JP3646181B2 - Method for producing metal separator for fuel cell - Google Patents

Method for producing metal separator for fuel cell Download PDF

Info

Publication number
JP3646181B2
JP3646181B2 JP2002047981A JP2002047981A JP3646181B2 JP 3646181 B2 JP3646181 B2 JP 3646181B2 JP 2002047981 A JP2002047981 A JP 2002047981A JP 2002047981 A JP2002047981 A JP 2002047981A JP 3646181 B2 JP3646181 B2 JP 3646181B2
Authority
JP
Japan
Prior art keywords
gas flow
flow path
metal separator
fuel cell
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002047981A
Other languages
Japanese (ja)
Other versions
JP2003249241A (en
Inventor
雅生 丸山
Original Assignee
三吉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三吉工業株式会社 filed Critical 三吉工業株式会社
Priority to JP2002047981A priority Critical patent/JP3646181B2/en
Publication of JP2003249241A publication Critical patent/JP2003249241A/en
Application granted granted Critical
Publication of JP3646181B2 publication Critical patent/JP3646181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解質を挟んだアノードとカソードから成るセルを仕切るために用いる燃料電池用の金属製のセパレータに関し、特に、セパレータ成形時における歪みを是正した燃料電池用の金属セパレータの製造方法に関する。
【0002】
【従来の技術】
近年、開発が進んでいる、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに直接変換する燃料電池は、発電効率が高く、発電に伴う熱を利用してコジェネレーションシステムとして用いることが可能である。また、燃料電池は、環境汚染や地球温暖化の原因となっている窒素酸化物等の排出が少ないため、自動車、家電等に用いるクリーンなエネルギー供給方法として注目されている。
【0003】
燃料電池の開発は、初期の燐酸型燃料電池から、溶融炭酸塩型燃料電池、固体電解質型燃料電池へと移行過程にあり、図1乃至図3に示すように、溶融炭酸塩型の燃料電池12においては、電解質として溶融炭酸塩を多孔質物質に染み込ませた電解質板4をアノード(燃料極)5とカソード(酸素極)6の両電極で挟んだサンドイッチ構造のものを一つのセル7とし、アノード5とカソード6との間で発生する電位差により発電が行われるようにしている。燃料電池12は、各セル7の両側にセパレータ1を配して多層に積層させてスタックし、必要な発電能力を持たせている。
【0004】
仕切りとなるセパレータ1は、周辺部を除く中央部分にガス流路2となる凹凸形状を表裏両面に形成し、平坦となっている周辺部3にアノードガス供給用マニホールド10と、カソードガス供給用マニホールド11を設け、セパレータ1の表裏両面にそれぞれ異なるガスを流通するようにしている。
【0005】
図3に示すように、セパレータ1は、表裏両面に形成した縦長凹凸形状のガス流路2の頂部がアノード5若しくはカソード6と接触し、各電極に電子を伝達すると共に、金属セパレータ1の表裏両面に形成された一方のガス流路2Aからアノード5にアノードガス(燃料ガス)を、他方のガス流路2Cからカソード6にカソードガス(酸素ガス)を供給し、アノード5とカソード6との間で発生する電位差により発電が行われるようにしている。なお、図3中13は、スペーサーを示している。
【0006】
アノード5若しくはカソード6の周囲には、シール板8,9を設け、該シール板8,9の端部を屈曲してセパレータ1の周辺部3に重ね合わせ、この重ね合わせた部分をシールして、セパレータ1に機密性のあるガス流路2を形成している。
【0007】
従来において、燃料電池用のセパレータは、ガス不透過性と導電性に優れたカーボングラファイトを用いて形成されていた。
【0008】
しかし、カーボングラファイトは、素材に展延性がないため、硬い炭素系素材の板材に、ガス流路となる凹凸形状を、もっぱら切削加工等の機械的加工により形成する必要があった。カーボングラファイトは、材料自体が高価であることに加え、切削加工等の機械的加工のコストが高く、量産も困難であり、50〜100kWの出力が必要な自動車用燃料電池では、スタック1個当りに数百枚のセパレータを使うため、セパレータは燃料電池の製造コストの約40%近くを占め、価格は1枚当り数万円もするため、燃料電池のコストアップの要因ともなっていた。
【0009】
また、カーボングラファイトは、多孔質材料であり、強度的に十分ではなく、複数のセルを積層して締め付け固定すると、経時的にセパレータが変形し、破損する、と云う問題があった。
【0010】
このため、近年においては、従来のカーボングラファイトの代わりに、金属製の薄板を用いることで、強度を高めて要求される強度を保持しつつ、重さを従来の約半分と軽くし、比較的安価なプレス加工によりガス流路の成形を可能とした金属セパレータの開発がなされている。
【0011】
溶融炭酸塩型の燃料電池は、600℃〜700℃の高温で運転され、腐食性の高い炭酸塩を電解質として用いているため、水蒸気や流れ出した電解質等によりセパレータ材料が腐食されてしまうおそれがあり、ステンレス鋼、アルミ、チタン等の金属板の表面にニッケルをクラッドしたクラッド材等を用いて金属セパレータを形成して、腐食による耐久性の問題を解決している。
【0012】
【発明が解決しようとする課題】
しかしながら、従来の金属セパレータ1は、図7に示すように、ガス供給用のマニホールドを形成する必要性から、金属板のセンター部に凹凸形状のガス流路2を成形し、ガス流路2の周囲に枠状の周辺部3を残存成形している。ガス流路2を成形した金属セパレータ1のセンター部は、プレスにより圧延方向(図7図示矢印Y方向)に力が加わって圧延され、一方、プレスされない周辺部3は、圧延されずに元の状態を保っている。このため、ガス流路2の形成のために圧延されたセンター部の延びが、ガス流路2の長手方向と直交する周辺部3aによって規制された状態となり、金属セパレー1がガス流路2を形成したセンター部を中心として、凹状若しくは凸状に湾曲する歪みを生じる(図7(b)及び(c)参照)。この歪みは、金属板のセンター部をプレスして、凹凸形状に圧延することによって生じる不可避的な現象である。
【0013】
このように、歪みを生じた金属セパレータを用いてセルをスタックすると、金属セパレータと隣接する部材との面圧が、燃料電池全体で均一とならず、面圧の低い領域で、導電性が低下し、燃料電池動作時の内部抵抗が大きくなるため、発電性能が低下する、と云う問題があった。また、面圧の低い領域では、熱伝導性も低下するため、燃料電池の内部温度も不均一化し、発電性能の低下につながる、と云う問題もあった。更に、歪んだ金属セパレータを積層して燃料電池を構成すると、セルと金属セパレータとをスタックした周辺部において、ガスシール性を確保することが困難になる、と云う問題も生じる。
【0014】
そこで、本発明は、叙述の諸事情を鑑みて創案されたもので、金属製の薄板に凹凸形状のガス流路をプレス成形した後、簡単な第二工程により、金属板の圧延によって生じた歪みを是正し得る燃料電池用の金属セパレータの製造方法を提供することを課題とし、もって燃料電池の発電性能を向上させることを目的とする。
【0015】
【課題を解決するための手段】
上記技術的課題を解決するために、
請求項1記載の発明の手段は、電解質を挟んだアノードとカソードの各電極にアノードガス又はカソードガスを供給する縦長凹凸形状のガス流路を成形した燃料電池用の金属セパレータの製造方法において、金属板の左右上下に周辺部を残存して、センター部に縦長凹凸形状のガス流路をプレス成形する第一工程と、ガス流路の長手方向と平行となる周辺部を固定して、ガス流路の長手方向と直交する周辺部にのみ、ガス流路の長手方向と直交する方向の引張力を加える第二工程とを備えたこと、にある。
【0016】
請求項1記載の発明にあっては、ガス流路をプレス成形する第一工程の後に、ガス流路の長手方向と直交する周辺部を、ガス流路の長手方向と直交する方向に引っ張り延ばし、ガス流路の形成によって圧延されたセンター部の延びが、ガス流路の長手方向と直交する圧延されない周辺部で規制されることによって生じていた金属セパレータの歪みを、是正する。
【0017】
第二工程においては、ガス流路の長手方向と平行となる周辺部を固定し、ガス流路の長手方向に対して直交する周辺部にのみ引張力を加えているため、センター部のガス流路に引張力が影響せず、正常なガス流路の形態を保ったまま、金属セパレータ全体として平坦度を改善することができ、歪みのない金属セパレータを得ることができる。
【0018】
【発明の実施の形態】
以下、本発明の一実施例を、図面を参照にしながら説明する。
先ず、図4に示すように、金属板1’の左右上下の全周辺部3を残存して、金属板1’のセンター部分の表裏両面に凹凸形状のガス流路2をプレス成形する第一工程を行う。
【0019】
次に、図5に示すように、ガス流路2の長手方向と平行となる周辺部3の左右両端部を下方に折り曲げて、係止片1aを突設する。金属セパレータ1は、ガス流路2成形時のプレスによって、センター部が圧延される。圧延されたセンター部の延びは、ガス流路2の長手方向と直交する圧延されない周辺部3aによって規制されるため、金属セパレータ1全体が、センター部を中心として、凹状若しくは凸状に湾曲した歪みを生じる(図5(b)及び(c)参照)。
【0020】
次に、第二工程として、ガス流路2の長手方向と平行となる周辺部3b(C―D間、H−G間)を固定し、ガス流路2の長手方向と直交する周辺部3a(BCHA部分及びDEFG部分)にのみ、ガス流路の長手方向と直交する方向(図5図示矢印Y方向)と同一方向の引張力を加える。
【0021】
すなわち、ガス流路2の長手方向と平行となる周辺部3b(C−D間、H−G間)を、上下から治具で固定し、ガス流路2の長手方向と直交する周辺部3aの下部にカム金型(押すことで左右に開く金型)を設置し、該カム金型を係止片1aに係止し、カム金型を左右に開いて、係止片1aを押し広げることで、周辺部3a(BCHA間、DEFG間)にのみ、ガス流路の長手方向と直交する方向(図5図示矢印Y方向)と同一方向(図5図示矢印X方向)の引張力を加える。
【0022】
図6は、引張力を加えた後の金属セパレータ1の状態を示し、カム型で係止片1aを押し広げることによって、引張力が加えられた周辺部3aは、引張力が加えられた方向に少々圧延している。
【0023】
第二工程において、周辺部3aを、ガス流路の長手方向と直交する方向に引っ張り延ばしているため、圧延されていなかった周辺部3aで規制されていたセンター部の延びが解放され、金属セパレータ1の歪みを是正することができる(図6(b)及び(c)参照)。
【0024】
第二工程においては、ガス流路2の長手方向と平行となる周辺部3bを固定して、周辺部3aのみに引張力を加えているため、プレス成形されたガス流路2に引張力が影響せず、正常なガス流路2の形態を維持することができる。
【0025】
そして、周辺部3を製品形状にカットして、歪みのない金属セパレータ1を得ることができる。歪みのない金属セパレータ1は、スタックしたアノード5及びカソード6との接触面積を確保することができるため、導電性が向上し、燃料電池12の発電性能を向上することができる。
【0026】
また、各電極5,6との接触面積を確保した歪みのない金属セパレータ1は、熱伝導性も向上し、燃料電池12の発電性能の向上につなげることができる。更に、スタックしたセル7と金属セパレータ1の周辺部3a,3bのガスシール性も向上するため、機密性を確保して、燃料電池12の性能が向上する。
【0027】
【発明の効果】
本発明は、上記した構成となっているので、以下に示す効果を奏する。
請求項1記載の発明にあっては、ガス流路をプレス成形する第一工程の後に、ガス流路の長手方向と直交する上下の周辺部に、ガス流路を成形した圧延方向と同一方向の引張力を加える簡単な第二工程を備えることにより、ガス流路の長手方向と直交する圧延しない周辺部で規制されていたセンター部の延びを、該周辺部に引張力を加えることによって解放し、金属セパレータ全体として平坦度を確保した、歪みのない金属セパレータを得ることができる。
【0028】
また、第二工程においては、ガス流路の長手方向と平行となる周辺部を固定して、ガス流路の長手方向と直交する周辺部にのみ引張力を加えるため、プレス成形されたガス流路に引張力が影響せず、正常なガス流路の形態を維持して、金属セパレータ全体としての平坦度を改善することができる。
【0029】
ガス流路をプレス成形する第一工程の後に、簡単な第二工程を備えたことによって得られる、正常なガス流路を成形した歪みのない金属セパレータは、アノード及びカソードとの接触面積を確保することができ、導電性、熱伝導性及びシール性を向上して、該金属セパレータを用いた燃料電池の発電性能を向上する。
【図面の簡単な説明】
【図1】燃料電池を示す平面図。
【図2】単一のセルの構造及び金属セパレータを示す斜視図。
【図3】金属セパレータを介して複数のセルをスタックした構造を示す説明図。
【図4】本発明の実施例の第一工程を示す説明図。
【図5】 (a)第一工程後の金属セパレータの平面図、(b)底面図、(c)側面図。
【図6】 (a)第二工程後の金属セパレータの平面図、(b)底面図、(c)側面図。
【図7】従来例を示し、(a)ガス流路成形後の金属セパレータの平面図、(b)底面図、(c)側面図。
【符号の説明】
1 ; 金属セパレータ
1’ ; 金属板
1a ; 係止片
2 ; ガス流路
2A ; アノードガス流路
2C ; カソードガス流路
3 ; 周辺部
3a ; ガス流路の長手方向と直交する周辺部
3b ; ガス流路の長手方向と平行となる周辺部
4 ; 電解質板
5 ; アノード
6 ; カソード
7 ; セル
8 ; シール板
9 ; シール板
10 ; マニホールド
11 ; マニホールド
12 ; 燃料電池
13 ; スペーサー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal separator for a fuel cell used for partitioning a cell composed of an anode and a cathode sandwiching an electrolyte, and more particularly to a method of manufacturing a metal separator for a fuel cell in which distortion during the molding of the separator is corrected.
[0002]
[Prior art]
Fuel cells that have been developed in recent years and that directly convert chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen have high power generation efficiency, and use cogeneration systems to generate heat. Can be used. In addition, fuel cells are attracting attention as a clean energy supply method used for automobiles, home appliances, and the like because they emit less nitrogen oxides that cause environmental pollution and global warming.
[0003]
The development of the fuel cell is in the process of transition from the initial phosphoric acid type fuel cell to the molten carbonate type fuel cell and the solid electrolyte type fuel cell. As shown in FIGS. 1 to 3, the molten carbonate type fuel cell is used. In FIG. 12, a single cell 7 has a sandwich structure in which an electrolyte plate 4 in which a molten carbonate is infiltrated into a porous material as an electrolyte is sandwiched between both anode (fuel electrode) 5 and cathode (oxygen electrode) 6 electrodes. The power generation is performed by the potential difference generated between the anode 5 and the cathode 6. The fuel cell 12 has separators 1 disposed on both sides of each cell 7 and is stacked by being stacked in multiple layers to have a necessary power generation capacity.
[0004]
The separator 1 serving as a partition is formed with concave and convex shapes to be gas flow paths 2 on the front and back surfaces in the central portion excluding the peripheral portion, and an anode gas supply manifold 10 and a cathode gas supply in the flat peripheral portion 3. A manifold 11 is provided so that different gases are circulated on both the front and back surfaces of the separator 1.
[0005]
As shown in FIG. 3, the separator 1 is configured such that the tops of the vertically elongated gas flow paths 2 formed on both the front and back surfaces are in contact with the anode 5 or the cathode 6 to transmit electrons to each electrode, and at the same time, the front and back of the metal separator 1. An anode gas (fuel gas) is supplied to the anode 5 from one gas flow path 2A formed on both surfaces, and a cathode gas (oxygen gas) is supplied to the cathode 6 from the other gas flow path 2C. Power generation is performed by the potential difference generated between the two. In addition, 13 in FIG. 3 has shown the spacer.
[0006]
Seal plates 8 and 9 are provided around the anode 5 or the cathode 6, the end portions of the seal plates 8 and 9 are bent and overlapped with the peripheral portion 3 of the separator 1, and the overlapped portion is sealed. A gas flow path 2 having confidentiality is formed in the separator 1.
[0007]
Conventionally, a separator for a fuel cell has been formed using carbon graphite having excellent gas impermeability and conductivity.
[0008]
However, since carbon graphite has no extensibility in the material, it has been necessary to form a concave-convex shape as a gas flow path on a hard carbon-based material by mechanical processing such as cutting. In addition to the high cost of the material itself, carbon graphite has a high cost for mechanical processing such as cutting, is difficult to mass-produce, and for fuel cells for automobiles that require an output of 50 to 100 kW, per stack Since several hundred separators are used, the separator occupies about 40% of the manufacturing cost of the fuel cell, and the price is tens of thousands of yen per sheet, which has been a factor in increasing the cost of the fuel cell.
[0009]
Further, carbon graphite is a porous material, and is not sufficient in strength. When a plurality of cells are stacked and fastened, the separator is deformed and broken over time.
[0010]
Therefore, in recent years, instead of the conventional carbon graphite, by using a metal thin plate, while maintaining the required strength by increasing the strength, the weight is reduced to about half of the conventional, relatively Development of metal separators capable of forming gas flow paths by inexpensive press working has been made.
[0011]
Since the molten carbonate fuel cell is operated at a high temperature of 600 ° C. to 700 ° C. and uses highly corrosive carbonate as an electrolyte, the separator material may be corroded by water vapor, flowing-out electrolyte, or the like. In addition, a metal separator is formed using a clad material in which nickel is clad on the surface of a metal plate such as stainless steel, aluminum, titanium, etc. to solve the durability problem due to corrosion.
[0012]
[Problems to be solved by the invention]
However, as shown in FIG. 7, the conventional metal separator 1 is formed with an uneven gas flow path 2 in the center portion of the metal plate because of the necessity of forming a gas supply manifold. A frame-shaped peripheral portion 3 is formed around the periphery. The center part of the metal separator 1 in which the gas flow path 2 is formed is rolled by pressing in the rolling direction (the arrow Y direction in FIG. 7), while the unpressed peripheral part 3 is not rolled and is not rolled. Keeps the state. For this reason, the extension of the center portion rolled for forming the gas flow path 2 is regulated by the peripheral portion 3 a orthogonal to the longitudinal direction of the gas flow path 2, and the metal separator 1 passes through the gas flow path 2. Centering on the formed center portion, a distortion that curves in a concave shape or a convex shape is generated (see FIGS. 7B and 7C). This distortion is an unavoidable phenomenon caused by pressing the center portion of the metal plate and rolling it into an uneven shape.
[0013]
As described above, when cells are stacked using a distorted metal separator, the contact pressure between the metal separator and the adjacent member is not uniform throughout the fuel cell, and the conductivity decreases in a region where the contact pressure is low. However, since the internal resistance during the operation of the fuel cell is increased, there is a problem that the power generation performance is lowered. Further, in the region where the surface pressure is low, the thermal conductivity is also lowered, so that the internal temperature of the fuel cell is also made uneven, leading to a decrease in power generation performance. Further, when a fuel cell is configured by stacking distorted metal separators, there is a problem that it is difficult to ensure gas sealing performance in the peripheral portion where the cells and metal separators are stacked.
[0014]
Therefore, the present invention was created in view of the various circumstances described above, and was produced by rolling a metal plate by a simple second step after press forming an uneven gas channel on a metal thin plate. An object of the present invention is to provide a method of manufacturing a metal separator for a fuel cell that can correct the distortion, thereby improving the power generation performance of the fuel cell.
[0015]
[Means for Solving the Problems]
In order to solve the above technical problem,
According to a first aspect of the present invention, there is provided a method for producing a metal separator for a fuel cell in which a vertically elongated uneven gas flow path for supplying anode gas or cathode gas to anode and cathode electrodes sandwiching an electrolyte is formed. The peripheral part remains on the left and right and up and down of the metal plate, the first step of press-forming a vertically elongated gas channel in the center part, and the peripheral part parallel to the longitudinal direction of the gas channel are fixed, and the gas And a second step of applying a tensile force in a direction orthogonal to the longitudinal direction of the gas flow channel only to a peripheral portion orthogonal to the longitudinal direction of the flow channel .
[0016]
In the first aspect of the present invention, after the first step of press-molding the gas flow path, the peripheral portion perpendicular to the longitudinal direction of the gas flow path is stretched in a direction perpendicular to the longitudinal direction of the gas flow path. The distortion of the metal separator caused by the extension of the center portion rolled by the formation of the gas flow path being restricted at the non-rolled peripheral portion orthogonal to the longitudinal direction of the gas flow path is corrected.
[0017]
In the second step, the peripheral part parallel to the longitudinal direction of the gas flow path is fixed, and a tensile force is applied only to the peripheral part orthogonal to the longitudinal direction of the gas flow path. The tensile force does not affect the path, and the flatness of the metal separator as a whole can be improved while maintaining a normal gas flow path configuration, and a metal separator without distortion can be obtained.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First, as shown in FIG. 4, the left and right and upper and lower peripheral portions 3 of the metal plate 1 ′ remain, and the first and second uneven gas flow paths 2 are press-formed on both the front and back surfaces of the center portion of the metal plate 1 ′. Perform the process.
[0019]
Next, as shown in FIG. 5, the left and right end portions of the peripheral portion 3 parallel to the longitudinal direction of the gas flow path 2 are bent downward to project the locking pieces 1a. The metal separator 1 is rolled at the center by a press at the time of forming the gas flow path 2. Since the extension of the rolled center part is regulated by the non-rolled peripheral part 3a orthogonal to the longitudinal direction of the gas flow path 2, the entire metal separator 1 is strained in a concave or convex shape with the center part as the center. (See FIGS. 5B and 5C).
[0020]
Next, as a second step, a peripheral portion 3b (between CD and HG) that is parallel to the longitudinal direction of the gas flow path 2 is fixed, and a peripheral portion 3a that is orthogonal to the longitudinal direction of the gas flow path 2 A tensile force in the same direction as the direction (arrow Y direction in FIG. 5) perpendicular to the longitudinal direction of the gas flow path is applied only to the (BCHA portion and DEFG portion).
[0021]
That is, a peripheral portion 3b (between CD and HG) parallel to the longitudinal direction of the gas flow path 2 is fixed with a jig from above and below, and the peripheral portion 3a orthogonal to the longitudinal direction of the gas flow path 2 A cam mold (a mold that opens to the left and right when pressed) is installed at the lower part of the frame, the cam mold is locked to the locking piece 1a, the cam mold is opened to the left and right, and the locking piece 1a is expanded. Thus, only in the peripheral portion 3a (between BCHA and DEFG), a tensile force is applied in the same direction (arrow Y direction in FIG. 5) as the direction orthogonal to the longitudinal direction of the gas flow path (arrow Y direction in FIG. 5). .
[0022]
FIG. 6 shows the state of the metal separator 1 after a tensile force is applied, and the peripheral portion 3a to which the tensile force is applied by pushing and expanding the locking piece 1a with a cam type is the direction in which the tensile force is applied. It is rolled a little.
[0023]
In the second step, the peripheral portion 3a is stretched in a direction perpendicular to the longitudinal direction of the gas flow path, so that the extension of the center portion restricted by the peripheral portion 3a that has not been rolled is released, and the metal separator 1 distortion can be corrected (see FIGS. 6B and 6C).
[0024]
In the second step, the peripheral portion 3b parallel to the longitudinal direction of the gas flow path 2 is fixed, and a tensile force is applied only to the peripheral portion 3a, so that the tensile force is applied to the press-formed gas flow path 2. It is possible to maintain the normal shape of the gas flow path 2 without being affected.
[0025]
And the peripheral part 3 can be cut into a product shape, and the metal separator 1 without a distortion can be obtained. Since the metal separator 1 without distortion can secure a contact area with the stacked anode 5 and cathode 6, the conductivity is improved and the power generation performance of the fuel cell 12 can be improved.
[0026]
Further, the distortion-free metal separator 1 that secures the contact area with each of the electrodes 5 and 6 can improve thermal conductivity and improve the power generation performance of the fuel cell 12. Furthermore, since the gas sealing properties of the stacked cells 7 and the peripheral portions 3a and 3b of the metal separator 1 are also improved, confidentiality is ensured and the performance of the fuel cell 12 is improved.
[0027]
【The invention's effect】
Since the present invention has the above-described configuration, the following effects can be obtained.
In the first aspect of the present invention, after the first step of press-molding the gas flow path, the same direction as the rolling direction in which the gas flow path is formed in the upper and lower peripheral portions orthogonal to the longitudinal direction of the gas flow path. By providing a simple second step of applying a tensile force, the extension of the center part, which is regulated in the non-rolling peripheral part orthogonal to the longitudinal direction of the gas flow path, is released by applying a tensile force to the peripheral part. And the metal separator which has ensured flatness as the whole metal separator, and has no distortion can be obtained.
[0028]
In the second step, the peripheral part parallel to the longitudinal direction of the gas flow path is fixed, and a tensile force is applied only to the peripheral part orthogonal to the longitudinal direction of the gas flow path. The tensile force does not affect the path, and the normal shape of the gas flow path can be maintained to improve the flatness of the entire metal separator.
[0029]
A non-distorted metal separator molded with a normal gas flow path, obtained by providing a simple second process after the first process of press molding the gas flow path, ensures a contact area with the anode and cathode. It is possible to improve the electric power generation performance of the fuel cell using the metal separator by improving the electrical conductivity, the thermal conductivity and the sealing property.
[Brief description of the drawings]
FIG. 1 is a plan view showing a fuel cell.
FIG. 2 is a perspective view showing a structure of a single cell and a metal separator.
FIG. 3 is an explanatory diagram showing a structure in which a plurality of cells are stacked via a metal separator.
FIG. 4 is an explanatory view showing a first step of an embodiment of the present invention.
5A is a plan view of the metal separator after the first step, FIG. 5B is a bottom view, and FIG. 5C is a side view.
6A is a plan view of the metal separator after the second step, FIG. 6B is a bottom view, and FIG. 6C is a side view.
7 shows a conventional example, (a) a plan view of a metal separator after forming a gas flow path, (b) a bottom view, and (c) a side view.
[Explanation of symbols]
1; Metal separator 1 ′; Metal plate 1a; Locking piece 2; Gas flow path 2A; Anode gas flow path 2C; Cathode gas flow path 3; Peripheral part 3a; Peripheral part 3b orthogonal to the longitudinal direction of the gas flow path; Peripheral part 4 parallel to the longitudinal direction of the gas flow path; Electrolyte plate 5; Anode 6; Cathode 7; Cell 8; Seal plate 9; Seal plate 10; Manifold 11; Manifold 12;

Claims (1)

電解質を挟んだアノードとカソードの各電極にアノードガス又はカソードガスを供給する縦長凹凸形状のガス流路を成形した燃料電池用の金属セパレータの製造方法において、金属板の左右上下に周辺部を残存して、センター部に、縦長凹凸形状のガス流路をプレス成形する第一工程と、前記ガス流路の長手方向と平行となる周辺部を固定して、ガス流路の長手方向と直交する周辺部にのみ、ガス流路の長手方向と直交する方向の引張力を加える第二工程とを備えた燃料電池用の金属セパレータの製造方法。In a method of manufacturing a metal separator for a fuel cell in which a vertically elongated gas flow path for supplying anode gas or cathode gas to anode and cathode electrodes sandwiching an electrolyte is formed, the peripheral portions remain on the left, right, top and bottom of the metal plate Then, a first step of press-molding a vertically elongated gas passage in the center portion and a peripheral portion parallel to the longitudinal direction of the gas passage are fixed and orthogonal to the longitudinal direction of the gas passage The manufacturing method of the metal separator for fuel cells provided with the 2nd process which applies the tensile force of the direction orthogonal to the longitudinal direction of a gas flow path only to a peripheral part.
JP2002047981A 2002-02-25 2002-02-25 Method for producing metal separator for fuel cell Expired - Fee Related JP3646181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002047981A JP3646181B2 (en) 2002-02-25 2002-02-25 Method for producing metal separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002047981A JP3646181B2 (en) 2002-02-25 2002-02-25 Method for producing metal separator for fuel cell

Publications (2)

Publication Number Publication Date
JP2003249241A JP2003249241A (en) 2003-09-05
JP3646181B2 true JP3646181B2 (en) 2005-05-11

Family

ID=28660899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002047981A Expired - Fee Related JP3646181B2 (en) 2002-02-25 2002-02-25 Method for producing metal separator for fuel cell

Country Status (1)

Country Link
JP (1) JP3646181B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110216183A (en) * 2018-03-02 2019-09-10 丰田自动车株式会社 The manufacturing method of partition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869798B1 (en) * 2007-04-25 2008-11-21 삼성에스디아이 주식회사 Stack for fuel cell
JP6032115B2 (en) 2013-04-24 2016-11-24 トヨタ紡織株式会社 Metal plate forming method and forming apparatus
JP6146134B2 (en) * 2013-05-24 2017-06-14 トヨタ紡織株式会社 Plate height measuring method, height measuring auxiliary device and height measuring device
JP6213212B2 (en) * 2013-12-18 2017-10-18 日産自動車株式会社 Metal separator transport device for fuel cell, and metal separator transport method for fuel cell
JP6237271B2 (en) * 2014-01-29 2017-11-29 日産自動車株式会社 Manufacturing apparatus for metal separator for fuel cell and manufacturing method for metal separator for fuel cell
US9768453B2 (en) 2015-11-20 2017-09-19 Shimizu-seisakusyo co., ltd. Fuel cell separator and method for producing the same
JP7368295B2 (en) * 2020-03-31 2023-10-24 本田技研工業株式会社 Method for manufacturing a fuel cell separator and apparatus for manufacturing a fuel cell separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110216183A (en) * 2018-03-02 2019-09-10 丰田自动车株式会社 The manufacturing method of partition

Also Published As

Publication number Publication date
JP2003249241A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
US10658683B2 (en) Method for producing electrolyte membrane electrode assembly for fuel cells
JP3569491B2 (en) Fuel cell separator and fuel cell
JP5078689B2 (en) Fuel cell stack
CN101540401A (en) Interlockable bead seal
KR102073581B1 (en) Method for producing fuel cell separator
JP5011627B2 (en) Fuel cell
JP2002042837A (en) Sealing structure for fuel cell
JP2002184422A (en) Separator for fuel cell
JP3646181B2 (en) Method for producing metal separator for fuel cell
JP4510267B2 (en) Fuel cell stack
JP4984459B2 (en) Fuel cell and resin frame
JP3700016B2 (en) Method for producing metal separator for fuel cell
JP5161809B2 (en) Cell pressing assembly and fuel cell stack
JP5343532B2 (en) Fuel cell and fuel cell stack manufacturing method
US8053134B2 (en) Fuel cell compression retention system using planar strips
US8703353B2 (en) Separator for fuel cell
JP3448557B2 (en) Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
CN217719696U (en) Membrane electrode structure of fuel cell, electric pile structure and fuel cell
JP2006120497A (en) Metal separator and method for forming flow passage thereof
JPH1092447A (en) Layer-built fuel cell
JP3400976B2 (en) Separator for polymer electrolyte fuel cell and fuel cell
CN101630743A (en) Compliant feed region in stamped metal flowfield of a fuel cell plate to eliminate bias
KR101417056B1 (en) Separator for fuel cell
KR101898738B1 (en) Method for oxide catalyst collector of sofc stack having metal support cell
US10847826B2 (en) Polymer electrolyte fuel cells and production method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees