JP3648352B2 - Ozone contact reactor - Google Patents

Ozone contact reactor Download PDF

Info

Publication number
JP3648352B2
JP3648352B2 JP15493497A JP15493497A JP3648352B2 JP 3648352 B2 JP3648352 B2 JP 3648352B2 JP 15493497 A JP15493497 A JP 15493497A JP 15493497 A JP15493497 A JP 15493497A JP 3648352 B2 JP3648352 B2 JP 3648352B2
Authority
JP
Japan
Prior art keywords
water
treated
pipe
ozone
ozone contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15493497A
Other languages
Japanese (ja)
Other versions
JPH11675A (en
Inventor
猛志 辻
健一郎 水野
辰夫 武智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Maezawa Industries Inc
Original Assignee
JFE Engineering Corp
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp, Maezawa Industries Inc filed Critical JFE Engineering Corp
Priority to JP15493497A priority Critical patent/JP3648352B2/en
Publication of JPH11675A publication Critical patent/JPH11675A/en
Application granted granted Critical
Publication of JP3648352B2 publication Critical patent/JP3648352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、浄水処理、排水処理、産業排水処理等の水処理に用いられるオゾン接触反応槽に関し、詳しくは、処理対象水にオゾンを溶解させて、オゾンと難反応物質等の除去対象物質との酸化反応処理を行う二重管型のオゾン接触反応槽に係るものである。
【0002】
【従来の技術】
図5は、従来の二重管型オゾン接触反応槽であり、例えば、米国特許番号4572821に記載されている。同図において、1は被処理水、2は被処理水流入管、3はオゾン化ガス、4はオゾン化ガス吹き込み管、5は被処理水流入管2の先端部分である内管、6は内管5を覆う外管、7はオゾン化ガスによって酸化処理された処理水、8は処理水流出管、9は酸化反応によって排出される排ガス、10は排ガス取り出し管、11は外管5の上端から越流するオゾンによる酸化処理水を受ける越流槽である。
【0003】
この二重管型オゾン接触反応槽は、主に垂直円筒型で有底の外管6と、外管6内に挿入され、その底部を開口した垂直円筒型の内管5とで構成され、内管5内と、内管5と外管6との間の空間がオゾン接触反応槽となっている。オゾン化ガス吹き込み管4から吹き込まれるオゾン化ガス3は、オゾン発生装置から送り込まれる。オゾン化ガス3は、内管5の上部に設けたオゾン化ガス吹き込み管4を介して、自然流下あるいはポンプ等によって、被処理水流入管2から送られる被処理水1中に吹き込まれる。被処理水1はオゾン化ガス3とともに気液二相流となって内管5内を下降し、この間にオゾンが被処理水1に高効率で溶解する。そして、被処理水1と溶解しきれなかったオゾン化ガス3は内管5の下端開口部を経由して内管5と外管6の間にある空間内を上昇する。こうして、内管5内および内管5と外管6の間にある空間を通過する間に、溶解したオゾンによって有機物を中心とする除去対象物質が酸化分解されて除去される。被処理水1は外管1の上部から越流槽11へ越流させた後、越流槽11に設けられた処理水流出管8より槽外に流出する。また、越流槽11内の排ガス9は排ガス取り出し管10を経由して排気されている。
【0004】
また、オゾン接触反応槽は、水中に溶解したオゾンと除去対象物質との反応に要する時間を確保するために、その内容積は必要な滞留時間が得られるように構成されている。従って、除去対象物質が難反応物質である場合は、反応に要する長い停滞時間を必要とするので、大きな内容積の接触槽が形成される。
【0005】
また、このような二重管型オゾン接触反応槽は、施工上の簡便性や前後のプロセスの水位高低上のバランスをとるために、通常円形断面形状であり、その大部分が地中に埋設されている。
【0006】
一般的に被処理水中の溶解性有機物等の除去対象物とオゾンとの反応は、▲1▼オゾンによる直接反応と、▲2▼オゾンが分解して生成したOHラジカル(水酸基,−OH)による間接反応との2つに分類される。OHラジカルは、オゾン分子より酸化還元電位が高く、オゾンによる直接反応では処理できない難分解性の除去対象物質を酸化することが可能である。そこで、OHラジカルの生成を促進してオゾンによる酸化力を強めるために補助的な手段を備えるオゾン接触反応槽が、例えば特開平5−228496号公報等に開示されている。このオゾン接触反応槽は、被処理水に紫外線を照射しながらオゾンによる酸化反応(オゾン反応)を行ったり、触媒と接触させながらオゾン反応を行ったり、あるいは過酸化水素を注入しながらオゾン反応を行ったりする、いわゆる促進オゾン反応処理法である。
【0007】
【発明が解決しようとする課題】
しかしながら、図5の二重管型のオゾン接触反応槽では、処理水中の除去対象物質を除去する際の大部分がオゾンによる直接反応によって行われている。そのために、除去対象物が難分解性物質である場合には、酸化処理時間を長く設定するために、被処理水の滞留時間を長くする必要があるので、オゾン接触反応槽が大型化し、敷地面積や建設費の増大を招く欠点がある。
【0008】
一方、OHラジカルの生成を促してオゾンの酸化力を強める促進酸化処理方法では、以下のような問題があった。先ず、紫外線とオゾンを併用する場合は、照射した紫外線が被処理水の深さ(厚み)に比例して被処理水に吸収される。従って、OHラジカルの生成に寄与する紫外線は全照射量の極一部となり、OHラジカルの生成効率が悪いという欠点があった。
【0009】
また、触媒とオゾンを併用する場合には、OHラジカルの生成効率が低く、触媒とオゾンを含む被処理水との接触時間を長くする必要性から装置溶積が大きくなるという問題があった。さらにまた、紫外線と触媒とオゾンとを併用して光触媒反応により、OHラジカルを生成する場合には、照射した紫外線の大半が被処理水に吸収されてしまうために、OHラジカルの生成効率が悪く、経済的でなく、装置容積が大きくなる欠点があった。
【0010】
また、過酸化水素とオゾンとを併用する場合は、注入する過酸化水素の費用がかさむという欠点と、国内の浄水処理では、安全性の面から現在過酸化水素の使用が認可されていない問題があるために、浄水処理における酸化処理が効果的に成し得ない欠点がある。
【0011】
本発明は、上記課題に鑑みなされたものであり、放射線、紫外線およびレーザ光等の光触媒反応を用いたオゾン接触反応槽を提供することを目的とするものである。
さらに、本発明は、オゾン接触反応槽を小型化することができるとともに、オゾン接触反応を促進させることができるオゾン接触反応槽を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、上記課題を達成するためになされたものであり、請求項1の発明は、内管上部から流入する被処理水にオゾン化ガスを吹き込み、該被処理水を該オゾン化ガスとともに該内管内を降下させた後、該内管とそれを囲う外管との空間内を上昇させる過程で、前記被処理水中の除去対象物質をオゾンと反応させて除去するとともに、該被処理水を該外管の上部を囲むように設けられた越流槽へ越流させた後、該越流槽に設けられた処理水流出管より流出させるオゾン接触反応槽において、
該被処理水を該外管の上部から越流槽へ越流される過程で、該越流槽に越流する該被処理水へ紫外線、放射線あるいはレーザ光の何れか一つを照射する照射装置を該越流槽内に備えることを特徴とするオゾン接触反応槽である。この発明では、外管上端から越流する被処理水が薄層状に流れ落ちる際に、紫外線、放射線あるいはレーザ光を照射することで、被処理水による光の吸収が低減して、照射された光がOHラジカルの生成に有効に寄与する。生成されたOHラジカルは、被処理水中に溶解したオゾンで除去できなかった難反応物質と反応して、これを酸化反応による分解除去することができる。
【0013】
また、請求項2の発明は、請求項1に記載のオゾン接触反応槽において、
該被処理水を該外管の上部から越流槽へ越流させる過程で、越流する該被処理水が外管の外壁面を薄層状に流れ落ちるように、該越流槽に囲まれた部分の外管の外壁に、該被処理水が越流する上端より末広がり状もしくは末しぼまり状に傾斜を与えたことを特徴とするオゾン接触反応槽である。この発明では、このような形状とすることで、外管の上端から越流槽に流れ落ちる被処理水は外壁表面を流れる流水を、より確実に薄層状とすることができるので、紫外線を照射した際の被処理水による紫外線の吸収量が低減し、紫外線によるOHラジカルが効率よく生成される。
【0014】
また、請求項3の発明は、請求項1または2に記載のオゾン接触反応槽において、
該越流槽に囲まれた部分の外管の外壁表面に、酸化チタン、酸化亜鉛、三酸化タングステン、ニッケル塩およびコバルト塩の少なくとも一種、または一種以上の材質からなる触媒を被覆したことを特徴とするオゾン接触反応槽である。この発明では、光触媒反応を利用したOHラジカルの生成が可能となる。被処理水への光の吸収量を低下させることができ、触媒表面に到達する光量が大きくなり、光触媒反応によるOHラジカルの生成量が増大してOHラジカルによる酸化反応による除去処理が高効率で行われる。
【0015】
また、請求項4の発明は、請求項1、2または3に記載のオゾン接触反応槽において、
該越流槽に設けられた照射装置から照射される紫外線、放射線もしくはレーザ光の照射面積を拡大するために、該越流槽に囲まれた外管の上端から該外管の外壁表面に沿って薄層状で越流する流水に落差を与えたことを特徴とするオゾン接触反応槽である。この発明では、光触媒反応によるOHラジカルの生成が効率よく成し得るので、難反応物質の除去性能が一層改善される。
【0016】
【発明の実施の形態】
以下、本発明に係るオゾン接触反応槽の実施形態について、図面を参照して説明する。図1〜図4は、本実施形態の概略を示す断面図であり、同一部分には同一符号が付与されている。
【0017】
(実施形態1)
図1は、本発明に係るオゾン接触反応槽の一実施形態を示している。同図において、1は被処理水、2は被処理水流入管、3はオゾン化ガス、4はオゾン化ガス吹き込み管、5は被処理水流入管2の先端部分である内管、6は内管5を覆う外管、7は処理水、8は処理水流出管、9は排ガス、10は排ガス取り出し管、11aは外管6の被処理水が越流する上部を囲む越流槽、12は越流槽11aの内壁に設けられた照射装置である。照射装置12は、二重管型オゾン接触反応槽の越流槽11a内に配置され、紫外線、放射線あるいはレーザ光の何れかを照射する。内管5と外管6は円筒状であり、照射装置12は、越流槽11a内を紫外線で充満させることが容易であるので、紫外線照射装置が好ましい。
【0018】
本実施形態の二重管型オゾン接触反応槽は、垂直円筒型で有底の外管6と、外管6内に挿入され、その底部が開口した垂直円筒型の内管5と、外管6の上部を囲う越流槽11aと、越流槽11a内に設けられた照射装置12と、内管2に挿入されたオゾン化ガス吹き込み管4とから構成されている。その内管5内と、内管5と外管6との間の空間がオゾン接触反応槽である。オゾン化ガス吹き込み管4から吹き込まれるオゾン化ガスは、オゾン発生装置(図示なし)から送り込まれる。オゾン発生装置は、外部から送られた気体中に含まれる酸素の少なくとも一部をオゾンとしたオゾン化ガス3が生成される。オゾン化ガス3は、内管5の上部に設けたオゾン化ガス吹き込み管4を経て、自然流下あるいはポンプ等によって、被処理水流入管2から送られる被処理水1中に吹き込まれる。被処理水1はオゾン化ガス3とともに気液二相流となって内管5内を下降し、この間にオゾンが被処理水1に高効率で溶解する。そして、被処理水1と溶解しきれなかったオゾン化ガス3は内管5の下端開口部を経由して内管5と外管6の間にある空間内を上昇する。外管6の上端から越流する酸化処理水に対しては、照射装置12から紫外線を照射して、酸化処理水にOHラジカルを生成して、OHラジカルの酸化作用によって難反応性物質を酸化して分解除去している。外管6の上端から越流する酸化処理水は、越流槽11aに薄層状に落下し、この流水に十分に紫外線を照射し得る程度に落差Lが保たれている。照射装置12により、この薄層状の流水に紫外線を照射して、OHラジカルを生成して被処理水中の難反応性物質との反応が速やかに行われるので、OHラジカルによる酸化反応によって、有機性の除去対象物を酸化分解することができる。そして、被処理水1は外管6の上部から越流槽11aに越流させ、越流槽11aに設けられた処理水流出管8より槽外に流出する。また、越流槽11a内の排ガス9は排ガス取り出し管10を経由して排気される。
【0019】
上記のように、本実施形態では、オゾン化ガスが溶解した被処理水が内管5内および内管5と外管6の間にある空間を通過する間に、被処理水に溶解したオゾンと生成されたOHラジカルによって有機物を中心とする除去対象物質が酸化反応よって分解除去される。さらに、外管6の上端部から越流槽11bに越流する薄層状の流水に紫外線等を照射して、OHラジカルを生成して難反応性物質を酸化反応により分解している。このように、オゾンによる酸化反応処理によって、被処理水中の除去対象物を分解処理した後に、越流する薄層状の水流に対して照射装置12から紫外線を照射することで、紫外線の被処理水1への吸収量が低減できるので、OHラジカルによる酸化作用によって難反応性物質の除去処理を効率よく行うことができる。無論、オゾンによる酸化反応処理では、被処理水の殺菌、除色、除臭、あるいは被処理水中の除鉄、除マンガン等がなされることは明らかである。
【0020】
(実施形態2)
図2は、本発明の他の実施形態の概要を示す断面図である。同図の実施形態では、図1の実施形態に加えて、越流槽11bで囲われた外管6の外壁に、外管6の上端から末広がり状に傾斜したテーパ状の外壁13が形成されている。外管6の上端から越流する被処理水1は、末広がり状に傾斜したテーパ状の外壁13面を薄層状に水流が流下する。従って、この薄層状の流水へ照射装置12から紫外線を照射することによって、紫外線が被処理水に殆ど吸収されることなく、被処理水中にOHラジカルを効率的に生成させることができる。紫外線照射によって生成されるOHラジカルによる酸化作用により、難反応性物質の除去処理が効率的になし得る。
【0021】
(実施形態3)
図3は、本発明の他の実施形態の概要を示す断面図である。同図の実施形態では、図2の実施形態に加えて、越流槽11bで囲まれた外管6の上端より末広がり状に傾斜したテーパ状の外壁13の表面に触媒層14が設けられている。触媒層14は、酸化チタン、酸化亜鉛、三酸化タングステン、ニッケル塩およびコバルト塩等の触媒を少なくとも一種、またはそれらの一種を混合したもの、またはそれらの一種以上を混合した材質によって形成されている。このようなテーパ状の外壁13の表面に触媒層14が形成されることで、オゾンおよびOHラジカルと被処理水中の難反応性物質との酸化反応処理が促進されている。さらに、外管6の上端開口部から触媒層14の表面を経て、越流槽11bに流下する薄層状の水流に対して、越流槽11bに設けられた照射装置12から紫外線を照射することで、紫外線の被処理水1への吸収量が低減し、OHラジカルの生成が効率よくなされ、光触媒反応を利用したOHラジカルによる難反応性物質の分解除去処理が効率的に行われる。触媒層14は被処理水との接触を十分に取るために、必要な落差Lが設けられている。また、図1の実施形態においても外管6の外壁面に触媒層14を形成して、同様の効果を期待することができる。
【0022】
(実施形態4)
図4は、本発明の他の実施形態の概要を示す断面図である。同図の実施形態では、外管6の上端部6aが上端から末しぼまり状に傾斜したテーパ状の外壁6aが形成されている。他の形状は、図1の実施形態と同様であるので、その詳細説明は省略する。外管6の外壁6aを越流する被処理水は、末しぼまり状に傾斜したテーパ状の外管6の外壁6aを安定した薄層状の水流として流下するために、この水流に対して、照射装置12から紫外線を照射することで、被処理水による紫外線の吸収を抑制することができ、OHラジカルを効率よく生成することができるので、被処理水中の難反応物質の酸化処理による分離除去処理性能を向上させることができる。
【0023】
無論、越流層11a〜11c内の照射装置12は、紫外線以外に、X線等の放射線やレーザ光を照射してもよく、例えば、レーザ照射装置のレーザ管は越流層11a〜11c内に設け、その駆動装置や制御装置等は照射装置12外に設けてもよい。なお、紫外線、放射線を照射する照射装置の場合であっても同様である。
【0024】
【発明の効果】
上述に記載のように、本発明によれば、外管上端から越流する被処理水を薄層状に流下させて、この被処理水に紫外線等を照射して、被処理水中にOHラジカルを効率よく生成して、オゾン処理された酸化処理水に対して、OHラジカルによる酸化反応によって難反応性物質の除去処理を高効率になし得る利点がある。
【0025】
また、外管上端から越流する被処理水を薄層状とし、必要な落差を与えることで、被処理水と触媒層との接触が十分に行われ、しかも光触媒反応によって被処理水中の難反応性物質の酸化反応による分解除去処理が効果的になし得る利点がある。
【0026】
また、被処理水の難反応性物質の酸化反応による分解除去処理が高効率でなされるので、従来のオゾン接触反応槽より小型化、特に深さ方向の形状を小さくすることができる利点があり、建設費を低減できる利点がある。
【図面の簡単な説明】
【図1】本発明に係るオゾン接触反応槽の一実施形態を示す断面図である。
【図2】本発明に係るオゾン接触反応槽の他の実施形態を示す断面図である。
【図3】本発明に係るオゾン接触反応槽の他の実施形態を示す断面図である。
【図4】本発明に係るオゾン接触反応槽の他の実施形態を示す断面図である。
【図5】従来のオゾン接触反応槽の一例を示す斜視図である。
【符号の説明】
2 被処理水流入管
4 オゾン化ガス吹き込み管
5 内管
6 外管
6a 上端部
8 処理水流出管
10 排ガス取り出し管
11a〜11c 越流槽
12 照射装置
13 外壁
14 触媒層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ozone contact reaction tank used for water treatment such as water purification treatment, wastewater treatment, and industrial wastewater treatment. More specifically, ozone is dissolved in water to be treated, and ozone and difficult-to-react substances to be removed. The present invention relates to a double-tube ozone contact reaction tank that performs the oxidation reaction treatment.
[0002]
[Prior art]
FIG. 5 shows a conventional double-tube ozone contact reaction tank, which is described in, for example, US Pat. No. 4,572,821. In the figure, 1 is treated water, 2 is treated water inflow pipe, 3 is ozonized gas, 4 is ozonized gas blowing pipe, 5 is an inner pipe which is the tip of treated water inflow pipe 2, and 6 is inner pipe. 5 is an outer pipe, 7 is treated water oxidized by ozonized gas, 8 is treated water outflow pipe, 9 is exhaust gas discharged by oxidation reaction, 10 is exhaust gas extraction pipe, 11 is from the upper end of outer pipe 5 It is an overflow tank that receives oxidation-treated water from overflowing ozone.
[0003]
This double tube type ozone contact reaction tank is mainly composed of a vertical cylindrical bottomed outer tube 6 and a vertical cylindrical inner tube 5 inserted into the outer tube 6 and opened at the bottom, The space between the inner tube 5 and between the inner tube 5 and the outer tube 6 is an ozone contact reaction tank. The ozonized gas 3 blown from the ozonized gas blowing pipe 4 is sent from an ozone generator. The ozonized gas 3 is blown into the treated water 1 sent from the treated water inflow pipe 2 by natural flow or by a pump or the like through an ozonized gas blowing pipe 4 provided on the upper part of the inner pipe 5. The water 1 to be treated becomes a gas-liquid two-phase flow together with the ozonized gas 3 and descends in the inner pipe 5. During this time, ozone is dissolved in the water 1 to be treated with high efficiency. Then, the ozonized gas 3 that could not be dissolved with the water to be treated 1 rises in the space between the inner tube 5 and the outer tube 6 via the lower end opening of the inner tube 5. Thus, while passing through the space inside the inner tube 5 and the space between the inner tube 5 and the outer tube 6, the substance to be removed, mainly organic matter, is oxidatively decomposed and removed by the dissolved ozone. The treated water 1 flows from the upper part of the outer pipe 1 to the overflow tank 11 and then flows out of the treated water outflow pipe 8 provided in the overflow tank 11. Further, the exhaust gas 9 in the overflow tank 11 is exhausted via the exhaust gas extraction pipe 10.
[0004]
Further, the ozone contact reaction tank is configured so that a necessary residence time can be obtained in order to secure a time required for a reaction between ozone dissolved in water and a substance to be removed. Therefore, when the substance to be removed is a hardly reactive substance, a long stagnation time required for the reaction is required, so that a large internal volume contact tank is formed.
[0005]
In addition, such a double-tube ozone contact reactor is usually circular in cross-section for the convenience of construction and balancing the water level of the process before and after, and most of it is buried in the ground. Has been.
[0006]
In general, the reaction between the object to be removed such as soluble organic matter in the water to be treated and ozone is caused by (1) direct reaction with ozone and (2) OH radical (hydroxyl group, -OH) generated by decomposition of ozone. There are two categories: indirect reactions. The OH radical has a higher oxidation-reduction potential than ozone molecules, and can oxidize a hardly decomposable substance to be removed that cannot be treated by direct reaction with ozone. Therefore, an ozone contact reaction tank provided with auxiliary means for promoting the generation of OH radicals and strengthening the oxidizing power by ozone is disclosed in, for example, Japanese Patent Application Laid-Open No. 5-228296. This ozone contact reaction tank performs an oxidation reaction (ozone reaction) with ozone while irradiating the water to be treated, an ozone reaction while contacting with the catalyst, or an ozone reaction while injecting hydrogen peroxide. This is a so-called accelerated ozone reaction treatment method.
[0007]
[Problems to be solved by the invention]
However, in the double tube type ozone contact reaction tank of FIG. 5, most of the removal of the substance to be removed from the treated water is carried out by direct reaction with ozone. Therefore, when the object to be removed is a hardly decomposable substance, it is necessary to lengthen the residence time of the water to be treated in order to set the oxidation treatment time long. There is a drawback that increases the area and construction cost.
[0008]
On the other hand, the accelerated oxidation treatment method that promotes the generation of OH radicals and strengthens the oxidizing power of ozone has the following problems. First, when ultraviolet rays and ozone are used in combination, the irradiated ultraviolet rays are absorbed by the water to be treated in proportion to the depth (thickness) of the water to be treated. Therefore, the ultraviolet rays that contribute to the generation of OH radicals are a part of the total irradiation amount, and there is a drawback that the generation efficiency of OH radicals is poor.
[0009]
Further, when the catalyst and ozone are used in combination, there is a problem that the efficiency of OH radical generation is low, and the apparatus melt becomes large due to the necessity of extending the contact time between the catalyst and the water to be treated containing ozone. Furthermore, in the case where OH radicals are generated by a photocatalytic reaction using a combination of ultraviolet rays, a catalyst, and ozone, most of the irradiated ultraviolet rays are absorbed by the water to be treated, resulting in poor OH radical production efficiency. This is not economical and has a drawback of increasing the volume of the apparatus.
[0010]
In addition, when hydrogen peroxide and ozone are used in combination, there is a disadvantage that the cost of hydrogen peroxide to be injected is high, and in the domestic water purification treatment, the use of hydrogen peroxide is not currently approved from the viewpoint of safety. Therefore, there is a drawback that the oxidation treatment in the water purification treatment cannot be effectively performed.
[0011]
This invention is made | formed in view of the said subject, and it aims at providing the ozone contact reaction tank using photocatalytic reactions, such as a radiation, an ultraviolet-ray, and a laser beam.
Furthermore, an object of the present invention is to provide an ozone contact reaction tank capable of reducing the size of the ozone contact reaction tank and promoting the ozone contact reaction.
[0012]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and the invention of claim 1 injects ozonized gas into the water to be treated flowing in from the upper part of the inner pipe, and the treated water together with the ozonized gas. After lowering the inside of the inner pipe, in the process of raising the space between the inner pipe and the outer pipe surrounding the inner pipe, the removal target substance in the treated water is removed by reacting with ozone, and the treated water In an ozone contact reaction tank that flows out from the treated water outflow pipe provided in the overflow tank after overflowing to the overflow tank provided so as to surround the upper part of the outer pipe,
Irradiation device for irradiating the water to be treated that overflows the overflow tank with any one of ultraviolet rays, radiation, or laser light in the process of overflowing the water to be treated from the upper part of the outer pipe to the overflow tank Is provided in the overflow tank. In this invention, when the water to be treated overflowing from the upper end of the outer pipe flows in a thin layer, irradiation of ultraviolet light, radiation, or laser light is performed to reduce the absorption of light by the water to be treated, and the irradiated light Contributes effectively to the generation of OH radicals. The generated OH radical reacts with a hardly reactive substance that could not be removed by ozone dissolved in the water to be treated, and can be decomposed and removed by an oxidation reaction.
[0013]
Moreover, invention of Claim 2 is an ozone contact reaction tank of Claim 1,
In the process of allowing the water to be treated to overflow from the upper part of the outer pipe to the overflow tank, the water to be treated is surrounded by the overflow tank so that the water to be treated flows down the outer wall surface of the outer pipe in a thin layer. The ozone contact reaction tank is characterized in that the outer wall of the outer pipe of the portion is inclined in a divergent or divergent shape from the upper end where the water to be treated overflows. In this invention, by setting it as such a shape, the to-be-processed water which flows into an overflow tank from the upper end of an outer pipe can make the flowing water which flows on the outer wall surface more reliably into a thin layer form, and therefore it was irradiated with ultraviolet rays. The amount of ultraviolet rays absorbed by the water to be treated at the time is reduced, and OH radicals due to ultraviolet rays are efficiently generated.
[0014]
Moreover, invention of Claim 3 is an ozone contact reaction tank of Claim 1 or 2,
The outer wall surface of the outer pipe surrounded by the overflow tank is coated with a catalyst made of at least one of titanium oxide, zinc oxide, tungsten trioxide, nickel salt and cobalt salt, or one or more materials. It is an ozone contact reaction tank. In the present invention, it is possible to generate OH radicals using a photocatalytic reaction. The amount of light absorbed into the water to be treated can be reduced, the amount of light reaching the catalyst surface is increased, the amount of OH radicals generated by the photocatalytic reaction is increased, and the removal treatment by the oxidation reaction by OH radicals is highly efficient. Done.
[0015]
Moreover, invention of Claim 4 is an ozone contact reaction tank of Claim 1, 2, or 3,
In order to expand the irradiation area of ultraviolet rays, radiation, or laser light emitted from the irradiation device provided in the overflow tank, it extends along the outer wall surface of the outer pipe from the upper end of the outer pipe surrounded by the overflow tank. It is an ozone contact reaction tank characterized by giving a drop to the flowing water flowing in a thin layer. In the present invention, since the generation of OH radicals by the photocatalytic reaction can be efficiently performed, the performance of removing hardly reactive substances is further improved.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an ozone contact reaction tank according to the present invention will be described with reference to the drawings. 1-4 is sectional drawing which shows the outline of this embodiment, and the same code | symbol is provided to the same part.
[0017]
(Embodiment 1)
FIG. 1 shows an embodiment of an ozone contact reaction tank according to the present invention. In the figure, 1 is treated water, 2 is treated water inflow pipe, 3 is ozonized gas, 4 is ozonized gas blowing pipe, 5 is an inner pipe which is the tip of treated water inflow pipe 2, and 6 is inner pipe. 5 is an treated pipe, 7 is treated water, 8 is treated water outflow pipe, 9 is exhaust gas, 10 is exhaust gas take-out pipe, 11a is an overflow tank that surrounds an upper portion of the treated water in the outer pipe 6, and 12 is It is an irradiation device provided on the inner wall of the overflow tank 11a. The irradiation device 12 is disposed in the overflow tank 11a of the double-tube ozone contact reaction tank, and irradiates any one of ultraviolet rays, radiation, and laser light. Since the inner tube 5 and the outer tube 6 are cylindrical, and the irradiation device 12 can easily fill the overflow tank 11a with ultraviolet rays, an ultraviolet irradiation device is preferable.
[0018]
The double-tube ozone contact reaction tank of this embodiment is a vertical cylindrical bottomed outer tube 6, a vertical cylindrical inner tube 5 inserted into the outer tube 6 and opened at the bottom, and an outer tube. 6 is composed of an overflow tank 11 a that surrounds the upper part of 6, an irradiation device 12 provided in the overflow tank 11 a, and an ozonized gas blowing pipe 4 inserted into the inner pipe 2. A space between the inner tube 5 and between the inner tube 5 and the outer tube 6 is an ozone contact reaction tank. The ozonized gas blown from the ozonized gas blowing pipe 4 is sent from an ozone generator (not shown). The ozone generator generates an ozonized gas 3 in which at least a part of oxygen contained in a gas sent from the outside is ozone. The ozonized gas 3 is blown into the treated water 1 sent from the treated water inflow pipe 2 by natural flow or a pump or the like through an ozonized gas blowing pipe 4 provided on the upper part of the inner pipe 5. The water 1 to be treated becomes a gas-liquid two-phase flow together with the ozonized gas 3 and descends in the inner pipe 5. During this time, ozone is dissolved in the water 1 to be treated with high efficiency. Then, the ozonized gas 3 that could not be dissolved with the water to be treated 1 rises in the space between the inner tube 5 and the outer tube 6 via the lower end opening of the inner tube 5. Oxidized water that overflows from the upper end of the outer tube 6 is irradiated with ultraviolet rays from the irradiation device 12 to generate OH radicals in the oxidized water, and oxidize hardly reactive substances by oxidizing the OH radicals. And then disassembled and removed. Oxidized water overflowing from the upper end of the outer pipe 6 falls into the overflow tank 11a in a thin layer, and the drop L is maintained to such an extent that the flowing water can be sufficiently irradiated with ultraviolet rays. The irradiation device 12 irradiates the thin laminar flowing water with ultraviolet rays to generate OH radicals and rapidly react with the hardly reactive substance in the water to be treated. The object to be removed can be oxidatively decomposed. And the to-be-processed water 1 is made to flow into the overflow tank 11a from the upper part of the outer tube | pipe 6, and flows out out of the tank from the treated water outflow pipe 8 provided in the overflow tank 11a. Further, the exhaust gas 9 in the overflow tank 11 a is exhausted through the exhaust gas extraction pipe 10.
[0019]
As described above, in the present embodiment, ozone dissolved in the water to be treated while the water to be treated in which the ozonized gas is dissolved passes through the inner pipe 5 and the space between the inner pipe 5 and the outer pipe 6. The removal target substance centering on the organic matter is decomposed and removed by the oxidation reaction by the generated OH radical. Further, ultraviolet light or the like is applied to the thin-layer flowing water that flows from the upper end portion of the outer pipe 6 to the overflow tank 11b to generate OH radicals and decompose the hardly-reactive substance by an oxidation reaction. In this way, after the object to be removed in the water to be treated is decomposed by the oxidation reaction treatment using ozone, the ultraviolet ray is irradiated from the irradiation device 12 to the overflowing thin layer water flow, so that the ultraviolet water to be treated is treated. Since the absorption amount to 1 can be reduced, it is possible to efficiently remove the hardly reactive substance by the oxidizing action by the OH radical. Of course, in the oxidation reaction treatment with ozone, it is obvious that the water to be treated is sterilized, decolorized, deodorized, or iron removed, manganese removed, etc. in the water to be treated.
[0020]
(Embodiment 2)
FIG. 2 is a sectional view showing an outline of another embodiment of the present invention. In the embodiment shown in the figure, in addition to the embodiment shown in FIG. 1, a tapered outer wall 13 is formed on the outer wall of the outer pipe 6 surrounded by the overflow tank 11b. ing. The treated water 1 that overflows from the upper end of the outer pipe 6 flows down into a thin layer on the surface of the tapered outer wall 13 that is inclined in a divergent manner. Therefore, by irradiating this thin laminar flowing water with ultraviolet rays from the irradiation device 12, OH radicals can be efficiently generated in the water to be treated, with the ultraviolet rays being hardly absorbed by the water to be treated. Due to the oxidizing action by the OH radicals generated by the ultraviolet irradiation, it is possible to efficiently remove the hardly reactive substance.
[0021]
(Embodiment 3)
FIG. 3 is a cross-sectional view showing an outline of another embodiment of the present invention. In the embodiment shown in the figure, in addition to the embodiment shown in FIG. 2, a catalyst layer 14 is provided on the surface of the tapered outer wall 13 inclined in a divergent shape from the upper end of the outer pipe 6 surrounded by the overflow tank 11 b. Yes. The catalyst layer 14 is formed of at least one catalyst such as titanium oxide, zinc oxide, tungsten trioxide, nickel salt, and cobalt salt, a mixture of those, or a material mixed with one or more of them. . The formation of the catalyst layer 14 on the surface of the tapered outer wall 13 promotes the oxidation reaction treatment between ozone and OH radicals and the hardly reactive substance in the water to be treated. Further, the thin layered water flow flowing from the upper end opening of the outer pipe 6 through the surface of the catalyst layer 14 to the overflow tank 11b is irradiated with ultraviolet rays from the irradiation device 12 provided in the overflow tank 11b. Thus, the amount of ultraviolet rays absorbed into the water to be treated 1 is reduced, OH radicals are efficiently generated, and the decomposition and removal treatment of difficult-to-react substances by OH radicals utilizing the photocatalytic reaction is performed efficiently. The catalyst layer 14 is provided with a required drop L in order to obtain sufficient contact with the water to be treated. Also in the embodiment of FIG. 1, the same effect can be expected by forming the catalyst layer 14 on the outer wall surface of the outer tube 6.
[0022]
(Embodiment 4)
FIG. 4 is a cross-sectional view showing an outline of another embodiment of the present invention. In the embodiment shown in the figure, a tapered outer wall 6a is formed in which the upper end portion 6a of the outer tube 6 is inclined from the upper end. Since other shapes are the same as those of the embodiment of FIG. 1, detailed description thereof is omitted. The treated water that overflows the outer wall 6a of the outer pipe 6 flows down as a stable thin-layered water stream on the outer wall 6a of the tapered outer pipe 6 that is inclined in a divergent shape. By irradiating ultraviolet rays from the irradiation device 12, absorption of ultraviolet rays by the water to be treated can be suppressed, and OH radicals can be efficiently generated. Therefore, separation and removal by oxidation treatment of hardly reactive substances in the water to be treated Processing performance can be improved.
[0023]
Of course, the irradiation device 12 in the overflow layers 11a to 11c may be irradiated with radiation such as X-rays or laser light in addition to ultraviolet rays. For example, the laser tube of the laser irradiation device is in the overflow layers 11a to 11c. The drive device, the control device, and the like may be provided outside the irradiation device 12. The same applies to an irradiation apparatus that irradiates ultraviolet rays and radiation.
[0024]
【The invention's effect】
As described above, according to the present invention, the water to be treated overflowing from the upper end of the outer pipe flows down into a thin layer, and the water to be treated is irradiated with ultraviolet rays or the like to generate OH radicals in the water to be treated. There exists an advantage which can perform efficiently the removal process of a hard-to-react substance by the oxidation reaction by OH radical with respect to the oxidation process water which produced | generated efficiently and was ozone-treated.
[0025]
In addition, the water to be treated that overflows from the upper end of the outer pipe is made into a thin layer, and the required drop is given, so that the water to be treated and the catalyst layer are sufficiently contacted, and the photocatalytic reaction causes a difficult reaction in the water to be treated. There is an advantage that the decomposition and removal treatment by the oxidation reaction of the active substance can be effectively performed.
[0026]
In addition, since the decomposition and removal treatment by the oxidation reaction of the difficult-to-react substance of the water to be treated is performed with high efficiency, there is an advantage that the size of the conventional ozone contact reaction tank can be reduced, especially the shape in the depth direction can be reduced. There is an advantage that construction costs can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of an ozone contact reaction tank according to the present invention.
FIG. 2 is a cross-sectional view showing another embodiment of the ozone contact reaction tank according to the present invention.
FIG. 3 is a cross-sectional view showing another embodiment of the ozone contact reaction tank according to the present invention.
FIG. 4 is a cross-sectional view showing another embodiment of the ozone contact reaction tank according to the present invention.
FIG. 5 is a perspective view showing an example of a conventional ozone contact reaction tank.
[Explanation of symbols]
2 treated water inflow pipe 4 ozonized gas blowing pipe 5 inner pipe 6 outer pipe 6a upper end 8 treated water outflow pipe 10 exhaust gas take-out pipes 11a to 11c overflow tank 12 irradiation device 13 outer wall 14 catalyst layer

Claims (4)

内管上部から流入する被処理水にオゾン化ガスを吹き込み、該被処理水を該オゾン化ガスとともに該内管内を降下させた後、該内管とそれを囲う外管との空間内を上昇させる過程で、該被処理水中の除去対象物質をオゾンと反応させて除去するとともに、該被処理水を該外管の上部を囲むように設けられた越流槽へ越流させた後、該越流槽に設けられた処理水流出管より流出させるオゾン接触反応槽において、
該被処理水を該外管の上部から越流槽へ越流される過程で、該越流槽に越流する該被処理水へ紫外線、放射線あるいはレーザ光の何れか一つを照射する照射装置を該越流槽内に備えることを特徴とするオゾン接触反応槽。
Ozonized gas is blown into the water to be treated flowing from the upper part of the inner pipe, and the treated water is lowered together with the ozonized gas in the inner pipe, and then rises in the space between the inner pipe and the outer pipe surrounding it. In the process of removing the substance to be removed in the treated water by reacting with ozone and removing the treated water to an overflow tank provided so as to surround the upper part of the outer pipe, In the ozone contact reaction tank that flows out from the treated water outflow pipe provided in the overflow tank,
Irradiation device for irradiating the water to be treated that overflows the overflow tank with any one of ultraviolet rays, radiation, or laser light in the process of overflowing the water to be treated from the upper part of the outer pipe to the overflow tank Is provided in the overflow tank.
請求項1に記載のオゾン接触反応槽において、
該被処理水を該外管の上部から越流槽へ越流させる過程で、越流する該被処理水が外管の外壁面を薄層状で流れ落ちるように、該越流槽に囲まれた部分の外管の外壁に、該被処理水が越流する上端より末広がり状もしくは末しぼまり状に傾斜を与えたことを特徴とするオゾン接触反応槽。
In the ozone contact reaction tank according to claim 1,
In the process of allowing the water to be treated to overflow from the upper part of the outer pipe to the overflow tank, the water to be treated was surrounded by the overflow tank so that the water to be treated flows down the outer wall surface of the outer pipe in a thin layer. An ozone contact reaction tank characterized in that the outer wall of the outer pipe of the portion is inclined in a divergent or divergent shape from the upper end where the treated water overflows.
請求項1または2に記載のオゾン接触反応槽において、
該越流槽に囲まれた部分の外管の外壁表面に、酸化チタン、酸化亜鉛、三酸化タングステン、ニッケル塩およびコバルト塩の少なくとも一種、または一種以上の材質からなる触媒を被覆したことを特徴とするオゾン接触反応槽。
In the ozone contact reaction tank according to claim 1 or 2,
The outer wall surface of the outer pipe surrounded by the overflow tank is coated with a catalyst made of at least one of titanium oxide, zinc oxide, tungsten trioxide, nickel salt and cobalt salt, or one or more materials. Ozone contact reaction tank.
請求項1、2または3に記載のオゾン接触反応槽において、該越流槽に設けられた照射装置から照射される紫外線、放射線もしくはレーザ光の照射面積を拡大するために、該越流槽に囲まれた外管の上端から該外管の外壁表面に沿って薄層状で越流する流水に落差を与えたことを特徴とするオゾン接触反応槽。In the ozone contact reaction tank according to claim 1, 2, or 3, in order to expand the irradiation area of ultraviolet rays, radiation or laser light irradiated from an irradiation device provided in the overflow tank, An ozone contact reaction tank characterized in that a drop is given to flowing water flowing in a thin layer along the outer wall surface of the outer pipe from the upper end of the enclosed outer pipe.
JP15493497A 1997-06-12 1997-06-12 Ozone contact reactor Expired - Fee Related JP3648352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15493497A JP3648352B2 (en) 1997-06-12 1997-06-12 Ozone contact reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15493497A JP3648352B2 (en) 1997-06-12 1997-06-12 Ozone contact reactor

Publications (2)

Publication Number Publication Date
JPH11675A JPH11675A (en) 1999-01-06
JP3648352B2 true JP3648352B2 (en) 2005-05-18

Family

ID=15595141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15493497A Expired - Fee Related JP3648352B2 (en) 1997-06-12 1997-06-12 Ozone contact reactor

Country Status (1)

Country Link
JP (1) JP3648352B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0116593D0 (en) * 2001-07-06 2001-08-29 Thames Water Utilites Ltd Algae removal apparatus
JP5594985B2 (en) * 2009-06-05 2014-09-24 三菱重工業株式会社 Waste water treatment apparatus and waste water treatment method
CN104588872B (en) * 2015-01-19 2017-04-19 桂林电子科技大学 Overflow device for solution auxiliary laser processing system and use method
JP7360815B2 (en) * 2019-05-22 2023-10-13 前澤工業株式会社 Ozone contact reaction tank

Also Published As

Publication number Publication date
JPH11675A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
WO2002079096A1 (en) Method and device for decomposing environmental pollutants
KR100581746B1 (en) System for treating water
JPH05228480A (en) Device for processing hardly biodegradable substance
EP0777629B1 (en) Method and apparatus for the purification of gases and liquids
JP3648352B2 (en) Ozone contact reactor
KR20080050316A (en) Treatment method of refractory organic compounds in industrial liquid waste water and an apparatus of such a treatment therefor
JP3858326B2 (en) Accelerated oxidation treatment equipment using ozone and photocatalyst
JPH1133567A (en) Ozone decomposing method and apparatus
JP3815646B2 (en) Ozone / ultraviolet separator
JP3646509B2 (en) Water treatment equipment using photocatalyst
JP2001029747A (en) Photochemical oxidative decomposition method and reactor
JP2003285085A (en) Water cleaning apparatus and water cleaning method
KR101004777B1 (en) Water treatment method and apparatus using microwave and oxidant
KR20070107742A (en) Method for treating liquids
JPH09192659A (en) Ultraviolet rays oxidizing device
JPH10337579A (en) Method and apparatus for treatment of wastewater
JP3602802B2 (en) Photo-oxidation reactor
JP3732795B2 (en) Exhaust gas denitration equipment
JP2006281005A (en) Apparatus and method for treating water using photocatalyst
JPH11244873A (en) Photocatalyst reactor
JP2006082081A (en) Accelerated oxidation treatment apparatus using ozone and photocatalyst
JP3573322B2 (en) Method and apparatus for treating dioxin-containing wastewater
JP2002079280A (en) Wastewater treatment apparatus
JP3082036B2 (en) Fixed photocatalyst carrying palladium, method and apparatus for treating organic matter in plating effluent
JPS6128396B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees