の研磨洗浄ができないことから、しばらく使用していなかった後の通水時には、正確な残留塩素濃度検出を行えないという問題も有している。
【0005】
本発明はこのような点に鑑み為されたものであり、その目的とするところは長期にわたり安定した残留塩素濃度の検出表示を行うことができる浄水器を提供するにある。
【0006】
【課題を解決するための手段】
しかして本発明は、濾過手段を備えた浄水部と、水路中に配されるとともに所定電圧が印加される一対の電極からなる残留塩素検出部と、残留塩素検出部の電極間に流れる電流値を基に残留塩素濃度を求める制御部と、制御部の出力に応じた表示を行う表示部とを備えた浄水器において、残留塩素検出部が浄水部の前後に配されて濾過前と濾過後の残留塩素を検出して表示部に両残留塩素濃度を表示するものであり、上記制御部は各残留塩素検出部の一対の電極のうちの一方の電極に他方の電極に対して負の電圧を印加する逆電処理を行う動作モードを備えているとともに、逆電処理を電極への電圧の印加と非印加との所定時間内の繰り返しで印加時の突入電流を複数回流して行うものであることに特徴を有している。電気的処理によって電極の汚れを落とすようにしたものである。
【0007】
ここにおける制御部は未使用時間が一定時間に達した時に逆電処理の動作モードに入るものや、流量検出部で検出される流量が所定量以下となった時に逆電処理の動作モードに入るものを好適に用いることができる。
【0008】
また流量検出は、残留塩素検出部の電極間の電気的変量から流量を求めるようにしてもよい。
さらに流量検出部を備えているとともに流量検出部から検出される流量に応じて主電源の入切を行う制御スイッチを備えたものとしてもよい。
【0009】
【発明の実施の形態】
本発明の実施の形態の一例について説明すると、浄水器1は図1に示すように接続口2から水道水などの原水の供給を受けるもので、濾過槽3と残留塩素濃度検出用の2つの検出部4a,4b、制御部6、表示部7、そして吐出口8を備えたものとなっており、上記濾過槽3は、活性炭やイオン交換樹脂、ゼオライトなどの吸着剤と中空糸膜などの濾過フィルターとが納められたカートリッジ型のものとなっている。
【0010】
上記両検出部4a,4bのうち、検出部4aは接続口2と濾過槽3との間の流路中に配設され、検出部4bは濾過槽3と吐出口8との間の流路中に配設されたものであるが、両者は共に図1(b)に示すように板状の白金製の電極10と銀製電極11とを所定間隔で配置したものとなっており、両電極10,11間には制御部6の出力によって一定電圧が印加される。この時、両電極10,11間に流れる電流値を基に制御部6は残留塩素濃度を算出して、算出値を表示部7に表示する。
【0011】
検出部4aは濾過前の原水中の残留塩素濃度を、検出部4bは濾過後の浄水中の残留塩素濃度を検出することから、濾過槽3の通過によって残留塩素がどれだけ除去されたかを使用者は知ることができる。なお、検出部4a,4bの電極10,11の材質は上記のものに限るものではなく、たとえば金やカーボン、銅などを用いたものであってもよい。また電極10,11の形状も限定するものではない。
【0012】
ところで、検出部4a,4bにおける電極10,11には、電極反応で生じた酸化物やガス成分が吸着したり、カルシウムスケールが付着して表面が汚れてくる。このために、両電極10,11間に流れる電流値と残留塩素濃度との関係が当初、図2中のIで示す状態であっても、図中IIで示すように出力が低下する状態となってしまう。
【0013】
このために上記制御部6は定期的に、あるいは不定期に逆電処理を行って電極10,11の汚れを落とす再生を行うものとしてある。ここでいう逆電処理は、たとえば白金電極10に対して銀電極11の電位を負の電位に一定時間保持するものである。また負の電位としては、電極10,11の汚れがガス成分の吸着によるものである場合は、図3に示すように、−0.5V〜−5V程度が高い再生効率を得られるものとなり、電極10,11の汚れがスケールの付着によるものである場合は図4に示すように−5V〜−10V程度が高い再生効率を得られるものとなる。なお、負の電位の値は上記の例に限定されるものではない。いずれにしても、逆電による再生の結果、図2中のIIIで示すように、当初の特性とほぼ同じ特性に戻すことができる。
【0014】
図5及び図6に他例を示す。ここでは浄水器1内を通過する水の流量を検出する流量検出部5を設けて、該流量検出部5の出力によって、制御部6及び表示部7の電源のオンオフを行わせている、また、図6に示すように、制御部6は未使用時間の計測を行い、この計測結果に応じて逆電処理を行うものとしてある。
すなわち、浄水器1内に所定流量(たとえば0.5リットル/分)以上の流量が検出されたならば、制御部6及び表示部7に通電し、未使用時間が12時間以上となれば前逆電処理を行い、その後、流量が所定流量以下に低下すれば、後逆電処理を行って待機状態に入る。また、待機している時間(未使用時間)が24時間以上となればこの待機中にも逆電処理を行う。
【0015】
未使用時間が12時間以上の時に浄水器1への通水開始があれば、まず逆電処理を行った後、残留塩素濃度の検出を行うものであり、通水が終了すればまた逆電処理を行うものであり、さらに通水していない状態が長時間となる場合には通水状態に関係なく逆電処理を行って、電極10,11を常時清浄状態に保つものである。
【0016】
図7に更に他例を示す。これは濾過槽3に至る前の原水の残留塩素濃度と、濾過槽3を通過した浄水の残留塩素濃度とを単一の検出部4で検出することができるように、切換弁12を設けたもので、通水開始初期には図8(a)に示すように、濾過槽3へと向かう原水の一部を検出部4に導き、その後、図8(b)に示すように、切換弁12を切り替えて、濾過槽3を通過した浄水の一部を検出部4に導く。なお、図示例では切換弁12と検出部4とを経た水は排出口13から排出してしまうようにしているが、切換弁12と連動する別途切換弁を設けて、原水は原水流路に、浄水は浄水流路に戻すようにしてもよい。
【0017】
上記切換弁12の流路切換は、流量検出部5の出力に基づいて行わせればよいが、流量検出部5は残留塩素濃度の検出部4を利用してもよい。ここでの流量検出は高精度を必要としないために、電極10,11が水中に没しているか否かの際の電極間の比抵抗値や、水の流速によって出力が変化することを利用した流量検出で切換弁12の動作や、前述の通電制御を行っても支障が生じることはない。
【0018】
図9はこの場合の通電制御に関するブロック図を示しており、検出部4には電源ブロック15から常時給電しているものの、電源ブロック15と制御部6や表示部7との間には検出部5から出力される流量によって変化する電気変量を基に作動する制御スイッチ14を配している。
ところで、検出部4,4a,4bに対する逆電処理にあたり、図10にイで示すように所定時間Tだけ電極間電圧を一定に保持するよりも、図中ロで示すようにある周波数の矩形波を示すことになる電圧を一定時間保持したり、あるいはハで示すようにある周波数の正弦波を示す電圧を一定時間保持するようにした方が、逆電処理による感度再生・維持効果が高くなる。これは電圧印加時に図11に示すように突入電流が生じるとともに該突入電流によって電源での逆電再生反応が大きく進むと考えられるが、図中ロあるいはハで示した電圧印加の場合、突入電流が繰り返し流れるからである。
【0019】
【発明の効果】
以上のように本発明においては、残留塩素検出部の一対の電極のうちの一方の電極に他方の電極に対して負の電圧を印加する逆電処理を行うという電気的処理によって電極の汚れを落として電極の再生を行うものであり、電極の摩滅や電極研磨部材の摩滅が問題となるようなことがなく、長期にわたり安定した残留塩素濃度の検出表示を濾過前と濾過後の水について行うことができるものである。しかも逆電処理を電極への電圧の印加と非印加との所定時間内の繰り返しで印加時の突入電流を複数回流して行うものであるために、逆電処理による電極の汚れを落とすことをより効果的に行うことができる。
【0020】
そして未使用時間が一定時間に達した時に逆電処理の動作モードに入るものとすれば、未使用時間が長期にわたる場合の電極の汚れを防止することができ、流量検出部で検出される流量が所定量以下となった時に逆電処理の動作モードに入るものとすれば、使用する度毎に逆電処理が行われることになる。
【0021】
また流量検出は、残留塩素検出部の電極間の電気的変量から流量を求めるようにしてもよく、この場合、別途流量検出部材を設ける必要がなくなる。
さらに流量検出部を備えたものにおいては、流量検出部から検出される流量に応じて主電源の入切を行う制御スイッチを備えたものとすると、無駄な電力消費を削減することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示すもので、(a)は概略ブロック図、(b)は検出部の断面図である。
【図2】同上の検出部の残留塩素濃度と出力電流との関係を示す特性図である。
【図3】同上の逆電処理の際の電極間電圧と再生効率との特性図である。
【図4】同上の逆電処理の際の電極間電圧と再生効率との特性図である。
【図5】他例の概略ブロック図である。
【図6】同上の動作を示すフローチャートである。
【図7】更に他の例の概略ブロック図である。
【図8】図7中のAで示す流路切換部分の動作を示すもので、(a)(b)は共に断面図である。
【図9】同上の概略ブロック回路図である。
【図10】逆電処理のタイムチャートである。
【図11】逆電処理の際の電流変化を示すタイムチャートである。
【符号の説明】
1 浄水器
3 濾過槽
4a 検出部
4b 検出部
6 制御部
7 表示部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water purifier, and more particularly to a water purifier provided with a detection unit for detecting residual chlorine concentration.
[0002]
[Prior art]
A water purifier that filters water using activated carbon, a hollow fiber membrane filter, or the like is provided with a detection unit that detects residual chlorine concentration. In this type of water purifier that can display the residual chlorine concentration after filtration, or display the residual chlorine concentration of both the water before filtration and the water after filtration, platinum is used as the detection unit. A method is used in which a pair of electrodes formed of silver or silver is immersed in water, and the residual chlorine concentration is obtained based on the current value flowing between the electrodes when a constant voltage is applied between the electrodes. This utilizes the fact that the residual chlorine concentration C and the current value I are approximately proportional (C = a × I a: constant), but the constant a varies depending on the state of the electrode. When the electrode becomes dirty due to the use of the period, the value of the residual chlorine concentration obtained from the detection unit greatly deviates from the original value.
[0003]
In Japanese Utility Model Laid-Open No. 62-114692 and Japanese Utility Model Laid-Open No. 62-109796, small spheres such as glass are placed in the flow path of the detector so that the small spheres come into contact with the electrode surface by the flow of the small spheres caused by the water flow. And the tip of the blade of a water turbine rotating in a water stream are in contact with the electrode. By the contact, mechanical polishing and cleaning of the electrode surface is performed.
[0004]
[Problems to be solved by the invention]
However, when the dirt on the electrode surface is removed by the mechanical polishing described above, the abrasion of the electrode becomes a problem, and the polishing effect is reduced by the abrasion of the small spheres and the blades of the water wheel. In addition, since there is no water flow, the electrode cannot be polished and washed, and therefore there is a problem that accurate residual chlorine concentration cannot be detected when water is passed after it has not been used for a while.
[0005]
This invention is made | formed in view of such a point, The place made into the objective is to provide the water purifier which can perform the detection display of the residual chlorine concentration stabilized over the long term.
[0006]
[Means for Solving the Problems]
Therefore, the present invention provides a water purification unit having a filtering means, a residual chlorine detection unit comprising a pair of electrodes that are arranged in the water channel and to which a predetermined voltage is applied, and a current value that flows between the electrodes of the residual chlorine detection unit. In a water purifier equipped with a control unit for determining the residual chlorine concentration based on the above and a display unit that performs display according to the output of the control unit, the residual chlorine detection unit is arranged before and after the water purification unit before and after filtration The residual chlorine is detected and both residual chlorine concentrations are displayed on the display unit, and the control unit has a negative voltage relative to the other electrode on one of the pair of electrodes of each residual chlorine detection unit. It has an operation mode for performing reverse current processing to apply reverse current, and performs reverse current processing by repeatedly applying an inrush current at the time of application by repeatedly applying a voltage to the electrode and non-application within a predetermined time. there are particularly characterized. The electrode is cleaned by electrical treatment.
[0007]
Here, the control unit enters an operation mode of reverse electric processing when the unused time reaches a certain time, or enters an operation mode of reverse electric processing when the flow rate detected by the flow rate detection unit falls below a predetermined amount. A thing can be used suitably .
[0008]
Further, the flow rate may be detected from an electrical variable between the electrodes of the residual chlorine detector.
Furthermore, it is good also as what was provided with the control switch which switches on and off of a main power supply according to the flow volume detected from a flow volume detection part while providing the flow volume detection part.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An example of an embodiment of the present invention will be described. A water purifier 1 receives raw water such as tap water from a connection port 2 as shown in FIG. 1, and includes a filtration tank 3 and two for detecting residual chlorine concentration. It has a detector 4a, 4b, a controller 6, a display 7, and a discharge port 8. The filtration tank 3 is composed of an adsorbent such as activated carbon, ion exchange resin, zeolite, and a hollow fiber membrane. It is a cartridge type containing a filtration filter.
[0010]
Of the two detection units 4a and 4b, the detection unit 4a is disposed in a flow path between the connection port 2 and the filtration tank 3, and the detection unit 4b is a flow path between the filtration tank 3 and the discharge port 8. Both are arranged in such a manner that a plate-like platinum electrode 10 and a silver electrode 11 are arranged at predetermined intervals as shown in FIG. A constant voltage is applied between 10 and 11 by the output of the control unit 6. At this time, the control unit 6 calculates the residual chlorine concentration based on the value of the current flowing between the electrodes 10 and 11 and displays the calculated value on the display unit 7.
[0011]
Since the detection unit 4a detects the residual chlorine concentration in the raw water before filtration, and the detection unit 4b detects the residual chlorine concentration in the purified water after filtration, how much residual chlorine is removed by passing through the filtration tank 3 is used. Can know. In addition, the material of the electrodes 10 and 11 of the detection units 4a and 4b is not limited to the above, and for example, gold, carbon, copper, or the like may be used. Further, the shape of the electrodes 10 and 11 is not limited.
[0012]
By the way, the electrodes 10 and 11 in the detection units 4a and 4b adsorb oxides and gas components generated by the electrode reaction, or the calcium scale adheres and the surface becomes dirty. For this reason, even when the relationship between the current value flowing between the electrodes 10 and 11 and the residual chlorine concentration is initially in the state indicated by I in FIG. 2, the output is reduced as indicated by II in the figure. turn into.
[0013]
For this reason, the control unit 6 performs a regeneration to remove the dirt on the electrodes 10 and 11 by performing a reverse power treatment periodically or irregularly. The reverse electric treatment here is to hold the potential of the silver electrode 11 at a negative potential for a certain time with respect to the platinum electrode 10, for example. Further, as the negative potential, when the contamination of the electrodes 10 and 11 is due to the adsorption of the gas component, as shown in FIG. 3, a high regeneration efficiency of about −0.5 V to −5 V can be obtained. When the contamination of the electrodes 10 and 11 is caused by the adhesion of the scale, as shown in FIG. 4, a high regeneration efficiency can be obtained at about −5V to −10V. Note that the value of the negative potential is not limited to the above example. In any case, as a result of regeneration by reverse electricity, as shown by III in FIG.
[0014]
Another example is shown in FIGS. Here, a flow rate detection unit 5 that detects the flow rate of water passing through the water purifier 1 is provided, and the power of the control unit 6 and the display unit 7 is turned on and off by the output of the flow rate detection unit 5. As shown in FIG. 6, the control unit 6 measures the unused time, and performs the reverse power process according to the measurement result.
That is, if a flow rate of a predetermined flow rate (for example, 0.5 liter / min) or more is detected in the water purifier 1, the controller 6 and the display unit 7 are energized. If reverse electric processing is performed and then the flow rate falls below a predetermined flow rate, post reverse electric processing is performed and a standby state is entered. Further, if the waiting time (unused time) is 24 hours or more, the reverse power process is performed during the waiting time.
[0015]
If water flow to the water purifier 1 is started when the unused time is 12 hours or more, the reverse current treatment is performed first, and then the residual chlorine concentration is detected. In the case where the water is not passed for a long time, a reverse electric treatment is performed regardless of the water flow state, and the electrodes 10 and 11 are always kept clean.
[0016]
FIG. 7 shows still another example. This is provided with a switching valve 12 so that the residual chlorine concentration of the raw water before reaching the filtration tank 3 and the residual chlorine concentration of the purified water that has passed through the filtration tank 3 can be detected by a single detection unit 4. At the beginning of water flow, as shown in FIG. 8 (a), a part of the raw water going to the filtration tank 3 is guided to the detection unit 4, and then, as shown in FIG. 12 is switched, and a part of the purified water that has passed through the filtration tank 3 is guided to the detection unit 4. In the illustrated example, the water that has passed through the switching valve 12 and the detection unit 4 is discharged from the discharge port 13, but a separate switching valve that is linked to the switching valve 12 is provided so that the raw water flows into the raw water flow path. The purified water may be returned to the purified water flow path.
[0017]
The flow path switching of the switching valve 12 may be performed based on the output of the flow rate detection unit 5, but the flow rate detection unit 5 may use the residual chlorine concentration detection unit 4. Since the flow rate detection here does not require high accuracy, the output changes depending on the specific resistance value between the electrodes when the electrodes 10 and 11 are submerged or the flow rate of water. Even if the operation of the switching valve 12 or the above-described energization control is performed by the detected flow rate, no trouble occurs.
[0018]
FIG. 9 is a block diagram relating to energization control in this case, and the detection unit 4 is always supplied with power from the power supply block 15, but the detection unit is between the power supply block 15 and the control unit 6 or the display unit 7. 5 is provided with a control switch 14 that operates based on an electrical variable that varies depending on the flow rate output from the motor 5.
By the way, in the reverse electric processing for the detection units 4, 4 a, 4 b, a rectangular wave having a certain frequency as shown by B in FIG. 10 rather than holding the voltage between the electrodes constant for a predetermined time T as shown by B in FIG. 10. It is more effective to maintain the voltage that shows the sine wave for a certain period of time or to maintain the voltage that shows a sine wave of a certain frequency for a certain period of time as shown by C . As shown in FIG. 11, an inrush current is generated when a voltage is applied, and the reverse current regeneration reaction at the power source is greatly advanced by the inrush current. However, in the case of the voltage application indicated by (b) or (c) in the figure, the inrush current This is because it flows repeatedly.
[0019]
【The invention's effect】
As described above, in the present invention, the electrode is soiled by an electrical process in which a negative voltage is applied to one electrode of the pair of electrodes of the residual chlorine detection unit with respect to the other electrode. The electrode is regenerated and the electrode is worn and the electrode polishing member is not worn, and the residual chlorine concentration is detected and displayed stably for a long time with respect to the water before and after filtration. It is something that can be done. Moreover, since the reverse current treatment is performed by repeatedly applying an inrush current at the time of application by repeatedly applying and not applying a voltage to the electrode within a predetermined time, the contamination of the electrode due to the reverse current treatment is removed. It can be done more effectively.
[0020]
And if the unused time reaches a certain time and enters the operation mode of reverse current processing, the electrode can be prevented from being soiled when the unused time is long, and the flow rate detected by the flow rate detection unit If the operation mode of the reverse electric processing is entered when the value becomes equal to or less than the predetermined amount, the reverse electric processing is performed every time it is used .
[0021]
In addition, the flow rate may be obtained from an electrical variable between the electrodes of the residual chlorine detector, and in this case, it is not necessary to provide a separate flow rate detection member.
Furthermore, in the case of a device provided with a flow rate detection unit, useless power consumption can be reduced if a control switch for turning on and off the main power supply according to the flow rate detected by the flow rate detection unit is provided.
[Brief description of the drawings]
1A and 1B show an example of an embodiment of the present invention, in which FIG. 1A is a schematic block diagram, and FIG. 1B is a cross-sectional view of a detection unit;
FIG. 2 is a characteristic diagram showing the relationship between the residual chlorine concentration and the output current of the detection unit.
FIG. 3 is a characteristic diagram of the inter-electrode voltage and the regeneration efficiency during the reverse electric treatment.
FIG. 4 is a characteristic diagram of the interelectrode voltage and the regeneration efficiency during the reverse electric treatment.
FIG. 5 is a schematic block diagram of another example.
FIG. 6 is a flowchart showing the operation of the above.
FIG. 7 is a schematic block diagram of still another example.
8 shows the operation of the flow path switching portion indicated by A in FIG. 7, and (a) and (b) are both cross-sectional views.
FIG. 9 is a schematic block circuit diagram of the above.
FIG. 10 is a time chart of reverse power processing.
FIG. 11 is a time chart showing a change in current during reverse electric processing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water purifier 3 Filtration tank 4a Detection part 4b Detection part 6 Control part 7 Display part

Claims (5)

濾過手段を備えた浄水部と、水路中に配されるとともに所定電圧が印加される一対の電極からなる残留塩素検出部と、残留塩素検出部の電極間に流れる電流値を基に残留塩素濃度を求める制御部と、制御部の出力に応じた表示を行う表示部とを備えた浄水器において、残留塩素検出部が浄水部の前後に配されて濾過前と濾過後の残留塩素を検出して表示部に両残留塩素濃度を表示するものであり、上記制御部は各残留塩素検出部の一対の電極のうちの一方の電極に他方の電極に対して負の電圧を印加する逆電処理を行う動作モードを備えているとともに、逆電処理を電極への電圧の印加と非印加との所定時間内の繰り返しで印加時の突入電流を複数回流して行うものであることを特徴とする浄水器。Residual chlorine concentration based on the value of the current flowing between the water purification unit provided with a filtering means, a pair of electrodes arranged in the water channel and a predetermined voltage applied to the residual chlorine detection unit, and the residual chlorine detection unit In a water purifier equipped with a control unit for obtaining a display and a display unit for performing display according to the output of the control unit, a residual chlorine detector is arranged before and after the water purification unit to detect residual chlorine before and after filtration. The display unit displays both residual chlorine concentrations, and the control unit applies a reverse voltage process in which a negative voltage is applied to one of the pair of electrodes of each residual chlorine detection unit with respect to the other electrode. In addition, the reverse current treatment is performed by repeatedly applying an inrush current at the time of application by repeatedly applying the voltage to the electrode and not applying the voltage within a predetermined time. Water purifier. 制御部は未使用時間が一定時間に達した時に逆電処理の動作モードに入ることを特徴とする請求項1記載の浄水器。  2. The water purifier according to claim 1, wherein the control unit enters an operation mode of reverse electricity treatment when the unused time reaches a certain time. 流量検出部を備えており、制御部は流量検出部で検出される流量が所定量以下となった時に逆電処理の動作モードに入ることを特徴とする請求項1記載の浄水器。  The water purifier according to claim 1, further comprising a flow rate detection unit, wherein the control unit enters an operation mode of reverse power treatment when a flow rate detected by the flow rate detection unit becomes a predetermined amount or less. 残留塩素検出部の電極間の電気的変量から流量を求める流量検出部を備えていることを特徴とする請求項1〜3のいずれかに記載の浄水器。 The water purifier according to any one of claims 1 to 3, further comprising a flow rate detection unit for obtaining a flow rate from an electrical variable between the electrodes of the residual chlorine detection unit . 流量検出部を備えているとともに流量検出部から検出される流量に応じて主電源の入切を行う制御スイッチを備えていることを特徴とする請求項1記載の浄水器。 The water purifier according to claim 1, further comprising a control switch that includes a flow rate detection unit and that turns on and off the main power according to the flow rate detected by the flow rate detection unit .
JP10647497A 1997-04-23 1997-04-23 Water purifier Expired - Fee Related JP3648584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10647497A JP3648584B2 (en) 1997-04-23 1997-04-23 Water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10647497A JP3648584B2 (en) 1997-04-23 1997-04-23 Water purifier

Publications (2)

Publication Number Publication Date
JPH10296242A JPH10296242A (en) 1998-11-10
JP3648584B2 true JP3648584B2 (en) 2005-05-18

Family

ID=14434521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10647497A Expired - Fee Related JP3648584B2 (en) 1997-04-23 1997-04-23 Water purifier

Country Status (1)

Country Link
JP (1) JP3648584B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102874890A (en) * 2012-09-06 2013-01-16 张俊峰 Application of on-line type residual chlorine detector to monitoring residual chlorine removal capacity of hemodialysis water treatment system in real time

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058025A (en) * 2006-08-29 2008-03-13 Omega:Kk Residual chlorine concentration meter
CN111830085B (en) * 2019-04-17 2021-11-12 合肥华凌股份有限公司 Water quality detection device, refrigerator water supply system and refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102874890A (en) * 2012-09-06 2013-01-16 张俊峰 Application of on-line type residual chlorine detector to monitoring residual chlorine removal capacity of hemodialysis water treatment system in real time

Also Published As

Publication number Publication date
JPH10296242A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
JP3465367B2 (en) Ion-rich water generator
EP2857086B1 (en) Deionization filter and method for regenerating deionization filter
WO1996000700A1 (en) Method of and apparatus for electrolyzing water
JP3409448B2 (en) Ion-rich water generator with non-diaphragm type electrolytic cell
JP3648584B2 (en) Water purifier
JP4090640B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP3477333B2 (en) Cleaning method of redox potential sensor
JP2686208B2 (en) Ion water generator
JP4553449B2 (en) Method for cleaning electrolytic ion water generator
JP3222984B2 (en) Ion water generator
JP3211983B2 (en) Notification method of replacement time of electrolytic electrode of ion water generator
JP2001141692A (en) Apparatus for measuring concentration of residual chlorine
JP2000301154A (en) Water cleaning apparatus
RU2181107C1 (en) Process of controllable electric sorption of organic substances and cations of heavy metals from aqueous solutions
JPH06312182A (en) Ion water forming apparatus
JPH06254561A (en) Water conditioner
JPH0716570A (en) Ionic water preparation instrument
JPH0655176A (en) Continuous producing device of electrolytic ionized water
JPH07171570A (en) Electrolytic ionic water generating device
JP3572662B2 (en) Electrolyzed water generator
JP2004154758A (en) Water purifier
JPH06320162A (en) Water preparing apparatus
JP2005177537A (en) Electrolytic ion water generator
JP2003080261A (en) Water cleaning equipment
JP3881120B2 (en) How to pass liquid-type capacitors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees