JP3646965B2 - Hybrid car - Google Patents

Hybrid car Download PDF

Info

Publication number
JP3646965B2
JP3646965B2 JP2221098A JP2221098A JP3646965B2 JP 3646965 B2 JP3646965 B2 JP 3646965B2 JP 2221098 A JP2221098 A JP 2221098A JP 2221098 A JP2221098 A JP 2221098A JP 3646965 B2 JP3646965 B2 JP 3646965B2
Authority
JP
Japan
Prior art keywords
motor
engine
gear
planetary gear
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2221098A
Other languages
Japanese (ja)
Other versions
JPH11217024A (en
Inventor
一 柏瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2221098A priority Critical patent/JP3646965B2/en
Priority to US09/216,132 priority patent/US6146302A/en
Priority to EP03006756A priority patent/EP1321326B1/en
Priority to DE69835174T priority patent/DE69835174T2/en
Priority to EP98124608A priority patent/EP0925981A3/en
Publication of JPH11217024A publication Critical patent/JPH11217024A/en
Priority to US09/663,270 priority patent/US6383106B1/en
Priority to US10/094,091 priority patent/US6602157B2/en
Application granted granted Critical
Publication of JP3646965B2 publication Critical patent/JP3646965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンとモータとを併用するハイブリッド車に関し、より詳しくは比較的低出力の2つのモータを用いて駆動力の確保と動力エネルギの回収効率を向上するハイブリッド車に関する。
【0002】
【従来の技術】
近年、自動車等の車両においては、低公害、省資源の観点からエンジンとモータとを併用するハイブリッド車が開発されており、このハイブリッド車では、発電用と動力源用との2つのモータを搭載することで動力エネルギの回収効率向上と走行性能の確保とを図る技術が多く採用されている。
【0003】
例えば、特開平9−46821号公報には、ディファレンシャルギヤ等の差動分配機構による動力分配機構を用いてエンジンの動力を発電機とモータ(駆動用モータ)とに分配し、エンジンの動力の一部で発電しながらモータを駆動して走行するハイブリッド車が開示されており、また、特開平9−100853号公報には、プラネタリギヤによってエンジンの動力を発電機とモータ(駆動用モータ)とに分配するハイブリッド車が開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、前述した各先行技術においては、低速時の駆動力の大半を駆動用モータに依存するため、駆動用に大容量の大型のモータが必要となるばかりでなく、駆動輪で必要とするトルクに対する増幅機能を電力に依存するため、バッテリー容量が十分でない場合にも一定の走行性能を維持することのできる発電容量をもった発電機が要求されることになり、コスト増の要因となる。
【0005】
また、車両においてはモータ(発電機)の回転制御範囲を超えるような出力軸回転数の変化があるため、エンジン出力を発電機と駆動用モータとに分配するだけでは、駆動輪からの要求駆動力に対し、必ずしもエンジン及びモータの制御を十分に最適化できるとは限らない。
【0006】
ところで、エンジンと2つのモータを有するハイブリッド車では、車両の利用形態や車両の走行条件により、エンジンと2つのモータの最適な制御方法が変化するが、エンジンと2つのモータの制御が互いに影響し合うことなく、それぞれの効率の良い運転範囲で適切、かつ、簡素に制御できることが望ましい。
【0007】
本発明は上記事情に鑑みてなされたもので、比較的低出力の2つのモータを用いて駆動力の確保と動力エネルギの回収効率向上を達成するとともに、駆動輪からの要求駆動力に対してエンジン及びモータ制御の最適化を実現することができ、また、エンジンと2つのモータの制御の互いの影響が少なく、制御も簡素で、制御自由度の高いハイブリッド車を提供することを目的としている。
【0008】
【課題を解決するための手段】
請求項1記載の発明は、エンジンの出力とモータの出力とを併用して走行駆動源とするハイブリッド車において、上記エンジンの出力軸と連結したサンギヤと、このサンギヤに噛合するピニオンを回転自在に支持するキャリアと、上記ピニオンに噛合するリングギヤとを有するプラネタリギヤと、上記プラネタリギヤのリングギヤに連結し、駆動源あるいは発電機として切換え使用可能な第1のモータと、上記プラネタリギヤのキャリアに連結し、駆動源あるいは発電機として切換え使用可能な第2のモータと、上記第2のモータとともに上記プラネタリギヤのキャリアに連結し、複数段あるいは無段階に切り換え可能な変速比に応じて上記プラネタリギヤと駆動輪との間で変速及びトルク増幅を行なう動力変換機構とを備えたことを特徴とする。
【0009】
請求項2記載の発明は、請求項1記載の発明において、上記動力変換機構を、入力軸に軸支されるプライマリプーリと出力軸に軸支されるセカンダリプーリとの間に駆動ベルトを巻装してなるベルト式無段変速機とすることを特徴とする。
【0010】
すなわち、請求項1記載の発明では、エンジンの出力軸をプラネタリギヤのサンギヤと連結し、プラネタリギヤのリングギヤに第1のモータを連結し、プラネタリギヤのキャリアに第2のモータと複数段あるいは無段階に変速比を切り換え可能な動力変換機構を連結して、この動力変換機構はプラネタリギヤと駆動輪との間で変速及びトルク増幅を行なう。
【0011】
第1,第2のモータは、走行条件により、同時に駆動源あるいは発電機として、または、一方を駆動源、他方を発電機として使用することができる。
【0012】
例えば、エンジンからプラネタリギヤのサンギヤに、第1のモータからプラネタリギヤのリングギヤに駆動力が供給され、これら駆動力がプラネタリギヤで合成されて出力され、この駆動力に加えてさらに第2のモータから駆動力が供給され、動力変換機構を介して駆動輪に伝達される。また、エンジンからプラネタリギヤのサンギヤに、第1のモータからプラネタリギヤのリングギヤに駆動力が供給され、これら駆動力がプラネタリギヤで合成されて出力されるが、この時、第2のモータで発電を行い走行したり、又は、エンジンの出力トルクを利用して第1のモータで発電を行わせ、第2のモータでは駆動力を発生して走行し、又は、エンジンの駆動力を考慮しないで第2のモータの駆動力のみで走行する等の制御を行うことが可能となる。また、減速時や制動時等には、駆動輪側から動力変換機構を介して返還される駆動力を、第1,第2のモータで発電をするためのトルクとして吸収させるとともに、エンジンに吸収させ、又は、第1のモータでは発電を、第2のモータでは駆動力を発生させて、エンジンに吸収させ、又は、エンジンへの駆動力の吸収を考慮しないで駆動輪側から動力変換機構を介して返還される駆動力を利用して第2のモータのみで発電する等の制御を行うことが可能となる。
【0013】
この場合、請求項2に記載したように、動力変換機構としては、入力軸に軸支されるプライマリプーリと出力軸に軸支されるセカンダリプーリとの間に駆動ベルトを巻装してなるベルト式無段変速機を用い、変速比を無段階に切り換えて変速及びトルク増幅を行なうことが望ましい。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。図1〜図7は本発明の実施の一形態に係わり、図1は駆動系の基本構成を示す説明図、図2はエンジンの駆動力を考慮して第1,第2のモータによって走行する場合のトルク及び電気の流れを示す説明図、図3はエンジンの駆動力を考慮して第1のモータでは駆動を第2のモータでは発電をして走行する場合のトルク及び電気の流れを示す説明図、図4は第1のモータを発電機として使用し、第2のモータで駆動力を発生させる制動の場合のトルク及び電気の流れを示す説明図、図5は車両後退時のトルク及び電気の流れを示す説明図、図6は第2のモータのみを利用して駆動力を得る場合のトルク及び電気の流れを示す説明図、図7は第2のモータのみを利用して制動力を得る場合のトルク及び電気の流れを示す説明図である。
【0015】
本発明によるハイブリッド車は、エンジンとモータとを併用するパラレルハイブリッド式の車両であり、図1に示すように、エンジン1の出力軸1aが、プラネタリギヤユニット2(シングルピニオン)のサンギヤ2aに連結され、プラネタリギヤユニット2のリングギヤ2bにはプラネタリギヤユニット2の機能を制御するとともに駆動源あるいは発電機として切換え可能な第1のモータ3(以下、単にモータ3と呼称)が連結され、プラネタリギヤユニット2のサンギヤ2aとリングギヤ2bとに噛合するピニオンを回転自在に支持するキャリア2cには、駆動源あるいは発電機として切換え可能な第2のモータ4(以下、単にモータ4と呼称)と変速及びトルク増幅を行なって走行時の動力変換機能を担う動力変換機構5とが連結されて駆動系が主要に構成されている。
【0016】
上記動力変換機構5としては、歯車列を組み合わせた変速機や流体トルクコンバータを用いた変速機等を用いることが可能であるが、入力軸5aに軸支されるプライマリプーリ5bと出力軸5cに軸支されるセカンダリプーリ5dとの間に駆動ベルト5eを巻装してなるベルト式無段変速機(CVT)を採用することが望ましく、本形態においては、以下、上記動力変換機構5をCVT5として説明する。
【0017】
すなわち、本形態におけるハイブリッド車の駆動系では、エンジン1の出力軸1aとCVT5の入力軸5aとの間にプラネタリギヤユニット2が配置されており、このプラネタリギヤユニット2のサンギヤ2aがエンジン1の出力軸1aに連結されるとともに、キャリア2cが一方のモータ4を介してCVT5の入力軸5aに結合され、リングギヤ2bに他方のモータ3が連結されている。そして、CVT5の出力軸5cに減速歯車列6を介してデファレンシャル機構7が連設され、このデファレンシャル機構7に駆動軸8を介して前輪或いは後輪の駆動輪9が連設される。
【0018】
また、上記エンジン1、2つのモータ3,4、CVT5は、監視・制御システム10によって集中制御される。この監視・制御システム10には、アクセルペダルやブレーキペダルの踏み込み操作、ステアリングの操舵角等を検出してドライバの運転操作状況を判定するドライバ意志判定システム11、ブレーキ操作状態、エンジン1やABS(アンチスキッドブレーキシステム)等に対する各種制御量、灯火類やエアコン等の補機類の作動状態等から車両の制御状況を判定する車両制御状況判定システム12、車速、登坂や降坂、路面状態等の現在の車両の走行状態の変化を判定する走行状況判定システム13等が接続され、エンジン1、2つのモータ3,4、CVT5の作動状態やバッテリ14の状態を監視し、各システムからの情報に基づいて、エンジン1の制御、インバータ15,16を介してのモータ3,4の駆動及びバッテリの充電制御、CVT5の変速比や供給油圧の制御等を行う。
【0019】
以上の構成による駆動系では、前述したように、エンジン1をプラネタリギヤユニット2のサンギヤ2aへ結合するとともに、リングギヤ2bにモータ3を連結して、キャリア2cからプラネタリギヤで合成した出力を得るようにし、また、上記キャリア2cにモータ4を連結してモータ4による出力も合成できるようにし、さらにこれら出力をCVT5によって変速及びトルク増幅して駆動輪9に伝達するようにしているため、2つのモータ3,4は発電と駆動力供給との両方に使用することができ、比較的小出力のモータを使用することができる。
【0020】
すなわち、エンジン1の駆動力を考慮し(エンジン1による駆動力がプラネタリギヤユニット2のサンギヤ2aに入力され)、また、モータ3により駆動される場合は、図2に示すように、エンジン1からの駆動力はサンギヤ2aへの入力トルクTsに、また、バッテリ14からインバータ15を介して電気エネルギがモータ3に供給され、モータ3で駆動力に変換されてリングギヤ2bへの入力トルクTrとなるわけであるが、プラネタリギヤの入出力特性から、サンギヤ2aへの入力トルクTs、リングギヤ2bへの入力トルクTr、キャリア2cの出力トルクTcは、以下の(1)式で示すような関係となる。
Tc=Ts+Tr …(1)
【0021】
従って、プラネタリギヤユニット2で、エンジン1によるサンギヤ2aへの入力トルクTsと、モータ3によるリングギヤ2bへの入力トルクTrとが合成されてキャリア2cから出力され、エンジン1とモータ3のそれぞれの出力トルクが小さい場合であってもキャリア2cから大きな出力トルクを得ることができる。
【0022】
加えて、プラネタリギヤユニット2のキャリア2cには、モータ4が連結されており、このモータ4による駆動力も合成することで、より大きな出力トルクを得ることができる。すなわち、この場合は、バッテリ14からインバータ16を介して電気エネルギがモータ4に供給され、モータ4で駆動力に変換されて、上述のプラネタリギヤユニット2で合成された出力トルクTcにさらに加えて出力される。モータ4による出力トルクをTmとすると、CVT5に入力される最大出力可能なトルクTout は、以下の(2)式で示す値となる。
Tout =Tc+Tm=Ts+Tr+Tm …(2)
【0023】
このように、エンジン1、モータ3,4のそれぞれの出力トルクが小さい場合であっても、大きな出力トルクを得ることができ、CVT5を介して駆動輪9に伝達されて大きな車両駆動力を得ることができる。尚、図2及び以下に説明する図3〜図7において、二点鎖線は電気の流れを模式的に示し、一点鎖線はトルク伝達の流れを模式的に示す。
【0024】
この場合、プラネタリギヤにおいて、サンギヤ2aの入力トルクTsとリングギヤ2bの入力トルクTrとは、それぞれが合成されてキャリア2cの出力トルクTcとなるためには互いに反力を受けなくてはならず、各入力トルクTs,Trの関係は、サンギヤ2aの歯数Zs、リングギヤ2bの歯数Zrによって表されるギヤ比i(i=Zs/Zr)を用いて表わされる以下の(3),(4)式に示す関係から、以下の(5)式を満足しなけらばならない。
Tc・i/(1+i)=Ts …(3)
Tc・1/(1+i)=Tr …(4)
Ts=i・Tr …(5)
【0025】
また、プラネタリギヤにおいては、サンギヤ2aの回転数をNs、リングギヤ2bの回転数をNr、キャリア2cの回転数をNcとすると、各回転数は以下の(6)式で示される関係となり、サンギヤ2aの回転数Ns及びリングギヤ2bの回転数Nrを制御することでキャリア2cの回転数Ncを自由に設定することができる。尚、Ns=Nrのときには、Nc=Nr=Nsとなり、全ての入出力回転数が一致する。
(1+i)・Nc=Nr+i・Ns …(6)
【0026】
従って、プラネタリギヤの各ギヤの入出力トルクの関係はプラネタリギヤのギヤ比iで決まるため、各ギヤのトルクの関係を維持した上で、モータ3の回転数を制御すると、プラネタリギヤの出力回転数に関係なく、エンジン1の回転数を自由に設定できることになり、例えば、所定の条件では走行中にエンジン1を停止する、燃料消費率のよいエンジン回転数領域を使う等の制御が可能になる。
【0027】
一般的に、プラネタリギヤの構造上、Zs<Zrであるためギヤ比iはi<1であり、上記(5)式から明らかなように、リングギヤ2bへの入力トルクTrはサンギヤ2aへの入力トルクTsに対して1/i(>1)倍となる。しかし、この時のリングギヤ2bの入力トルクTrはモータ3のみにより得られているから、バッテリ14からの電力の供給が必要になり、例えば長時間の走行を行うとバッテリ14の充電量が不足するような事態が予想される。従って、このような場合には、図3に示すように、モータ4を発電機として使用し、走行する。
【0028】
すなわち、プラネタリギヤの出力軸上のモータ4を発電機として使うことで、エンジン出力に対して、プラネタリギヤへの入力トルクのうち、リングギヤ2bからの入力トルク分をモータ4で吸収し、これにより得られた電力でモータ3を駆動することで、バッテリ14に充電された電気を使わないでエンジン1だけの走行が可能になる。
【0029】
この時、モータ3の発生駆動力に必要な電力は、モータ3,4やインバータ15,16の効率特性より、モータ3の駆動力によるモータ4の発電量だけでは十分でないため、モータ3とエンジン1の出力トルクの一部を加えた駆動力による発電となる。
【0030】
尚、このような状況で、バッテリ14への充電が必要になったときには、モータ3の必要電力に対し、モータ4の発電量が多くなるように制御する。また、主としてエンジン1の駆動力で走行中に、登坂や急加速等によってエンジン1の出力に対して負荷が大きくなり、モータ3のアシスト力を大きくする必要が生じた場合には、モータ4の発電量を抑えてプラネタリギヤユニット2の出力トルクの動力吸収量を抑えるとともに、不足するモータ3への電力の供給をバッテリ14から行うように制御する。
【0031】
一方、減速時や制動時等において、CVT5からの入力トルクに対し、バッテリ14に十分な充電が行われており、バッテリ14への充電が必要ない場合で、エンジンブレーキのみ又はエンジンブレーキと一部モータによる動力吸収を併用する際は、前述のようにプラネタリギヤの特性から、モータ3でもトルクの吸収を行わなければならない。このとき、エンジンブレーキとモータ3でトルクの吸収が行われることから大きな制動力と同時にモータ3による発電が行われることになる。
【0032】
このため、図4に示すように、モータ3の吸収トルク分の駆動力を、モータ3で発電した電力でモータ4に発生させることで、バッテリ14に充電すること無しにエンジンブレーキのみを発生させることが可能となる。
【0033】
この時、モータ4の発生駆動力に必要な電力は、モータ3,4やインバータ15,16の効率特性より、モータ4の駆動力によるモータ3の発電量だけでは十分でないため、モータ4とエンジン1への一部を加えた駆動力による発電となる。なお、バッテリ14への充電が必要になった場合には、モータ3の発電量をそのままにしてモータ4への供給電力を低くするように制御することで、エンジンブレーキ性能を低下させることなくバッテリ14への充電が可能となる。
【0034】
さらに、車両が後退する場合には、一般にはエンジン回転は前進時と同一方向の回転であることから、モータ4で走行することになるが、バッテリ14の充電量が不足する場合は、図5に示すように、エンジン1の出力トルクをモータ3でプラネタリギヤユニット2のキャリア2cに出力しないようにトルク調整をしながら発電することで、後退時の走行性を確保することが可能である。この時、バッテリの充電量に合わせて、バッテリ14のみの走行から、モータ3からの充電をしながらの走行までを状況に応じて制御することが可能である。
【0035】
以上の様に、プラネタリギヤユニット2を介してのエンジン1及びモータ3,4の駆動と発電によりトルクを制御することでバッテリ14への充電とCVT5に対しての出力を適切に行うことが可能になる。そして、この出力された駆動力は、CVT5の使用によって適切に制御され、エンジン1及びモータ3,4の出力効率を最適化するとともに、駆動軸で必要とされる駆動力を確保することができる。
【0036】
ここで、前述したようにプラネタリギヤの入出力トルクの関係はギヤ比iで決まるため、各ギヤのトルクの関係を維持した上で、モータ3の回転数を制御するとエンジン1とキャリア2cの回転数を制御することが可能である。このため、車速が低い場合は、サンギヤ2aまたはリングギヤ2bのどちらかの回転数を高くすることで、もう片方の回転を止めたり、また、エンジン1を回転させたまま出力軸回転を逆にすることが可能であるが、車速が高い場合では、どちらか一方の回転数を一定とし、出力軸回転数を高くしようとすると、もう片方の回転数を必要とする出力回転よりも高くしなければならない。
【0037】
例えば、エンジン1によって駆動されるサンギヤ2aの回転数を一定とし、サンギヤ2aを基準とするリングギヤ2b及びキャリア2cの回転数について考えると、この場合は、サンギヤ2aを固定した場合と同様であり、上記(6)式においてNs=0とおくことができることから、モータ3によって駆動されるリングギヤ2bの回転数(サンギヤ2aに対する回転数差)はキャリア2cの回転数(同じく、サンギヤ2aに対する回転数差)の(1+i)倍となる。
【0038】
また、モータ3によって駆動されるリングギヤ2bの回転数を一定とし、リングギヤ2bを基準とするサンギヤ2a及びキャリア2cの回転数について考えると、リングギヤ2bを固定した場合と同様であることから、上記(6)式においてNr=0とおくことができ、エンジン1によって駆動されるサンギヤ2aの回転数(リングギヤ2bに対する回転数差)はキャリア2cの回転数(同じく、リングギヤ2bに対する回転数差)の(1+i)/i倍となる。
【0039】
すなわち、サンギヤ2aを駆動するエンジン1の回転数を一定として出力回転数(キャリア回転数)を高くしようとするとモータ3の回転数が出力回転数(キャリア回転数)よりも高くなり、リングギヤ2bを駆動するモータ3の回転数を一定として出力回転数(キャリア回転数)を高くしようとするとエンジン1の回転数が出力回転数(キャリア回転数)よりも高くなってしまう。このように、モータ回転数が高くなることは効率及び信頼性の低下を招くことになり、また、エンジン回転数が高くなることにより高回転対応のための内部フリクションの増加等を招く。
【0040】
本来、エンジンは、燃焼効率の高い、排気ガスの清浄化を期待できる回転数域で使用されることが望ましく、一方、車両においては、モータの回転制御範囲を超えるような出力軸回転数の変化がある。従って、駆動輪9からの要求駆動力に対し、プラネタリギヤユニット2の出力軸に配置したCVT5の変速比を適切に制御することで、プラネタリギヤユニット2への入力トルクを低く抑えることが可能となり、プラネタリギヤユニット2の出力回転数を適切に制御することができる。
【0041】
さらに、モータ4がキャリア2cと連結され、モータ3に駆動力が作用しなければ、プラネタリギヤユニット2から駆動力は出力されないため、図6に示すように、駆動輪9における必要な駆動力をモータ4及びCVT5の変速比のそれぞれを制御して発生させること、あるいは、図7に示すように、駆動輪9における必要な制動力をモータ4及びCVT5の変速比のそれぞれを制御して発生させることが可能である。
【0042】
すなわち、モータ4が駆動軸8に対しある一定ギヤ比で連結しているとすると、このギヤ比を車両の高速走行時を想定し、モータ4の回転数を抑えるように設定すると、駆動輪9において必要な最大駆動力に対応するための駆動力と発電による制動力が求められるため、モータ4の大容量化が避けられない。一方、出力の小さい小型のモータで駆動力を得るためのギヤ比を設定すると、車両を高速走行しようとしてもモータ回転数が追従できないことになる。そこで、モータ4と駆動軸8の間にCVT5を配置することで、駆動輪に必要な駆動力をモータ4及びCVT5の変速比のそれぞれで制御し、最も出力効率の高いモータの使用と同時に、十分な駆動力を確保することが可能となる。同様に、モータ4及びCVT5の変速比のそれぞれを制御することで、駆動輪に必要な制動力を得ることが可能になる。なお、モータ3に駆動力や制動力を発生させないことは、エンジン1の運転条件に関係なく、モータ4とCVT5の制御のみで車両の走行条件を設定できるので、制御仕様も簡素にすることができる。
【0043】
すなわち、必要な駆動軸の回転数と車両駆動力の変化に対し、CVT5によってエンジン1とモータ3,4の使用条件を最適範囲に抑えることでエンジン性能を特化し、さらに、燃焼効率の高い、排気ガスエミッションの低い領域でエンジン1を使用する頻度を大幅に増やすことができ、走行性能を確保しつつ、燃費改善、低公害化を実現することができるのである。
【0044】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、エンジンの出力軸をプラネタリギヤのサンギヤと連結し、プラネタリギヤのリングギヤに第1のモータを連結し、プラネタリギヤのキャリアに第2のモータと複数段あるいは無段階に変速比を切り換え可能な動力変換機構を連結して、この動力変換機構はプラネタリギヤと駆動輪との間で変速及びトルク増幅を行なうため、駆動の際はエンジン、第1,第2のモータを駆動源とし、また、エンジン、第1のモータを駆動源、第2のモータを発電機とし、または、第2のモータのみを駆動源とし、制動の際は第1のモータを発電機、第2のモータを駆動源とし、あるいは、第2のモータのみを発電機とする等、様々な制御が行え、比較的低出力の2つのモータを用いて駆動力の確保と動力エネルギの回収効率向上を達成するとともに、駆動輪からの要求駆動力に対してエンジン及びモータ制御の最適化を実現することができ、また、エンジンと2つのモータの制御の互いの影響が少なく、制御も簡素で、制御自由度も向上させることができる。
【0045】
また、請求項2記載の発明では、請求項1記載の動力変換機構をベルト式無段変速機として変速比を無段階で変化させて変速及びトルク増幅を行なうため、上記請求項1記載の発明の効果に加え、駆動輪からの要求駆動力に対してプラネタリギヤへの入出力トルク及び回転数を自由に制御することが可能となり、エンジン及び第1,第2のモータの制御をより最適化することができる効果を有する。
【図面の簡単な説明】
【図1】駆動系の基本構成を示す説明図
【図2】エンジンの駆動力を考慮して第1,第2のモータによって走行する場合のトルク及び電気の流れを示す説明図
【図3】エンジンの駆動力を考慮して第1のモータでは駆動を第2のモータでは発電をして走行する場合のトルク及び電気の流れを示す説明図
【図4】第1のモータを発電機として使用し、第2のモータで駆動力を発生させる制動の場合のトルク及び電気の流れを示す説明図
【図5】車両後退時のトルク及び電気の流れを示す説明図
【図6】第2のモータのみを利用して駆動力を得る場合のトルク及び電気の流れを示す説明図
【図7】第2のモータのみを利用して制動力を得る場合のトルク及び電気の流れを示す説明図
【符号の説明】
1 …エンジン
2 …プラネタリギヤユニット
2a…サンギヤ
2b…リングギヤ
2c…キャリア
3 …第1のモータ
4 …第2のモータ
5 …ベルト式無段変速機(動力変換機構)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hybrid vehicle that uses both an engine and a motor, and more particularly, to a hybrid vehicle that uses two relatively low-power motors to secure driving force and improve recovery efficiency of power energy.
[0002]
[Prior art]
In recent years, in vehicles such as automobiles, a hybrid vehicle using both an engine and a motor has been developed from the viewpoint of low pollution and resource saving. This hybrid vehicle is equipped with two motors for power generation and power source. As a result, many technologies for improving the recovery efficiency of motive energy and ensuring the running performance are employed.
[0003]
For example, in Japanese Patent Laid-Open No. 9-46821, a power distribution mechanism using a differential distribution mechanism such as a differential gear is used to distribute engine power to a generator and a motor (drive motor). A hybrid vehicle that travels by driving a motor while generating electric power is disclosed, and Japanese Patent Laid-Open No. 9-100903 discloses that the power of an engine is distributed to a generator and a motor (drive motor) by a planetary gear. A hybrid vehicle is disclosed.
[0004]
[Problems to be solved by the invention]
However, in each of the above-described prior arts, most of the driving force at low speed depends on the driving motor, so not only a large motor with a large capacity is required for driving, but also the torque required for the driving wheels. Since the amplification function depends on the electric power, a generator having a power generation capacity capable of maintaining a constant running performance even when the battery capacity is not sufficient is required, which causes an increase in cost.
[0005]
In addition, in a vehicle, there is a change in the rotational speed of the output shaft that exceeds the rotation control range of the motor (generator). Therefore, by simply distributing the engine output to the generator and the drive motor, the required drive from the drive wheels The engine and motor control cannot always be sufficiently optimized for the force.
[0006]
By the way, in a hybrid vehicle having an engine and two motors, the optimal control method for the engine and the two motors varies depending on the use form of the vehicle and the running conditions of the vehicle, but the control of the engine and the two motors influence each other. It is desirable to be able to control appropriately and simply in each efficient operating range without matching.
[0007]
The present invention has been made in view of the above circumstances, and achieves securing of driving force and improvement of recovery efficiency of power energy by using two motors of relatively low output, and also with respect to required driving force from driving wheels. It is an object of the present invention to provide a hybrid vehicle that can realize optimization of engine and motor control, has little influence on the control of the engine and two motors, is simple in control, and has a high degree of freedom of control. .
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, in a hybrid vehicle that uses both the output of the engine and the output of the motor as a travel drive source, a sun gear connected to the output shaft of the engine and a pinion meshing with the sun gear are rotatable. A planetary gear having a carrier to be supported and a ring gear meshing with the pinion, a first motor that is connected to the ring gear of the planetary gear and can be used as a drive source or a generator, and is connected to the planetary gear carrier and driven. A second motor that can be used as a power source or a generator, and a planetary gear carrier that is connected to the planetary gear carrier together with the second motor. And a power conversion mechanism that performs gear shifting and torque amplification between That.
[0009]
According to a second aspect of the present invention, in the first aspect of the invention, the power conversion mechanism is configured such that a drive belt is wound between a primary pulley pivotally supported by the input shaft and a secondary pulley pivotally supported by the output shaft. A belt type continuously variable transmission is formed.
[0010]
That is, according to the first aspect of the invention, the output shaft of the engine is connected to the sun gear of the planetary gear, the first motor is connected to the ring gear of the planetary gear, and the second motor is shifted to the planetary gear carrier in multiple stages or continuously. A power conversion mechanism capable of switching the ratio is connected, and the power conversion mechanism performs speed change and torque amplification between the planetary gear and the drive wheel.
[0011]
The first and second motors can be used simultaneously as a drive source or a generator, or one can be used as a drive source and the other as a generator depending on running conditions.
[0012]
For example, a driving force is supplied from the engine to the sun gear of the planetary gear and from the first motor to the ring gear of the planetary gear. These driving forces are combined and output by the planetary gear, and in addition to this driving force, the driving force is further supplied from the second motor. Is supplied to the drive wheel via the power conversion mechanism. Also, driving force is supplied from the engine to the sun gear of the planetary gear and from the first motor to the ring gear of the planetary gear, and these driving forces are synthesized and output by the planetary gear. At this time, the second motor generates power and runs. Or by generating power with the first motor using the output torque of the engine and driving with the second motor, or without considering the driving force of the engine. It is possible to perform control such as traveling with only the driving force of the motor. Also, during deceleration, braking, etc., the driving force returned from the drive wheels via the power conversion mechanism is absorbed as torque for power generation by the first and second motors and absorbed by the engine. Or, the first motor generates power and the second motor generates driving force to be absorbed by the engine, or the power conversion mechanism is operated from the driving wheel side without considering the absorption of the driving force to the engine. Thus, it is possible to perform control such as power generation using only the second motor by using the driving force returned through the second motor.
[0013]
In this case, as described in claim 2, as the power conversion mechanism, a belt formed by winding a drive belt between a primary pulley pivotally supported by the input shaft and a secondary pulley pivotally supported by the output shaft. It is desirable to use a continuously variable transmission and perform gear shifting and torque amplification by switching the gear ratio steplessly.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 1 to 7 relate to an embodiment of the present invention, FIG. 1 is an explanatory diagram showing the basic configuration of a drive system, and FIG. 2 is driven by first and second motors in consideration of the driving force of the engine. FIG. 3 shows the torque and electric flow when driving with the first motor and generating power with the second motor in consideration of the driving force of the engine. FIG. 4 is an explanatory diagram showing the torque and electric flow in the case of braking in which the first motor is used as a generator and the second motor generates a driving force, and FIG. 6 is an explanatory diagram showing the flow of electricity, FIG. 6 is an explanatory diagram showing the flow of torque and electricity when driving force is obtained using only the second motor, and FIG. 7 is a braking force using only the second motor. It is explanatory drawing which shows the torque and the flow of electricity when obtaining.
[0015]
The hybrid vehicle according to the present invention is a parallel hybrid type vehicle using both an engine and a motor. As shown in FIG. 1, an output shaft 1a of the engine 1 is connected to a sun gear 2a of a planetary gear unit 2 (single pinion). The ring gear 2b of the planetary gear unit 2 is connected to a first motor 3 (hereinafter simply referred to as the motor 3) that controls the function of the planetary gear unit 2 and can be switched as a drive source or a generator. A carrier 2c that rotatably supports a pinion that meshes with the ring gear 2b and a second motor 4 (hereinafter simply referred to as a motor 4) that can be switched as a drive source or a generator performs speed change and torque amplification. Connected to the power conversion mechanism 5 responsible for the power conversion function during traveling. Drive system is key configured.
[0016]
As the power conversion mechanism 5, a transmission using a combination of gear trains, a transmission using a fluid torque converter, or the like can be used. However, the primary pulley 5 b and the output shaft 5 c that are supported by the input shaft 5 a are used. It is desirable to employ a belt type continuously variable transmission (CVT) in which a drive belt 5e is wound around a secondary pulley 5d that is pivotally supported. In this embodiment, the power conversion mechanism 5 is hereinafter referred to as a CVT5. Will be described.
[0017]
That is, in the drive system of the hybrid vehicle in this embodiment, the planetary gear unit 2 is disposed between the output shaft 1a of the engine 1 and the input shaft 5a of the CVT 5, and the sun gear 2a of the planetary gear unit 2 is the output shaft of the engine 1. The carrier 2c is coupled to the input shaft 5a of the CVT 5 via one motor 4 and the other motor 3 is coupled to the ring gear 2b. A differential mechanism 7 is connected to the output shaft 5 c of the CVT 5 via a reduction gear train 6, and a front wheel or a rear wheel drive wheel 9 is connected to the differential mechanism 7 via a drive shaft 8.
[0018]
The engine 1, the two motors 3, 4, and the CVT 5 are centrally controlled by the monitoring / control system 10. The monitoring / control system 10 includes a driver will determination system 11 that determines the driver's driving operation status by detecting the depression of the accelerator pedal and the brake pedal, the steering angle of the steering, etc., the brake operation state, the engine 1 and ABS ( Anti-skid brake system), etc., vehicle control status determination system 12 for determining the control status of the vehicle from the operating status of auxiliary equipment such as lights and air conditioners, vehicle speed, uphill and downhill, road surface conditions, etc. A driving condition determination system 13 for determining a change in the current driving condition of the vehicle is connected, and the engine 1, the two motors 3, 4, the operating state of the CVT 5 and the state of the battery 14 are monitored, and information from each system is displayed. Based on the control of the engine 1, the drive of the motors 3 and 4 through the inverters 15 and 16, and the charging control of the battery, VT5 performs control of the gear ratio and the oil pressure supplied.
[0019]
In the drive system configured as described above, as described above, the engine 1 is coupled to the sun gear 2a of the planetary gear unit 2, and the motor 3 is coupled to the ring gear 2b so as to obtain an output synthesized by the planetary gear from the carrier 2c. Further, since the motor 4 is connected to the carrier 2c so that the output from the motor 4 can be combined, and further, these outputs are shifted and torque-amplified by the CVT 5 and transmitted to the drive wheels 9, so that the two motors 3 , 4 can be used for both power generation and driving force supply, and a relatively small output motor can be used.
[0020]
That is, in consideration of the driving force of the engine 1 (the driving force by the engine 1 is input to the sun gear 2a of the planetary gear unit 2), and when driven by the motor 3, as shown in FIG. The driving force is input torque Ts to the sun gear 2a, and electric energy is supplied to the motor 3 from the battery 14 via the inverter 15, and converted into driving force by the motor 3 to become the input torque Tr to the ring gear 2b. However, from the input / output characteristics of the planetary gear, the input torque Ts to the sun gear 2a, the input torque Tr to the ring gear 2b, and the output torque Tc of the carrier 2c have the relationship shown by the following equation (1).
Tc = Ts + Tr (1)
[0021]
Therefore, in the planetary gear unit 2, the input torque Ts to the sun gear 2a by the engine 1 and the input torque Tr to the ring gear 2b by the motor 3 are combined and output from the carrier 2c, and the output torques of the engine 1 and the motor 3 respectively. Even if is small, a large output torque can be obtained from the carrier 2c.
[0022]
In addition, a motor 4 is coupled to the carrier 2c of the planetary gear unit 2, and a larger output torque can be obtained by combining the driving force of the motor 4. That is, in this case, electric energy is supplied from the battery 14 to the motor 4 via the inverter 16, converted into driving force by the motor 4, and output in addition to the output torque Tc synthesized by the planetary gear unit 2 described above. Is done. Assuming that the output torque from the motor 4 is Tm, the maximum outputable torque Tout input to the CVT 5 is a value represented by the following equation (2).
Tout = Tc + Tm = Ts + Tr + Tm (2)
[0023]
Thus, even when the output torque of each of the engine 1 and the motors 3 and 4 is small, a large output torque can be obtained and transmitted to the drive wheels 9 via the CVT 5 to obtain a large vehicle driving force. be able to. 2 and FIGS. 3 to 7 described below, the two-dot chain line schematically shows the flow of electricity, and the one-dot chain line schematically shows the flow of torque transmission.
[0024]
In this case, in the planetary gear, the input torque Ts of the sun gear 2a and the input torque Tr of the ring gear 2b must be subjected to reaction forces in order to be combined to become the output torque Tc of the carrier 2c. The relationship between the input torques Ts and Tr is expressed by using the gear ratio i (i = Zs / Zr) represented by the number of teeth Zs of the sun gear 2a and the number of teeth Zr of the ring gear 2b. From the relationship shown in the equation, the following equation (5) must be satisfied.
Tc · i / (1 + i) = Ts (3)
Tc · 1 / (1 + i) = Tr (4)
Ts = i · Tr (5)
[0025]
In the planetary gear, when the rotational speed of the sun gear 2a is Ns, the rotational speed of the ring gear 2b is Nr, and the rotational speed of the carrier 2c is Nc, the rotational speeds are represented by the following expression (6), and the sun gear 2a The rotational speed Nc of the carrier 2c can be freely set by controlling the rotational speed Ns of the ring gear 2b and the rotational speed Nr of the ring gear 2b. When Ns = Nr, Nc = Nr = Ns, and all the input / output rotational speeds coincide.
(1 + i) · Nc = Nr + i · Ns (6)
[0026]
Accordingly, since the input / output torque relationship of each gear of the planetary gear is determined by the gear ratio i of the planetary gear, if the rotation speed of the motor 3 is controlled while maintaining the torque relationship of each gear, the relationship is related to the output rotation speed of the planetary gear. In other words, the engine 1 can be set freely, for example, under certain conditions, the engine 1 can be stopped during traveling, or an engine speed region with a high fuel consumption rate can be used.
[0027]
Generally, because of the structure of the planetary gear, since Zs <Zr, the gear ratio i is i <1, and as is clear from the above equation (5), the input torque Tr to the ring gear 2b is the input torque to the sun gear 2a. 1 / i (> 1) times the Ts. However, since the input torque Tr of the ring gear 2b at this time is obtained only by the motor 3, it is necessary to supply power from the battery 14. For example, if the vehicle travels for a long time, the amount of charge of the battery 14 is insufficient. Such a situation is expected. Therefore, in such a case, as shown in FIG. 3, the motor 4 is used as a generator and travels.
[0028]
That is, by using the motor 4 on the output shaft of the planetary gear as a generator, the input torque from the ring gear 2b out of the input torque to the planetary gear is absorbed by the motor 4 with respect to the engine output. By driving the motor 3 with the generated electric power, it is possible to run only the engine 1 without using the electricity charged in the battery 14.
[0029]
At this time, the electric power required for the driving force generated by the motor 3 is not sufficient because the power generation amount of the motor 4 by the driving force of the motor 3 is not sufficient from the efficiency characteristics of the motors 3 and 4 and the inverters 15 and 16. The power is generated by a driving force obtained by adding a part of the output torque of 1.
[0030]
In this situation, when the battery 14 needs to be charged, control is performed so that the power generation amount of the motor 4 is larger than the required power of the motor 3. Further, when the vehicle 4 is driven mainly by the driving force of the engine 1 and the load on the output of the engine 1 increases due to climbing or sudden acceleration, etc., and it becomes necessary to increase the assisting force of the motor 3, The power generation amount is suppressed, the power absorption amount of the output torque of the planetary gear unit 2 is suppressed, and control is performed so that power supply to the insufficient motor 3 is performed from the battery 14.
[0031]
On the other hand, when deceleration or braking, the battery 14 is sufficiently charged with respect to the input torque from the CVT 5, and charging of the battery 14 is not necessary. When the power absorption by the motor is used in combination, the motor 3 must also absorb the torque due to the characteristics of the planetary gear as described above. At this time, since the engine brake and the motor 3 absorb the torque, the motor 3 generates power simultaneously with a large braking force.
[0032]
For this reason, as shown in FIG. 4, only the engine brake is generated without charging the battery 14 by causing the motor 4 to generate the driving force corresponding to the absorption torque of the motor 3 with the electric power generated by the motor 3. It becomes possible.
[0033]
At this time, the electric power required for the driving force generated by the motor 4 is not sufficient because the power generation amount of the motor 3 by the driving force of the motor 4 is not sufficient from the efficiency characteristics of the motors 3 and 4 and the inverters 15 and 16. The power is generated by the driving force with a part added to 1. In addition, when the battery 14 needs to be charged, the battery 3 is controlled without decreasing the engine brake performance by controlling the power generation amount of the motor 3 as it is to reduce the power supplied to the motor 4. 14 can be charged.
[0034]
Further, when the vehicle moves backward, the engine rotation is generally in the same direction as the forward movement, so that the motor 4 travels. However, when the battery 14 is insufficiently charged, FIG. As shown in FIG. 4, it is possible to ensure the traveling performance during reverse by generating power while adjusting the torque so that the output torque of the engine 1 is not output to the carrier 2c of the planetary gear unit 2 by the motor 3. At this time, according to the situation, it is possible to control from running of only the battery 14 to running while charging from the motor 3 in accordance with the amount of charge of the battery.
[0035]
As described above, it is possible to appropriately charge the battery 14 and output to the CVT 5 by controlling the torque by driving the engine 1 and the motors 3 and 4 via the planetary gear unit 2 and generating power. Become. The output driving force is appropriately controlled by using the CVT 5 to optimize the output efficiency of the engine 1 and the motors 3 and 4 and secure the driving force required for the drive shaft. .
[0036]
Here, since the relationship between the input and output torques of the planetary gear is determined by the gear ratio i as described above, the number of rotations of the engine 1 and the carrier 2c is controlled by controlling the number of rotations of the motor 3 while maintaining the relationship of the torques of the respective gears. Can be controlled. For this reason, when the vehicle speed is low, the rotation speed of either the sun gear 2a or the ring gear 2b is increased to stop the other rotation, or the output shaft rotation is reversed while the engine 1 is rotating. However, when the vehicle speed is high, if one of the rotation speeds is kept constant and the output shaft rotation speed is increased, the other rotation speed must be set higher than the required output rotation speed. Don't be.
[0037]
For example, when the rotational speed of the sun gear 2a driven by the engine 1 is constant and the rotational speeds of the ring gear 2b and the carrier 2c based on the sun gear 2a are considered, this is the same as when the sun gear 2a is fixed, Since Ns = 0 in the above equation (6), the rotational speed of the ring gear 2b driven by the motor 3 (the rotational speed difference with respect to the sun gear 2a) is the rotational speed of the carrier 2c (similarly, the rotational speed difference with respect to the sun gear 2a). ) Times (1 + i) times.
[0038]
In addition, assuming that the rotation speed of the ring gear 2b driven by the motor 3 is constant and the rotation speeds of the sun gear 2a and the carrier 2c based on the ring gear 2b are the same as the case where the ring gear 2b is fixed, the above ( 6) Nr = 0 can be set, and the rotational speed of the sun gear 2a driven by the engine 1 (the rotational speed difference with respect to the ring gear 2b) is the rotational speed of the carrier 2c (also the rotational speed difference with respect to the ring gear 2b) ( 1 + i) / i times.
[0039]
That is, if the engine 1 that drives the sun gear 2a is kept at a constant rotational speed and the output rotational speed (carrier rotational speed) is to be increased, the rotational speed of the motor 3 becomes higher than the output rotational speed (carrier rotational speed). If an attempt is made to increase the output rotational speed (carrier rotational speed) while keeping the rotational speed of the motor 3 to be driven constant, the rotational speed of the engine 1 becomes higher than the output rotational speed (carrier rotational speed). As described above, an increase in the motor rotational speed leads to a decrease in efficiency and reliability, and an increase in the engine rotational speed causes an increase in internal friction for high rotational speed.
[0040]
Originally, it is desirable that the engine be used in a rotation speed range where combustion efficiency is high and exhaust gas purification can be expected. On the other hand, in a vehicle, the change in the output shaft rotation speed exceeds the rotation control range of the motor. There is. Therefore, the input torque to the planetary gear unit 2 can be kept low by appropriately controlling the transmission ratio of the CVT 5 disposed on the output shaft of the planetary gear unit 2 with respect to the required driving force from the drive wheels 9. The output rotation speed of the unit 2 can be appropriately controlled.
[0041]
Further, if the motor 4 is connected to the carrier 2c and no driving force acts on the motor 3, the driving force is not output from the planetary gear unit 2, so that the necessary driving force in the driving wheels 9 is supplied to the motor as shown in FIG. 4 and control the gear ratio of CVT5 to generate each other, or as shown in FIG. 7, to generate the necessary braking force in the drive wheels 9 by controlling the gear ratio of motor 4 and CVT5 respectively. Is possible.
[0042]
That is, if the motor 4 is connected to the drive shaft 8 at a certain gear ratio, the gear ratio is set so as to suppress the rotation speed of the motor 4 assuming that the vehicle is traveling at a high speed. In this case, since the driving force and the braking force due to the power generation required for the required maximum driving force are required, it is inevitable to increase the capacity of the motor 4. On the other hand, if a gear ratio for obtaining a driving force is set with a small motor having a small output, the motor rotational speed cannot follow even if the vehicle is driven at a high speed. Therefore, by disposing the CVT 5 between the motor 4 and the drive shaft 8, the driving force required for the drive wheels is controlled by each of the gear ratios of the motor 4 and CVT 5, and simultaneously with the use of the motor with the highest output efficiency, It is possible to ensure a sufficient driving force. Similarly, by controlling each of the gear ratios of the motor 4 and the CVT 5, it becomes possible to obtain the braking force required for the drive wheels. It should be noted that the fact that the driving force or braking force is not generated in the motor 3 can set the vehicle traveling conditions only by the control of the motor 4 and the CVT 5 regardless of the operating conditions of the engine 1, thereby simplifying the control specifications. it can.
[0043]
In other words, the engine performance is specialized by suppressing the usage conditions of the engine 1 and the motors 3 and 4 to the optimum range by the CVT 5 with respect to the required rotational speed of the drive shaft and changes in the vehicle driving force, and further, the combustion efficiency is high. The frequency of using the engine 1 in a region where exhaust gas emissions are low can be greatly increased, and fuel efficiency can be improved and pollution can be reduced while ensuring running performance.
[0044]
【The invention's effect】
As described above, according to the first aspect of the present invention, the output shaft of the engine is connected to the sun gear of the planetary gear, the first motor is connected to the ring gear of the planetary gear, and the second motor and the plurality of motors are connected to the planetary gear carrier. A power conversion mechanism capable of changing the gear ratio stepwise or steplessly is connected, and this power conversion mechanism performs speed change and torque amplification between the planetary gear and the drive wheel. No. 2 motor is the drive source, and the engine, the first motor is the drive source, the second motor is the generator, or only the second motor is the drive source, and the first motor is used for braking. Various controls can be performed, such as using a generator and a second motor as a drive source, or using only the second motor as a generator. It is possible to improve the recovery efficiency of the lugies, optimize the engine and motor control for the required driving force from the drive wheels, and have little influence on the control of the engine and the two motors. Control is simple and the degree of control freedom can be improved.
[0045]
According to a second aspect of the present invention, since the power conversion mechanism according to the first aspect is a belt type continuously variable transmission and the gear ratio is changed steplessly, the speed change and torque amplification are performed. In addition to the above effects, the input / output torque to the planetary gear and the rotational speed can be freely controlled with respect to the required driving force from the driving wheels, and the control of the engine and the first and second motors is further optimized. It has an effect that can be.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the basic configuration of a drive system. FIG. 2 is an explanatory diagram showing the flow of torque and electricity when traveling by the first and second motors in consideration of the driving force of the engine. Explanatory drawing showing the flow of torque and electricity when driving with the first motor taking into account the driving force of the engine and generating electricity with the second motor. FIG. 4 uses the first motor as a generator. FIG. 5 is an explanatory diagram showing torque and electric flow when braking is performed to generate a driving force by the second motor. FIG. 5 is an explanatory diagram showing torque and electric flow when the vehicle is reverse. FIG. FIG. 7 is an explanatory diagram showing the flow of torque and electricity when only a second motor is used to obtain a driving force. FIG. 7 is an explanatory diagram showing the flow of torque and electricity when a braking force is obtained using only the second motor. Explanation of]
DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... Planetary gear unit 2a ... Sun gear 2b ... Ring gear 2c ... Carrier 3 ... 1st motor 4 ... 2nd motor 5 ... Belt type continuously variable transmission (power conversion mechanism)

Claims (2)

エンジンの出力とモータの出力とを併用して走行駆動源とするハイブリッド車において、
上記エンジンの出力軸と連結したサンギヤと、このサンギヤに噛合するピニオンを回転自在に支持するキャリアと、上記ピニオンに噛合するリングギヤとを有するプラネタリギヤと、
上記プラネタリギヤのリングギヤに連結し、駆動源あるいは発電機として切換え使用可能な第1のモータと、
上記プラネタリギヤのキャリアに連結し、駆動源あるいは発電機として切換え使用可能な第2のモータと、
上記第2のモータとともに上記プラネタリギヤのキャリアに連結し、複数段あるいは無段階に切り換え可能な変速比に応じて上記プラネタリギヤと駆動輪との間で変速及びトルク増幅を行なう動力変換機構とを備えたことを特徴とするハイブリッド車。
In hybrid vehicles that use both engine output and motor output as a driving source,
A planetary gear having a sun gear coupled to the output shaft of the engine, a carrier rotatably supporting a pinion meshing with the sun gear, and a ring gear meshing with the pinion;
A first motor connected to the ring gear of the planetary gear and switchable as a drive source or generator;
A second motor connected to the planetary gear carrier and switchable as a drive source or generator;
A power conversion mechanism that is coupled to the planetary gear carrier together with the second motor and performs gear shifting and torque amplification between the planetary gear and the drive wheel according to a gear ratio that can be switched in a plurality of stages or continuously. A hybrid vehicle characterized by that.
上記動力変換機構を、入力軸に軸支されるプライマリプーリと出力軸に軸支されるセカンダリプーリとの間に駆動ベルトを巻装してなるベルト式無段変速機とすることを特徴とする請求項1記載のハイブリッド車。The power conversion mechanism is a belt-type continuously variable transmission in which a drive belt is wound between a primary pulley supported by an input shaft and a secondary pulley supported by an output shaft. The hybrid vehicle according to claim 1.
JP2221098A 1997-12-26 1998-02-03 Hybrid car Expired - Fee Related JP3646965B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2221098A JP3646965B2 (en) 1998-02-03 1998-02-03 Hybrid car
US09/216,132 US6146302A (en) 1997-12-26 1998-12-18 Power transmitting system for a hybrid motor vehicle
DE69835174T DE69835174T2 (en) 1997-12-26 1998-12-23 Power transmission system for a hybrid vehicle
EP98124608A EP0925981A3 (en) 1997-12-26 1998-12-23 Power transmitting system for a hybrid motor vehicle
EP03006756A EP1321326B1 (en) 1997-12-26 1998-12-23 Power transmitting system for a hybrid motor vehicle
US09/663,270 US6383106B1 (en) 1997-12-26 2000-09-18 Power transmitting system for a hybrid motor
US10/094,091 US6602157B2 (en) 1997-12-26 2002-03-08 Power transmitting system for a hybrid motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2221098A JP3646965B2 (en) 1998-02-03 1998-02-03 Hybrid car

Publications (2)

Publication Number Publication Date
JPH11217024A JPH11217024A (en) 1999-08-10
JP3646965B2 true JP3646965B2 (en) 2005-05-11

Family

ID=12076447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2221098A Expired - Fee Related JP3646965B2 (en) 1997-12-26 1998-02-03 Hybrid car

Country Status (1)

Country Link
JP (1) JP3646965B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120085733A (en) * 2009-08-24 2012-08-01 쩌지앙 길리 홀딩 그룹 씨오., 엘티디. Power system of hybrid electric vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1020498C2 (en) * 2002-04-26 2003-10-28 Skf Ab Continuously variable transmission system and method for operating that system.
KR100887842B1 (en) 2007-12-13 2009-03-09 현대자동차주식회사 Regenerative device for braking force of hybrid vehicle
JP6176082B2 (en) * 2013-11-27 2017-08-09 アイシン・エィ・ダブリュ株式会社 Vehicle drive device
CN111361406B (en) * 2018-12-25 2024-01-30 广州汽车集团股份有限公司 Control method of automobile hybrid power system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120085733A (en) * 2009-08-24 2012-08-01 쩌지앙 길리 홀딩 그룹 씨오., 엘티디. Power system of hybrid electric vehicle
KR101700676B1 (en) 2009-08-24 2017-01-31 코런 씨에이치에스 테크놀로지 씨오., 엘티디. Power system of hybrid electric vehicle

Also Published As

Publication number Publication date
JPH11217024A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
JP3646966B2 (en) Hybrid car
JP3646962B2 (en) Hybrid car
JP5554323B2 (en) Energy recovery system for vehicle drive lines
US6146302A (en) Power transmitting system for a hybrid motor vehicle
JPH11180173A (en) Driving unit for hybrid electric vehicle
JPH06144020A (en) Hybrid type vehicle
JP3646964B2 (en) Hybrid car
JP5288984B2 (en) Hybrid vehicle
JPH11227476A (en) Driving device for automobile
JPH058639A (en) Automobile provided with compound power sources
JP3958881B2 (en) Automotive drive unit
JP3859896B2 (en) Hybrid car
JP4376449B2 (en) Control device for hybrid vehicle
JP4158773B2 (en) Vehicle control device
JPH04297330A (en) Series-parallel complex hybrid car system
CN205381136U (en) New forms of energy power assembly system
JP3646963B2 (en) Hybrid car
CN113263905A (en) Power drive system and control method
KR20090044805A (en) Power delivery unit of hybrid electric vehicle
JP2001010361A (en) Drive gear for automobile
JP3646965B2 (en) Hybrid car
JP2008162397A (en) Gear rattle reducing device for hybrid vehicle
JP3648720B2 (en) Hybrid car
JP3933117B2 (en) Hybrid vehicle drive control device
JP4106848B2 (en) Control device for a plurality of rotating devices in a vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees