JP3647352B2 - High temperature furnace - Google Patents

High temperature furnace Download PDF

Info

Publication number
JP3647352B2
JP3647352B2 JP2000093550A JP2000093550A JP3647352B2 JP 3647352 B2 JP3647352 B2 JP 3647352B2 JP 2000093550 A JP2000093550 A JP 2000093550A JP 2000093550 A JP2000093550 A JP 2000093550A JP 3647352 B2 JP3647352 B2 JP 3647352B2
Authority
JP
Japan
Prior art keywords
tray
feed mechanism
lowering
cylinder
rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000093550A
Other languages
Japanese (ja)
Other versions
JP2001280854A (en
Inventor
朝憲 神保
山本  茂
Original Assignee
富士電波工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電波工業株式会社 filed Critical 富士電波工業株式会社
Priority to JP2000093550A priority Critical patent/JP3647352B2/en
Publication of JP2001280854A publication Critical patent/JP2001280854A/en
Application granted granted Critical
Publication of JP3647352B2 publication Critical patent/JP3647352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Tunnel Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、焼結炉等の高温加熱炉に関し、特に、被加熱物を積載するトレイ(本明細書において、ケース等を含む)の搬送経路を上下2段以上に形成することにより、炉内密度を上げ、省エネルギーや省スペース等を図れるようにした高温加熱炉に関するものである。
【0002】
【従来の技術】
例えば、焼結炉では、地球環境問題への対応や生産コスト削減の要請が強まるに従って、ファインセラミックスの製造における焼結工程でのエネルギー使用量をいかにして抑えるかが重要な課題となっている。
特に、連続式の焼結炉は生産設備として数多く利用されており、省エネルギー化へのニーズは高い。
【0003】
ところで、従来の連続式焼結炉では、被加熱物を充填したトレイを搬送装置に載せて挿入口から加熱室内に送り、挿入口と反対側の取出室で取り出すようになっており、加熱室内は、上記搬送経路にしたがって、昇温、保持、降温の3つのゾーンに分かれている。
【0004】
【発明が解決しようとする課題】
しかしながら、この従来の連続式焼結炉では、均熱の要請により加熱域をある水準より小さくできないことから、炉内容積に対する被加熱物の密度が低くなり、これにより、被加熱物周辺の空間を加熱するためにエネルギーが使われることになって、昇温ゾーンでの加熱に要するエネルギー効率を容易に向上させることができないという問題を有している。
【0005】
本発明は、上記従来の焼結炉等の高温加熱炉の有する問題点に鑑み、トレイの搬送経路を上下2段以上に形成することにより、炉内密度を上げ、省エネルギーや省スペース等を図れるようにした高温加熱炉を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達するため、本発明の高温加熱炉は、加熱室の一端にトレイが出入りする開口部を形成するとともに、トレイを開口部側から加熱室の奥側に送る往路送り機構と、該往路送り機構の終端位置からトレイを下降させる下降機構と、該下降機構の下降位置から往路送り機構の下を通り、トレイを開口部側に送る復路送り機構とを設け、被加熱物を積載した多数のトレイを配列し、順次加熱室に送って加熱処理を行う高温加熱炉において、前記往路送り機構と復路送り機構とをそれぞれ、各々の始端位置から終端位置まで敷設されたレールと、各レール上で始端位置のトレイを介してトレイの列を送り方向に所定ピッチで押し出すシリンダーとにより構成するとともに、下降機構を、往路送り機構の終端位置と復路送り機構の始端位置とを選択的に構成する昇降レールと、該昇降レールを昇降させる昇降シリンダーとにより構成し、前記往路送り機構及び復路送り機構のレール及びシリンダーの押出ロッド並びに下降機構の昇降レール及び昇降シリンダーのロッドを加熱室内に配置し、前記復路送り機構のシリンダーの押出ロッドの先端に、ガスを噴出するガス噴出口を形成するとともに、ガスの流路に圧力検出手段を形成し、押出ロッドの押し出し時のガス圧力を検出することによりトレイの有無を検出するようにしたことを特徴とする。
【0007】
この高温加熱炉では、上段となる往路送り機構上の被加熱物が、開口部から昇温ゾーンに入るまでに、下段の復路送り機構上の熱い被加熱物から熱を奪い徐々に昇温される一方、下段の復路送り機構上の被加熱物が、上段の往路送り機構上の被加熱物に熱を奪われて徐々に冷却され、相互に有効な熱交換を行うことによって必要な加熱電力を大幅に削減することができる。
さらに、上段の往路送り機構と下段の復路送り機構の各被加熱物を同時に加熱できることから、昇温、保持、降温の各ゾーンを短縮し、それらの断熱材や、発熱体、レールサポートなどの黒鉛部品を共有することが可能であり、これにより、炉内容積を小さくして省スペース化を図るとともに、装置全体として資源を節減することができる。
また、加熱室内の長さが半分になることから、熱膨張による黒鉛レールの伸びが半減し、レール接続部分でのトレイの移動による搬送トラブルを減少させることができる。
【0008】
そして、往路送り機構と復路送り機構とをそれぞれ、各々の始端位置から終端位置まで敷設されたレールと、各レール上で始端位置のトレイを介してトレイの列を送り方向に所定ピッチで押し出すシリンダーとにより構成するとともに、下降機構を、往路送り機構の終端位置と復路送り機構の始端位置とを選択的に構成する昇降レールと、該昇降レールを昇降させる昇降シリンダーとにより構成し、前記往路送り機構及び復路送り機構のレール及びシリンダーの押出ロッド並びに下降機構の昇降レール及び昇降シリンダーのロッドを加熱室内に配置することにより、内部が高温となる加熱室においても、往路送り機構、下降機構、及び復路送り機構を簡便に形成することができる。
【0009】
また、復路送り機構のシリンダーの押出ロッドの先端に、ガスを噴出するガス噴出口を形成するとともに、ガスの流路に圧力検出手段を形成し、押出ロッドの押し出し時のガス圧力を検出することによりトレイの有無を検出することにより、押出ロッドがトレイを押し出す動作を行う際に、先端のガス噴出口がトレイによって閉塞することにより上昇するガス圧力を検出してトレイの有無を検出し、熱膨張による高温加熱炉内のトレイを含む各種設備機器の寸法変動の影響を受けることなく、トレイの有無の検出を正確に行うことができる。
【0010】
【発明の実施の形態】
以下、本発明の高温加熱炉の実施の形態を図面に基づいて説明する。
【0011】
図1〜図5に、本発明の焼結炉の一実施例を示す。
この焼結炉は、被加熱物を積載した多数のトレイTを配列し、順次加熱室1に送って加熱処理を行うもので、加熱室1には、電流によって発熱する発熱体Hと、断熱材Dとが配設されるとともに、加熱室1の周囲には水冷式冷却ジャケットJが形成されている。
そして、この焼結炉は、加熱室1の一端にトレイTが出入りする開口部2を備えるとともに、トレイTを開口部2側から加熱室1の奥側に送る往路送り機構3と、往路送り機構3の終端位置からトレイTを下降させる下降機構4と、下降機構4の下降位置から往路送り機構3の下を通り、トレイTを開口部2側に送る復路送り機構5とを備えている。
なお、開口部2は、上部がトレイTの入口、下部が出口として1つに形成されているが、入口と出口とを加熱室1の一端で別々に形成するようにしてもよい。
【0012】
往路送り機構3は、その始端位置から終端位置まで敷設された往路用レール6と、この往路用レール6上で始端位置のトレイTを介してトレイTの列を送り方向に押し出す往路用シリンダー7とによって構成されている。
往路用シリンダー7は、その押出ロッド8の先端でトレイTを押し出すことにより、1枚のトレイTの長さを1ピッチとして、トレイTを断続的に送るようになっている。
【0013】
復路送り機構5は、同様に、その始端位置から終端位置まで敷設された復路用レール9と、この復路用レール9上で始端位置のトレイTを介してトレイTの列を送り方向に押し出す復路用シリンダー10とによって構成されている。
この復路用シリンダー10も、同様に、その押出ロッド11の先端でトレイTを押し出すことにより、1枚のトレイTの長さを1ピッチとして、トレイTを断続的に送るようになっている。
【0014】
下降機構4は、往路送り機構3の終端位置と復路送り機構5の始端位置とを選択的に構成する昇降レール12と、昇降レール12をロッドを介して昇降させる昇降シリンダー13とにより構成されている。
【0015】
このように、加熱室1外部の各シリンダー7、10、13と加熱室1内部の各レール6、9、12とによって、往路送り機構3、下降機構4、及び復路送り機構5を構成することにより、内部が高温となる加熱室1においても、これら各機構3、4、5を簡便に形成することができる。
【0016】
一方、図4に示すように、復路送り機構5の復路用シリンダー10の押出ロッド11の先端には、窒素ガス等の不活性ガス等の適宜のガスを噴出するガス噴出口14が形成されており、図5に示すように、このガスの流路15には、圧力検出手段として圧力調節計16が配設されている。
ガス流路15の上流側には、電磁弁17とレギュレータ18とが配設されており、押出ロッドの押し出し動作時に電磁弁17を開放し、レギュレータ18で一定圧力に調整されたガスを、ガス流路15を介して押出ロッド11先端のガス噴出口14から噴出させる。
そして、押出ロッド11がトレイTを押し出す動作を行う際に、押出ロッド11の先端に形成したガス噴出口14が押し出されるトレイTによって閉塞することにより上昇するガス圧力を検出してトレイTの有無を検出し、熱膨張による高温加熱炉内のトレイTを含む各種設備機器の寸法変動の影響を受けることなく、トレイTの有無の検出を正確に行うことができる。
【0017】
このようなトレイ検出機構は、従来では、図6に示すように、押出ロッド33内部に配設されるとともに、ばね30によって突出側に付勢され、トレイTに押されることによって退入側に摺動する検出棒31と、この検出棒31の退入によって作動する近接スイッチ32とによって構成していたが、加熱室内を真空にするような場合は、検出棒31の摺動部にOリング34が必要となり、これにより、検出棒31の摺動抵抗が大きくなって感度が悪くなり、トレイTが軽い場合にはそれが顕著に現れるという問題があった。
これに対し、本発明のトレイ検出機構では、トレイTとの接触によって閉塞するガス流路15のガス圧力の上昇を検出することにより、トレイTの有無を検出することから、加熱室1が真空の場合やトレイTが軽い場合でも、確実に作動させることができる。
【0018】
次に、本実施例の焼結炉の動作を説明する。
トレイTは、図1に示すように、所定のトレイ送り装置(図示省略)によって加熱室1の開口部2に搬送され、往路送り機構3の往路用シリンダー7によって往路用レール6上を順次加熱室1の奥へと送られる。
加熱室1は、開口部2側から、送り兼冷却ゾーン19、昇温兼降温ゾーン20、温度保持ゾーン21となっており、温度保持ゾーン21で往路用レール6の終端位置に送られたトレイTは、この終端位置を選択的に構成する下降機構4の昇降レール12上に乗り、昇降レール12が昇降シリンダー13によって下降することによって、復路送り機構5の復路用レール9の始端位置に送られる。
そして、復路用シリンダー10の押出ロッド11によって、順次復路用レール9上を開口部2に向かって送られ、開口部2を出たトレイTは所定のトレイ取り出し装置(図示省略)によって順次取り出される。
【0019】
したがって、この焼結炉では、上段となる往路送り機構3上の被加熱物は、開口部2から昇温兼降温ゾーン20に入るまでに、下段の復路送り機構5上の熱い被加熱物から熱を奪い徐々に昇温される一方、下段の復路送り機構5上の被加熱物は、上段の往路送り機構3上の被加熱物に熱を奪われて徐々に冷却され、相互に有効な熱交換を行うことによって必要な加熱電力を大幅に削減することができる。
さらに、上段の往路送り機構3と下段の復路送り機構5の各被加熱物を同時に加熱できることから、昇温、保持、降温の各ゾーン20、21を短縮し、それらの断熱材Dや、発熱体H、レールサポート(図示省略)等の黒鉛部品を共有することが可能であり、これにより、炉内容積を小さくして省スペース化を図るとともに、装置全体として資源を節減することが可能である。
また、加熱室内の長さが半分になることから、熱膨張による黒鉛レールの伸びが半減し、レール接続部分でのトレイの移動による搬送トラブルを減少させることができる。
【0020】
具体的に、本実施例の焼結炉の消費電力や寸法等を従来の焼結炉と比較すると下記表1のようになり、本実施例の焼結炉が顕著な省エネルギー効果を発揮することを確認した。
【0021】
【表1】

Figure 0003647352
【0022】
また、本実施例では、消費電力の削減効果以外にも、以下のような副次的効果を得ることができる。
(1)炉内容積の縮小で冷却ジャケットJが小型化し、冷却水量も減少するとともに、真空排気ポンプの容量が小さくなり、雰囲気ガスの使用量も少なくなる。
(2)断熱材や黒鉛の使用量及び電極数が少ないことから、これら消耗品の交換コストが低くなり、また、部品のコンパクト化や部品点数削減によって、メンテナンスでの省力化が可能となる。
【0023】
ところで、このような焼結炉において、復路送り機構5の終端位置を開口部2より内側に形成するとともに、この復路送り機構5の終端位置からトレイTを下降させる第2下降機構(図示省略)と、この第2下降機構の下降位置から復路送り機構5の下を通り、トレイTを加熱室1の奥側に送る第2往路送り機構(図示省略)と、この第2往路送り機構の終端位置からトレイTを下降させる第3下降機構(図示省略)と、この第3下降機構の下降位置から第2往路送り機構の下を通り、トレイを開口部2側に送る第2復路送り機構(図示省略)とを形成することができ、本発明の高温加熱炉は、このような形態のものを排除するものではない。
【0024】
これにより、上下段相互の有効な熱交換をさらに促進し、加熱電力をさらに削減するとともに、炉内容積を小さくして省スペース化を図り、さらに昇温、保持、降温各ゾーンの部品を共用して資源を節減することができる。
また、このような往復の送り機構を1単位として、往復の送り機構を3単位以上形成することも可能である。
【0025】
以上、本発明の高温加熱炉について、その一実施例に基づいて説明したが、本発明は、上記実施例に記載した構成に限定されるものではなく、往復の送り機構を複数単位形成するほか、往路の送り機構、下降機構及び復路送り機構を、チェーンコンベア等によって形成する等、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。
【0026】
【発明の効果】
本発明によれば、上段となる往路送り機構上の被加熱物が、開口部から昇温ゾーンに入るまでに、下段の復路送り機構上の熱い被加熱物から熱を奪い徐々に昇温される一方、下段の復路送り機構上の被加熱物が、上段の往路送り機構上の被加熱物に熱を奪われて徐々に冷却され、相互に有効な熱交換を行うことによって必要な加熱電力を大幅に削減することができる。
そして、上段の往路送り機構と下段の復路送り機構の各被加熱物を同時に加熱できることから、昇温、保持、降温の各ゾーンを短縮し、それらの断熱材や、発熱体、レールサポートなどの黒鉛部品を共有することが可能であり、これにより、炉内容積を小さくして省スペース化を図るとともに、装置全体として資源を節減することができ、さらに、加熱室内の長さが半分になることから、熱膨張による黒鉛レールの伸びが半減し、レール接続部分でのトレイの移動による搬送トラブルを減少させることができる。
また、炉内容積の縮小によって冷却ジャケットが小型化し、冷却水量が減少するとともに、真空排気ポンプの容量が小さくなり、雰囲気ガスの使用量も減少し、さらに、断熱材や黒鉛の使用量及び電極数が少ないことから、これら消耗品の交換コストが低くなり、部品のコンパクト化や部品点数削減によって、メンテナンスでの省力化が可能となる。
【0027】
また、往路送り機構と復路送り機構とをそれぞれ、各々の始端位置から終端位置まで敷設されたレールと、各レール上で始端位置のトレイを介してトレイの列を送り方向に所定ピッチで押し出すシリンダーとにより構成するとともに、下降機構を、往路送り機構の終端位置と復路送り機構の始端位置とを選択的に構成する昇降レールと、該昇降レールを昇降させる昇降シリンダーとにより構成し、前記往路送り機構及び復路送り機構のレール及びシリンダーの押出ロッド並びに下降機構の昇降レール及び昇降シリンダーのロッドを加熱室内に配置することにより、内部が高温となる加熱室においても、往路送り機構、下降機構、及び復路送り機構を簡便に形成することができる。
【0028】
さらに、復路送り機構のシリンダーの押出ロッドの先端に、不活性ガス等のガスを噴出するガス噴出口を形成するとともに、ガスの流路に圧力検出手段を形成し、押出ロッドの押し出し時のガス圧力を検出することによってトレイの有無を検出することにより、熱膨張による高温加熱炉内のトレイを含む各種設備機器の寸法変動の影響を受けることなく、トレイの有無の検出を正確に行うことができる。
【図面の簡単な説明】
【図1】 本発明の焼結炉の一実施例を示す断面側面図である。
【図2】 同断面平面図である。
【図3】 同断面正面図である。
【図4】 同実施例の復路用シリンダーを示し、(a)は拡大断面図、(b)は加熱室に取り付けた状態を示す断面平面図、(c)は同断面側面図である。
【図5】 同実施例のガス導入排気系統図である。
【図6】 従来のトレイ検出機構を示し、(a)はトレイがある状態を示す断面図、(b)はトレイがない状態を示す断面図である。
【符号の説明】
1 加熱室
2 開口部
3 往路送り機構
4 下降機構
5 復路送り機構
6 往路用レール
7 往路用シリンダー
8 押出ロッド
9 復路用レール
10 復路用シリンダー
11 押出ロッド
12 昇降レール
13 昇降シリンダー
14 ガス噴出口
15 ガス流路
16 圧力調節計
17 電磁弁
18 レギュレータ
19 送り兼冷却ゾーン
20 昇温兼降温ゾーン
21 温度保持ゾーン
T トレイ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-temperature heating furnace such as a sintering furnace, and in particular, by forming a transport path for trays (including cases and the like in this specification) for loading an object to be heated in two or more stages. The present invention relates to a high-temperature heating furnace capable of increasing density and saving energy and space.
[0002]
[Prior art]
For example, in the case of sintering furnaces, as the need to respond to global environmental problems and reduce production costs is increasing, how to reduce the amount of energy used in the sintering process in the production of fine ceramics has become an important issue. .
In particular, continuous sintering furnaces are widely used as production facilities, and there is a great need for energy saving.
[0003]
By the way, in a conventional continuous sintering furnace, a tray filled with an object to be heated is placed on a conveying device, sent from the insertion port to the heating chamber, and taken out in the extraction chamber opposite to the insertion port. Are divided into three zones of temperature rise, hold, and temperature drop according to the conveyance path.
[0004]
[Problems to be solved by the invention]
However, in this conventional continuous sintering furnace, since the heating area cannot be made smaller than a certain level due to the requirement of soaking, the density of the object to be heated with respect to the volume in the furnace is reduced, and thus the space around the object to be heated is reduced. Since energy is used to heat the substrate, the energy efficiency required for heating in the temperature raising zone cannot be easily improved.
[0005]
In view of the problems of the above-described conventional high-temperature heating furnace such as a sintering furnace, the present invention can increase the density in the furnace by forming the tray conveyance path in two or more stages, thereby saving energy and space. An object of the present invention is to provide a high-temperature heating furnace.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the high-temperature heating furnace of the present invention forms an opening through which the tray enters and exits at one end of the heating chamber, and forward path feed mechanism for feeding the tray from the opening side to the back side of the heating chamber, and the forward path and lowering mechanism lowering the tray from the end position of the feed mechanism, pass under the forward feed mechanism from the lowered position of the lower descending mechanism, the tray is provided and a feed backward mechanism transmitted to the opening side, many loaded with the object to be heated In the high-temperature heating furnace in which the trays are arranged and sequentially sent to the heating chamber for heat treatment, the forward feed mechanism and the return path feed mechanism are each provided with rails laid from the start position to the end position, and on each rail. And a cylinder that pushes the row of trays at a predetermined pitch in the feed direction via the tray at the start end position, and the lowering mechanism includes the end position of the forward path feed mechanism and the start position of the return path feed mechanism. A lift rail that is selectively configured and a lift cylinder that lifts and lowers the lift rail, the rail of the forward feed mechanism and the return path feed mechanism, the cylinder extrusion rod, and the lift rail of the lowering mechanism and the rod of the lift cylinder are heated. A gas outlet for ejecting gas is formed at the tip of the extrusion rod of the cylinder of the return path feed mechanism, and a pressure detection means is formed in the gas flow path so that the gas pressure during extrusion of the extrusion rod By detecting this, the presence or absence of a tray is detected .
[0007]
In this high-temperature heating furnace, the object to be heated on the forward path feed mechanism at the upper stage is gradually heated by taking heat from the hot object to be heated on the lower path feed mechanism from the opening to the heating zone. On the other hand, the object to be heated on the lower-stage backward feed mechanism is gradually cooled by taking heat away from the object to be heated on the upper-stage forward feed mechanism. Can be greatly reduced.
In addition, each heated object in the upper feed mechanism and the lower feed mechanism can be heated at the same time, so the zones of temperature rise, hold, and temperature fall can be shortened, and their insulation, heating elements, rail supports, etc. It is possible to share the graphite parts, thereby reducing the internal volume of the furnace to save space and saving resources as a whole apparatus.
Further, since the length of the heating chamber is halved, the elongation of the graphite rail due to thermal expansion is halved, and conveyance trouble due to movement of the tray at the rail connection portion can be reduced.
[0008]
The forward path feed mechanism and the return path feed mechanism are each a rail laid from the start position to the end position, and a cylinder that pushes a row of trays at a predetermined pitch in the feed direction via the tray at the start position on each rail. together constituting a and a lowering mechanism, a lifting rail to selectively configure the starting end position of the end position and the return feeding mechanism of forward feed mechanism, constituted by a lifting cylinder for raising and lowering the elevating rails, the forward feed In the heating chamber where the inside of the mechanism and the return path feed mechanism rail and cylinder push rod and the descending mechanism lifting rail and lifting cylinder rod are arranged in the heating chamber, the forward path feeding mechanism, the lowering mechanism, and The return path feed mechanism can be easily formed.
[0009]
In addition, a gas ejection port for ejecting gas is formed at the tip of the extrusion rod of the cylinder of the return path feed mechanism, and pressure detection means is formed in the gas flow path to detect the gas pressure when the extrusion rod is pushed out. By detecting the presence / absence of the tray , the extrusion rod pushes out the tray to detect the presence / absence of the tray by detecting the gas pressure rising when the gas outlet at the tip is closed by the tray. The presence / absence of a tray can be accurately detected without being affected by dimensional variations of various equipment including the tray in the high-temperature heating furnace due to expansion.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the high-temperature heating furnace of the present invention will be described with reference to the drawings.
[0011]
1 to 5 show an embodiment of the sintering furnace of the present invention.
In this sintering furnace, a large number of trays T loaded with objects to be heated are arranged and sequentially sent to the heating chamber 1 for heat treatment. The heating chamber 1 includes a heating element H that generates heat by current, and heat insulation. A material D is disposed, and a water-cooled cooling jacket J is formed around the heating chamber 1.
The sintering furnace includes an opening 2 through which the tray T enters and exits at one end of the heating chamber 1, an outward feed mechanism 3 that sends the tray T from the opening 2 to the back of the heating chamber 1, and an outward feed. A lowering mechanism 4 that lowers the tray T from the end position of the mechanism 3 and a return path feeding mechanism 5 that passes under the forward path feeding mechanism 3 from the lowering position of the lowering mechanism 4 and sends the tray T to the opening 2 side are provided. .
The opening 2 is formed as a single entry with the upper portion serving as the inlet of the tray T and the lower portion serving as the outlet. However, the inlet and the outlet may be formed separately at one end of the heating chamber 1.
[0012]
The forward path feed mechanism 3 includes a forward path rail 6 laid from the start position to the end position, and a forward path cylinder 7 that pushes the row of trays T in the feed direction via the tray T at the start position on the forward path rail 6. And is composed of.
The forward cylinder 7 is configured to intermittently feed the tray T by pushing out the tray T at the tip of the push rod 8 so that the length of one tray T is one pitch.
[0013]
Similarly, the return path feed mechanism 5 has a return path rail 9 laid from the start position to the end position, and a return path that pushes a row of trays T in the feed direction via the tray T at the start position on the return path rail 9. And a cylinder 10 for use.
Similarly, the return cylinder 10 is also configured to intermittently feed the tray T by setting the length of one tray T to one pitch by extruding the tray T at the tip of the extrusion rod 11.
[0014]
The lowering mechanism 4 includes an elevating rail 12 that selectively configures the end position of the forward path feeding mechanism 3 and the starting end position of the backward path feeding mechanism 5, and an elevating cylinder 13 that elevates and lowers the elevating rail 12 via a rod. Yes.
[0015]
As described above, the forward feed mechanism 3, the lowering mechanism 4, and the backward feed mechanism 5 are configured by the cylinders 7, 10, 13 outside the heating chamber 1 and the rails 6, 9, 12 inside the heating chamber 1. Thus, even in the heating chamber 1 in which the inside is at a high temperature, these mechanisms 3, 4, and 5 can be easily formed.
[0016]
On the other hand, as shown in FIG. 4, a gas outlet 14 for ejecting an appropriate gas such as an inert gas such as nitrogen gas is formed at the tip of the extrusion rod 11 of the return cylinder 10 of the return feed mechanism 5. As shown in FIG. 5, a pressure controller 16 is disposed in the gas flow path 15 as pressure detecting means.
An electromagnetic valve 17 and a regulator 18 are disposed on the upstream side of the gas flow path 15. The electromagnetic valve 17 is opened during the push-out operation of the push rod, and the gas adjusted to a constant pressure by the regulator 18 is gas. The gas is ejected from the gas ejection port 14 at the tip of the extrusion rod 11 through the flow path 15.
When the extrusion rod 11 performs the operation of pushing out the tray T, the presence or absence of the tray T is detected by detecting the gas pressure that rises when the gas outlet 14 formed at the tip of the extrusion rod 11 is closed by the extruded tray T. And the presence or absence of the tray T can be accurately detected without being affected by dimensional fluctuations of various equipment including the tray T in the high-temperature heating furnace due to thermal expansion.
[0017]
Conventionally, as shown in FIG. 6, such a tray detection mechanism is disposed inside the push rod 33, urged toward the protruding side by the spring 30, and pushed toward the retreat side when pushed by the tray T. The detection rod 31 that slides and the proximity switch 32 that operates when the detection rod 31 retreats are configured. However, when the heating chamber is evacuated, an O-ring is attached to the sliding portion of the detection rod 31. 34 is required, which increases the sliding resistance of the detection rod 31 and lowers the sensitivity. When the tray T is light, it appears prominently.
On the other hand, in the tray detection mechanism of the present invention, the presence or absence of the tray T is detected by detecting an increase in the gas pressure in the gas flow path 15 that is blocked by contact with the tray T, so that the heating chamber 1 is vacuumed. Even when the tray T is light, it can be reliably operated.
[0018]
Next, operation | movement of the sintering furnace of a present Example is demonstrated.
As shown in FIG. 1, the tray T is conveyed to the opening 2 of the heating chamber 1 by a predetermined tray feeding device (not shown), and sequentially heats the forward rail 6 by the forward cylinder 7 of the forward feed mechanism 3. Sent to the back of chamber 1.
The heating chamber 1 has a feed / cooling zone 19, a temperature raising / cooling zone 20, and a temperature holding zone 21 from the opening 2 side, and the tray sent to the end position of the forward rail 6 in the temperature holding zone 21. T rides on the elevating rail 12 of the lowering mechanism 4 that selectively constitutes this end position, and the elevating rail 12 is lowered by the elevating cylinder 13 so as to be sent to the starting end position of the return path rail 9 of the return path feeding mechanism 5. It is done.
Then, the extrusion rod 11 of the return cylinder 10 sequentially feeds the return rail 9 toward the opening 2, and the tray T exiting the opening 2 is sequentially taken out by a predetermined tray take-out device (not shown). .
[0019]
Therefore, in this sintering furnace, the object to be heated on the forward path feed mechanism 3 which is the upper stage starts from the hot object to be heated on the lower stage return path feed mechanism 5 before entering the temperature rising / falling zone 20 from the opening 2. While the temperature is gradually increased by removing heat, the object to be heated on the lower return feed mechanism 5 is gradually cooled by being deprived of heat by the object to be heated on the upper return feed mechanism 3. By performing heat exchange, the required heating power can be greatly reduced.
Further, since the heated objects of the upper forward feed mechanism 3 and the lower backward feed mechanism 5 can be heated at the same time, the zones 20 and 21 for temperature rise, hold, and temperature fall are shortened, and the heat insulating material D and heat generation thereof are shortened. It is possible to share graphite parts such as the body H and rail support (not shown). This makes it possible to reduce the volume of the furnace and save space, and to save resources as a whole device. is there.
Further, since the length of the heating chamber is halved, the elongation of the graphite rail due to thermal expansion is halved, and conveyance trouble due to movement of the tray at the rail connection portion can be reduced.
[0020]
Specifically, the power consumption, dimensions, etc. of the sintering furnace of this example are as shown in Table 1 below when compared with the conventional sintering furnace, and the sintering furnace of this example exhibits a remarkable energy saving effect. It was confirmed.
[0021]
[Table 1]
Figure 0003647352
[0022]
In addition, in this embodiment, in addition to the power consumption reduction effect, the following secondary effects can be obtained.
(1) The cooling jacket J is reduced in size by reducing the furnace internal volume, the amount of cooling water is reduced, the capacity of the vacuum exhaust pump is reduced, and the amount of atmospheric gas used is reduced.
(2) Since the amount of heat insulating material and graphite used and the number of electrodes are small, the replacement cost of these consumables is reduced, and the labor can be saved by reducing the size of the parts and the number of parts.
[0023]
Incidentally, in such a sintering furnace, a second lowering mechanism (not shown) that forms the end position of the return path feeding mechanism 5 inside the opening 2 and lowers the tray T from the end position of the return path feeding mechanism 5. A second forward feed mechanism (not shown) for passing the tray T from the lowering position of the second lowering mechanism to the back side of the heating chamber 1 through the lower path feed mechanism 5 and the end of the second forward feed mechanism. A third lowering mechanism (not shown) for lowering the tray T from the position, and a second return path feeding mechanism (under the second forward path feeding mechanism from the lowering position of the third lowering mechanism to feed the tray to the opening 2 side ( The high temperature heating furnace of the present invention does not exclude such a form.
[0024]
This further promotes effective heat exchange between the upper and lower stages, further reduces heating power, saves space by reducing the furnace volume, and shares temperature rise, hold, and temperature drop parts. And save resources.
It is also possible to form three or more reciprocating feed mechanisms with such a reciprocating feed mechanism as one unit.
[0025]
As mentioned above, although the high temperature heating furnace of this invention was demonstrated based on the one Example, this invention is not limited to the structure described in the said Example, Besides forming a reciprocating feed mechanism in multiple units. The forward feed mechanism, the lowering mechanism, and the return path feed mechanism are formed by a chain conveyor or the like, and the configuration thereof can be changed as appropriate without departing from the scope of the invention.
[0026]
【The invention's effect】
According to the present invention, the object to be heated on the forward path feed mechanism at the upper stage is gradually heated by taking heat from the hot object to be heated on the lower path feed mechanism before entering the temperature rising zone from the opening. On the other hand, the object to be heated on the lower-stage backward feed mechanism is gradually cooled by taking heat away from the object to be heated on the upper-stage forward feed mechanism. Can be greatly reduced.
And since each heated object of the upper forward feed mechanism and the lower return feed mechanism can be heated at the same time, each zone of temperature rising, holding, and temperature lowering can be shortened, and those heat insulating materials, heating elements, rail supports, etc. It is possible to share graphite parts, thereby reducing the volume of the furnace and saving space, saving resources as a whole device, and halving the length of the heating chamber Therefore, the elongation of the graphite rail due to thermal expansion is halved, and the conveyance trouble due to the movement of the tray at the rail connecting portion can be reduced.
Also, the cooling jacket is reduced in size by reducing the furnace volume, the amount of cooling water is reduced, the capacity of the vacuum exhaust pump is reduced, the amount of atmospheric gas used is reduced, and the amount of heat insulating material and graphite used as well as the electrodes Since the number is small, the replacement cost of these consumables is reduced, and labor can be saved in maintenance by downsizing the parts and reducing the number of parts.
[0027]
In addition, the forward path feed mechanism and the return path feed mechanism are each a rail laid from the start position to the end position, and a cylinder that pushes a row of trays at a predetermined pitch in the feed direction via the tray at the start position on each rail. together constituting a and a lowering mechanism, a lifting rail to selectively configure the starting end position of the end position and the return feeding mechanism of forward feed mechanism, constituted by a lifting cylinder for raising and lowering the elevating rails, the forward feed In the heating chamber where the inside of the mechanism and the return path feed mechanism rail and cylinder push rod and the descending mechanism lifting rail and lifting cylinder rod are arranged in the heating chamber, the forward path feeding mechanism, the lowering mechanism, and The return path feed mechanism can be easily formed.
[0028]
Furthermore, a gas outlet for ejecting a gas such as an inert gas is formed at the tip of the extrusion rod of the cylinder of the return path feed mechanism, and a pressure detection means is formed in the gas flow path, so that the gas when the extrusion rod is pushed out is formed. By detecting the presence or absence of a tray by detecting the pressure, it is possible to accurately detect the presence or absence of a tray without being affected by variations in the dimensions of various equipment including the tray in the high-temperature heating furnace due to thermal expansion. it can.
[Brief description of the drawings]
FIG. 1 is a sectional side view showing an embodiment of a sintering furnace of the present invention.
FIG. 2 is a plan view of the same section.
FIG. 3 is a front view of the same section.
4A and 4B show the return cylinder of the embodiment, in which FIG. 4A is an enlarged cross-sectional view, FIG. 4B is a cross-sectional plan view showing a state attached to a heating chamber, and FIG.
FIG. 5 is a gas introduction / exhaust system diagram of the embodiment.
6A and 6B show a conventional tray detection mechanism, where FIG. 6A is a cross-sectional view showing a state where a tray is present, and FIG. 6B is a cross-sectional view showing a state where there is no tray.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heating chamber 2 Opening part 3 Outward feed mechanism 4 Lowering mechanism 5 Return path feed mechanism 6 Outbound rail 7 Outward cylinder 8 Extrusion rod 9 Return path rail 10 Return path cylinder 11 Extrusion rod 12 Elevating rail 13 Elevating cylinder 14 Gas outlet 15 Gas flow path 16 Pressure controller 17 Solenoid valve 18 Regulator 19 Feeding / cooling zone 20 Heating / cooling zone 21 Temperature holding zone T tray

Claims (1)

加熱室の一端にトレイが出入りする開口部を形成するとともに、トレイを開口部側から加熱室の奥側に送る往路送り機構と、該往路送り機構の終端位置からトレイを下降させる下降機構と、該下降機構の下降位置から往路送り機構の下を通り、トレイを開口部側に送る復路送り機構とを設け、被加熱物を積載した多数のトレイを配列し、順次加熱室に送って加熱処理を行う高温加熱炉において、前記往路送り機構と復路送り機構とをそれぞれ、各々の始端位置から終端位置まで敷設されたレールと、各レール上で始端位置のトレイを介してトレイの列を送り方向に所定ピッチで押し出すシリンダーとにより構成するとともに、下降機構を、往路送り機構の終端位置と復路送り機構の始端位置とを選択的に構成する昇降レールと、該昇降レールを昇降させる昇降シリンダーとにより構成し、前記往路送り機構及び復路送り機構のレール及びシリンダーの押出ロッド並びに下降機構の昇降レール及び昇降シリンダーのロッドを加熱室内に配置し、前記復路送り機構のシリンダーの押出ロッドの先端に、ガスを噴出するガス噴出口を形成するとともに、ガスの流路に圧力検出手段を形成し、押出ロッドの押し出し時のガス圧力を検出することによりトレイの有無を検出するようにしたことを特徴とする高温加熱炉。 Forming an opening through which the tray enters and exits at one end of the heating chamber, an outward path feeding mechanism for feeding the tray from the opening side to the inner side of the heating chamber, and a lowering mechanism for lowering the tray from the end position of the forward path feeding mechanism; Provided with a return path feed mechanism that passes under the forward path feed mechanism from the lowered position of the lowering mechanism and feeds the tray to the opening side, arranges a large number of trays loaded with heated objects, and sequentially sends them to the heating chamber for heat treatment In the high-temperature heating furnace, the forward path feed mechanism and the return path feed mechanism are each fed with rails laid from the start position to the end position of each of the forward path feed mechanisms and the tray row via the tray at the start position on each rail. And a lift rail that selectively configures the end position of the forward path feed mechanism and the start position of the return path feed mechanism, and the lift rail. The lifting and lowering cylinder is configured to move up and down, the rails of the forward path feeding mechanism and the return path feeding mechanism and the cylinder extrusion rod, the lifting rails of the lowering mechanism and the rod of the lifting cylinder are disposed in the heating chamber, and the cylinder of the backward path feeding mechanism is extruded. At the tip of the rod, a gas ejection port for ejecting gas is formed, and pressure detection means is formed in the gas flow path, so that the presence or absence of the tray is detected by detecting the gas pressure when the extrusion rod is pushed out. A high-temperature heating furnace characterized by
JP2000093550A 2000-03-30 2000-03-30 High temperature furnace Expired - Fee Related JP3647352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093550A JP3647352B2 (en) 2000-03-30 2000-03-30 High temperature furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093550A JP3647352B2 (en) 2000-03-30 2000-03-30 High temperature furnace

Publications (2)

Publication Number Publication Date
JP2001280854A JP2001280854A (en) 2001-10-10
JP3647352B2 true JP3647352B2 (en) 2005-05-11

Family

ID=18608720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093550A Expired - Fee Related JP3647352B2 (en) 2000-03-30 2000-03-30 High temperature furnace

Country Status (1)

Country Link
JP (1) JP3647352B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5468318B2 (en) * 2009-06-29 2014-04-09 光洋サーモシステム株式会社 Heat treatment furnace
CN111288802B (en) * 2018-12-06 2021-07-20 株洲弗拉德科技有限公司 Discharging system for three-dimensional high-temperature continuous heat treatment production system

Also Published As

Publication number Publication date
JP2001280854A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
US7645136B2 (en) Continuous heat treatment furnace and heat treatment method
US20040173608A1 (en) Process and system for thermally uniform materials processing
KR101425213B1 (en) A continuous type furnace and a control method of the same
JP3647352B2 (en) High temperature furnace
KR102133832B1 (en) Aluminum extrusion system
JPS6053723B2 (en) Continuous furnace for heat treatment of small parts
JPH0456707A (en) Continuous type vacuum furnace
JP2007285585A (en) Heat treatment furnace and method of manufacturing ceramic electronic component using the same
JP4587022B2 (en) Continuous firing furnace and continuous firing method
JP4523479B2 (en) Continuous heat treatment furnace and heat treatment method
JP3218719B2 (en) Continuous firing furnace
GB2080138A (en) Fluidizable bed combustion chamber with ash-discharging means
JP5339029B2 (en) Baking furnace control method and baking apparatus
KR20150124207A (en) Firing furnace
CN212362814U (en) Roller hearth furnace
JP2004354043A (en) Heat treatment method for substrate, and continuous heat treatment furnace used therefor
US7425692B2 (en) Thermal processing system having slot eductors
KR100533633B1 (en) A tunnel type continuous sintering furnace having atmosphere gas circulation system
JP2006284005A (en) Baking furnace
KR100442018B1 (en) Heat treatment device
JP3023184B2 (en) Continuous tunnel furnace
KR20030039117A (en) Manufacturing Furnace for Ceramic Elctronic Components
KR100558444B1 (en) A tunnel type continuous sintering furnace
JP2008037736A (en) Burning device of ceramics and manufacturing method of ceramics
JP2006156686A (en) Heat treatment system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3647352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees