JP3645647B2 - Polylactic acid polymer composition and molded product thereof - Google Patents

Polylactic acid polymer composition and molded product thereof Download PDF

Info

Publication number
JP3645647B2
JP3645647B2 JP08375196A JP8375196A JP3645647B2 JP 3645647 B2 JP3645647 B2 JP 3645647B2 JP 08375196 A JP08375196 A JP 08375196A JP 8375196 A JP8375196 A JP 8375196A JP 3645647 B2 JP3645647 B2 JP 3645647B2
Authority
JP
Japan
Prior art keywords
polymer
aliphatic
polylactic acid
segment
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08375196A
Other languages
Japanese (ja)
Other versions
JPH09272790A (en
Inventor
雅男 松井
健志 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP08375196A priority Critical patent/JP3645647B2/en
Publication of JPH09272790A publication Critical patent/JPH09272790A/en
Application granted granted Critical
Publication of JP3645647B2 publication Critical patent/JP3645647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性、透明性、耐衝撃性、柔軟性などが改良された生分解性ポリマー組成物およびその成型品に関する。
【0002】
【従来の技術】
自然環境保護の見地から、自然環境中で分解する生分解性ポリマー及びその成型品が求められている。近年、脂肪族ポリエステルなどの自然分解性樹脂が開発されつつあり、特にポリ乳酸は融点が170〜180℃と十分に高く、しかも透明性にすぐれるため包装材料などとして大いに期待されている。しかしポリ乳酸は、その剛直な分子構造のために、耐衝撃性が劣り脆いという欠点がある。さらに意外にも、ポリ乳酸を射出成型したり押出し成型した製品は耐熱変形性に劣り、その融点以下の50〜100℃程度の比較的低温でも容易に熱変形することを、本発明者らは見出だした。食品用包装容器の多くは、当然耐熱変形性が高いことが必要であり、また一般の容器や包装材でも成型後の輸送、保管中や使用中に、例えば40〜60℃程度の温度にさらされることがあり、それに耐える熱変形温度の高いものが求められる。さらに、包装材料や容器では、高い透明性が要求される場合が多い。従来の脂肪族ポリエステルの成型品は、耐熱性と透明性とを両立させることは難しく、両者を満足する生分解性包装材料や容器が求められている。さらにポリ乳酸は、溶融粘度が高く、製造や成型が困難という問題がある。 ポリ乳酸に他の脂肪族ポリエステルをブロック共重合して、柔軟性や透明性に優れるポリマーが得られることは、特開平7−173266号に開示されている。しかし、耐熱変形性の改良、特に耐熱性と透明性とを合せ持つものについては、知られていないのが現状である。
【0003】
【発明が解決しようとする課題】
本発明の目的は、自然環境下で完全に分解可能であり、且つ熱変形温度と透明性が共に改良され、しかも溶融流動性が改善されて実用性が大幅に高められた、新規なポリ乳酸系重合体組成物およびその成型品を提供することにある。
【0004】
【課題を解決するための手段】
上記本発明の目的は、次の(1)、(2)、(3)及び(4)の項目を全て満足する新規重合体組成物、およびその成型品によって達成される。
【0005】
(1)乳酸を主成分とし、「脂肪族ポリエーテル、脂肪族ポリラクトン、脂肪族ラクトン、脂肪族ポリカーボネート及びそれらのオリゴマー」の群より選ばれた1種以上の成分が1〜30重量%共重合された結晶性ポリエステル重合体(A)と、脂肪族ジカルボン酸および鎖状ジオールを成分とする結晶性ポリエステルセグメントとポリ乳酸セグメントとが結合されているポリエステルブロック共重合体(B)とが混合されている。
【0006】
(2)組成物中の重合体(A)のポリ乳酸セグメントの結晶の融点が、140℃以上であり、且つその溶融吸熱量が、10ジュール/グラム以上である。
【0007】
(3)組成物中の重合体(B)の上記ジカルボン酸とジオールを成分とするセグメントの結晶の融点が、60〜130℃の範囲であり、且つ重合体(B)の構成成分中の乳酸由来の成分の比率が3〜50重量%である。
【0008】
(4)重合体(A)と重合体(B)との混合比率(A/B)が、97/3〜40/60の範囲である。
【0009】
ここで、乳酸を主成分とするポリエステル重合体(A)とは、重合体中のL−乳酸及び/又はD−乳酸由来の成分が50%以上のポリエステルを言い、ポリL−乳酸ホモポリマー、ポリD−乳酸ホモポリマー、ポリL/D乳酸共重合体、及びそれらに他の成分を50重量%以下共重合又は/及び混合したものをすべて包含する。結晶性重合体とは、熱処理又は/及び延伸により十分結晶化したポリマー試料を、走査型示差熱量計(DSC)やX線回折装置によって分析したとき、主鎖の結晶が検出可能なものを言い、例えばDSCでは結晶の溶融による吸熱ピークが0.5ジュール(J)/グラム(g)以上、特に1J/g以上であれば検出は容易である。また、ポリマーの融点は、十分結晶化、乾燥したポリマーを、窒素ガス中、試料量10mg、昇温速度10℃度/minでDSC分析した時の、溶融による吸熱のピーク値温度とする。また、セグメントは、ポリマー分子鎖の一部分を言い、ブロックと言うこともある。
【0010】
ポリ乳酸に共重合可能な成分としては、エステル結合形成性のものがよく知られており、例えば(1)グリコール酸、ヒドロキシブチルカルボン酸などのような脂肪族ヒドロキシカルボン酸、(2)グリコリド、ブチロラクトン、カプロラクトンなどの脂肪族ラクトン、(3)エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオールなどのような脂肪族ジオール、(4)ポリエチレングリコール、ポリプロピレングリコール、ポリエチレン/プロピレングリコール(共重合体)、ポリブチレンエーテル、ジエチレングリコール、トリエチレングリコール、エチレン/プロピレングリコールなどのポリアルキレンエーテルおよびそのオリゴマー、(5)両末端に水酸基を持つポリブチレンカーボネート、ポリヘキサンカーボネート、ポリオクタンカーボネートなどの脂肪族ポリカーボネートおよびそのオリゴマー、(6)コハク酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸などの脂肪族ジカルボン酸などが挙げられる。この他にテレフタル酸、イソフタル酸、スルホイソフタル酸、フタル酸、ナフタレンジカルボン酸などの芳香族成分も応用可能である。上記ポリエステル重合原料は、ポリ乳酸にランダム共重合又は/及びブロック共重合することが出来る。一般に、ランダム共重合ではポリマーの結晶性が損なわれる傾向が強く、結晶性を保つには、第2成分の共重合比率(重量比)は20%程度以下、特に1〜10%程度が好ましいことが多い。一方ブロック共重合では、あまり結晶性を損なわずに例えば耐衝撃性や柔軟性などを改良することが出来る。また、上記ポリエステル重合原料以外に、例えばイソシアネート化合物、エポキシ化合物、単官能化合物、3官能以上の多官能化合物を副次的に用いることも出来る。
【0011】
本発明組成物を構成する重合体(A)には、乳酸以外の必須構成成分として「脂肪族ポリエーテル、脂肪族ポリラクトン、脂肪族ラクトン、脂肪族ポリカーボネートおよびそれらのオリゴマー」の群の1種以上が1〜30重量%共重合されている。ポリ乳酸は、融点と分解温度との差が小さい上に溶融粘度が高く、製造や加工が困難という問題点を有する。上記成分の共重合によって、(1)融点の低下、重合温度・成型温度などの低下、製造・加工の容易性向上、(2)溶融粘度の低下、製造・加工の容易性向上を図ることが出来る。本発明の目的には上記成分の共重合比率は1〜30重量%の範囲であることが必要であり、2〜25%が特に好ましく、3〜20%が最も広く用いられる。
【0012】
脂肪族ポリエーテルは、炭素数2〜4のアルキル基を持つものが特に好ましく、例えばポリエチレングリコール(ポリエチレンエーテル)、ポリプロピレングリコール、ポリブチレンエーテル、およびそれらの共重合体が挙げられる。同様に、それらのオリゴマーすなわち重合度2〜20程度のものも、同様に用いられる。脂肪族ポリエーテルの分子量は任意であるが、共重合比率が大きい時、例えば共重合比率が5%以上では、分子量は3000以上、特に6000以上が好ましい。脂肪族ポリエーテルを例えば2〜10%共重合することによって、ポリ乳酸系ポリマーの溶融粘度を、同じ分子量のポリ乳酸のそれの1/10程度以下にすることは容易である。すなわちポリエーテルはもっとも優れた溶融流動性改善剤の一つである。なお、脂肪族ポリエーテル(好ましくは分子量5万以下のもの)をポリ乳酸に混合しても、同様な流動性改善効果が見られるが、組成物の安定性は共重合よりも劣り、むらやブリードアウト現象が見られたり、透明度が低下する傾向がある。ポリ乳酸/脂肪族ポリエーテルブロック共重合物には脂肪族ポリエーテルは親和性が高く、安定に混合出来る。本発明の組成物には、必要に応じて、脂肪族ポリエーテルその他の副次的成分を少量(例えば10%以下、特に5%以下)混合してもよい。なお脂肪族ポリエーテルを成分として含む組成物には、ヒンダードフェノールその他の酸化防止剤、安定剤を用いることが好ましい。
【0013】
脂肪族ポリラクトンとしては、炭素数2以上のアルキル基を持つものが好ましく、例えばカプロラクトン、ブチロラクトン、グリコリドその他が挙げられる。共重合はブロック共重合でもランダム共重合でもよいが、融点の低下効果はランダム共重合法が大きい。溶融粘度低下効果では、炭素数6以上のラクトンのポリマー、例えばポリカプロラクトンが効果が高く好ましい。ブロック共重合体は、末端に水酸基を持つそれらのポリマーやオリゴマーと、ラクチドとを溶融状態で反応させれば得られ、ランダム共重合体はラクチドとそれらのラクトンモノマーを反応させれば得られる。ブロック共重合の場合、脂肪族ポリラクトンの分子量は4000以上が好ましく、6000以上が特に好ましく、8000〜30万のものが最も広く用いられる。脂肪族ポリラクトン(好ましくは分子量5万以下)をポリ乳酸に混合して、溶融粘度を低下させることが出来るが、共重合法に比べて透明性や安定性が劣る。しかし、ポリ乳酸/ポリラクトンブロック共重合体は、ポリラクトンとの親和性が高く、より均一且つ安定な混合物が得られるので、ポリエーテルの場合と同様に、脂肪族ポリラクトンを本発明組成物の副次的添加剤(流動性改善剤など)として用いることが出来る。
【0014】
脂肪族ポリカーボネートとしては、炭素数4以上のアルキル基を持つものが好ましく、ポリブチレンカーボネート、ポリヘキサンカーボネート、ポリオクタンカーボネートなどが挙げられ、それらのオリゴマーも同様に用いられる。ブロック共重合体は、末端に水酸基を持つそれらのポリマーやオリゴマーと、ラクチドとを溶融状態で反応させれば得られ、その場合脂肪族ポリカーボネートの分子量は、4000以上が好ましく、6000以上が特に好ましく、8000〜30万が最も広く用いられる。脂肪族ポリカーボネートをポリ乳酸に混合して、溶融粘度を低下させることが出来るが、共重合に比べて安定性や透明性が劣る。しかし、ポリ乳酸/脂肪族ポリカーボネートブロック共重合物は、ポリカーボネートとの親和性が高く、脂肪族ポリカーボネートを、ポリエーテルの場合と同様に、本発明組成物の副次的添加剤として混合することが出来る。
【0015】
本発明の組成物を構成する重合体(B)は、脂肪族ジカルボン酸及び鎖状ジオールを成分とする結晶性セグメントとポリ乳酸セグメントが結合されたものである。脂肪族ジカルボン酸は、炭素数4〜20程度のアルキル基をもつものが好ましく、例えばコハク酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸などが挙げられる。
【0016】
鎖状ジオールは、脂肪族ジオール、エーテル結合を持つジオールおよびカーボネート結合を持つジオールを包含する。脂肪族ジオールは、炭素数2〜12程度のアルキル基を持つものが好ましく、例えばエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、デカンジオールなどが挙げられる。エーテル結合を持つジオールは、炭素数2〜8程度のアルキル基をもつものが好ましく、例えばジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ヒドロキシエチル/ヒドロキシプロピルエーテル、ビスヒドロキシエトキシヘキサンなどが挙げられる。カーボネート結合を持つジオールは、炭素数4〜8程度のアルキル基を持つ物が好ましく、例えばビスヒドロキシブチレンカーボネート、ビスヒドロキシヘキサンカーボネートなどが挙げられる。
【0017】
ポリ乳酸のガラス転移温度は約60℃で、脂肪族ポリエステルの中では特別に高く、しかも結晶化温度も約100℃と相当高い。このため、射出成型、押出し成型などで溶融状態から急冷されると、ポリ乳酸はほぼ非結晶状態となり、(透明性は優れるが)、ガラス転移点付近から結晶化温度までの温度領域(50〜100℃)では、重力や外力によって容易に変形する傾向があることが判明した。重合体(B)を構成する脂肪族ジカルボン酸及び鎖状ジオールを成分とする結晶性セグメントの組成物中の融点は、60〜130℃の範囲であるが、そのガラス転移点や結晶化温度は常温以下で、溶融状態から急冷されても結晶化する。そこでこの低融点の結晶性ポリマーを含む本発明組成物の成型品は、その低融点結晶により40〜120℃程度の熱に耐え、それ以上の温度では重合体(A)を構成するポリ乳酸が結晶化しそれによって成型品は熱に耐え変形しない。つまり比較的低温での熱変形と、比較的高温での熱変形を、融点(及び結晶化温度)の異なる2種の結晶性ポリマーの混合によって、それぞれ分担させて防ぐのである。
【0018】
しかし、脂肪族ジカルボン酸及び鎖状ジオールからなる低融点ポリマーとポリ乳酸とは、相溶性がやや低く、混合物は白濁し透明性が低下する傾向がある。本発明は、重合体(B)に重合体(A)の主成分であるポリ乳酸セグメントを導入し、両者の相溶性を改良し上記白濁を抑制・改良するものである。この効果を得るには、重合体(B)に含まれるポリ乳酸成分の量は、3〜50重量%の範囲である必要があり、5〜30%が特に好ましく、7〜20%の範囲が最も広く用いられる。重合体(B)の中の乳酸成分が少な過ぎると、両成分の相溶性改善が不足となり、多すぎると脂肪族ジカルボン酸及び鎖状ジオールからなる低融点ポリマーの結晶化を妨げるからである。同様に、両成分の親和性を改良するために、重合体(A)に、脂肪族ジカルボン酸及び鎖状ジオールからなる低融点ポリマーを少量(例えば30%以下、特に3〜20%)ブロック共重合することも、本発明の好ましい実施態様である。
【0019】
重合体(B)の主成分は、融点60〜130℃の脂肪族結晶性ポリエステルで、具体例としては、ポリエチレンスベレート(融点約65℃)、ポリエチレンセバケート(融点約75℃)、ポリエチレンデカンジカルボキシレート(融点約86℃)、ポリブチレンサクシネート(融点約117℃)、ポリブチレンアジペート(融点約72℃)、ポリブチレンセバケート(融点約66℃)などが挙げられる。これらのホモポリマーに、ポリ乳酸をブロック共重合することにより、融点をあまり低下させないで、ポリ乳酸を主成分とする重合体(A)との親和性が高められる。組成物の透明性を阻害する第1要因は、前記のように混合状態(特にミクロ相分離)であり、これは成分間の親和性の改良で改善される。第2要因は、ポリマーの球晶である。勿論、ポリマーを非晶性にすると、前記のように耐熱性が得られない。そこで球晶のサイズ(直径)を出来るだけ小さく、可視光線の波長(400〜800nm)よりもかなり小さい100nm以下、特に80nm以下とすることが好ましい。球晶のサイズは、(1)共重合法と(2)結晶核剤の応用の2つの方法で制御することが出来る。
【0020】
共重合法には、ブロック共重合とランダム共重合とがあるが、いずれにせよ、結晶性(融点)を保ちつつ、しかも結晶性をある程度抑制する必要がある。ランダム共重合では、結晶性セグメント(ホモポリマー部分)の平均の長さを、比較的容易に制御することが出来る。例えば異種の成分を1モル%ランダム共重合すれば、結晶性セグメントの平均の長さは重合度100程度と推測される。10モル%ならば結晶性セグメントの平均の長さは重合度10程度と推測されるが、実際に結晶としてDSCなどで検出され、耐熱性に効果をもたらすには、結晶性セグメントの平均重合度は20程度以上が必要と推測される。
【0021】
球晶サイズを抑制するには、結晶性セグメントの平均重合度は1000程度以下、特に500程度以下が必要と推測される。異種成分の結晶妨害作用は、その成分の立体構造などにより異なるので、一概に言えないが、ランダム共重合の場合、必要な異種(共重合)成分量は、大略0.05〜5モル%程度の範囲が適当であることが多い。ブロック共重合の場合は、非常に複雑だが、必要な異種(共重合)成分量は、大略1〜50重量%程度、特に3〜30重量%程度が適当であることが多い。共重合の組み合わせの例としては、ポリエチレンセバケート/ポリブチレンセバケート、ポリエチレンセバケート/ポリプロピレンセバケート、ポリブチレンサクシネート/ポリブチレンアジペート、ポリブチレンサクシネート/ポリエチレンアジペートなど、異種のジカルボン酸又は/及び異種のグリコールの組み合わせがあげられる。もちろん、その他の原料例えばラクタムやヒドロキシカルボン酸も応用出来る。一般に、側鎖、芳香核や脂環基を持つもの(例えばプロピレングリコール、テレフタル酸、イソフタル酸、フタル酸、スルホイソフタル酸、ナフタレンジカルボン酸、シクロヘキサンジメタノールなど)は、結晶妨害効果が強く、少量で有効である。
【0022】
結晶核剤は、無機粒子、有機化合物粒子、有機化合物結晶粒子など、それを核としてポリマーが結晶化するものである。結晶核剤が完全に働くと、すべての球晶の中心に1個の核剤粒子が存在する筈である。従って、核剤粒子を多くすれば、球晶サイズは小さくなる。例えば、直径10nmの核剤粒子の周りに直径100nmの球晶があれば、核剤の混合(体積)比率は1/1000=0.1%である。球晶の直径が50nmであれば、体積比率は1/125=0.8%である。核剤が完全には働かないことや、その比重を考慮すると、球晶を十分小さくするには、直径100nm以下、特に50nm以下の核剤を0.1〜5重量%程度、特に、0.2〜3%程度ポリマーに混合することが好ましい。
【0023】
脂肪族ポリエステルの核剤としては、タルク、珪酸カルシウム、窒化ボロン、チタン酸カルシウム、酸化チタン、シリカ、酸化亜鉛、炭酸カルシゥムなどの無機粒子、サッカリンのナトリウム塩、安息香酸ナトリウム、ポリ乳酸系ポリマーよりも融点の高いポリブチレンテレフタレート、ポリプロピレンなどのポリマーその他の有機化合物の微粒子が挙げられる。核剤は、結晶化度を低下させずに球晶のサイズを小さくすることが可能で、製品の耐熱性の観点からは、優れた方法である。勿論、核剤法と共重合法を併用することも好ましい。
【0024】
本発明組成物を構成するポリマーの分子量は、特に限定されない。しかし、重合体(A)のポリマー部分は組成物の骨格をなすものであり、成型品に十分な強度をもたせるためには、その平均分子量は5万以上が好ましく、8〜30万が特に好ましく、10〜20万の範囲が最も広く用いられる。一方、重合体(B)のポリマー部分は、成型品の耐熱性に寄与するもので、分子量は1万以上が好ましく、2〜30万が特に好ましく3〜20万の範囲が最も広く用いられる。
【0025】
本発明組成物の溶融粘度は、特に限定されないが、通常の溶融成型条件、例えば温度150〜250℃程度、多くの場合170〜230℃、最も多くの場合180〜220℃において、500〜20000ポイズ程度、多くの場合1000〜10000ポイズ、最も多くの場合1500〜8000ポイズが好ましい。溶融粘度の温度依存性やせん断速度依存性は、小さいことが望ましいが、本発明組成物は、溶融流動性改善成分(ポリエーテル、ポリカーボネートなど)を含むため、比較的分子量が高くても比較的低温で成型可能であり、成型性にすぐれ、強度、柔軟性、耐衝撃性などに優れた成型品を得ることが出来る。
【0026】
本発明の組成物は、重合体(A)と重合体(B)とを混合することにより、容易に製造される。混合方法や混合装置は、特に限定されないが、連続的に処理出来るものが、工業的に有利で好ましい。例えば、両ポリマー(A)、(B)のペレットを所定比率で混合し、1軸のスクリュー押出機や2軸の混練押出機などで溶融し、直ちに射出成型したり製膜または紡糸してもよい。また両成分を溶融混合した後、一旦ペレット化し、その後で必要に応じて溶融成型してもよい。同じく、両ポリマーをそれぞれ別の押出機などで溶融し、所定比率で静止混合器または/及び機械的攪拌装置で混合し、直ちに成型しても良く、一旦ペレット化してもよい。押出機などの機械的攪拌による混合と、静止混合器とを組み合わせてもよい。溶剤を用い、溶液状態で混合しても良い。
【0027】
溶融混合法では、ポリマーの劣化、変質、エステル交換反応による共重合体化を、実質的に防ぐことが必要で、出来るだけ低温で短時間内に混合することが好ましい。例えば温度は、230℃以下、特に好ましくは210℃以下、最も好ましくは190℃以下、時間は30分間以内、特に20分以内、最も好ましくは10分以内で混合することが好ましい。溶融による変質やエステル交換を防ぐには、分子末端の水酸基やカルボキシル基、残留モノマーや重合触媒を除去または低減しておくことが望ましい。エステル交換反応が無視出来ないほど(実質的に)起こると、重合体(A)と重合体(B)のブロック又はランダム共重合体が生成し、組成物の結晶性や耐熱性が低下する。
【0028】
本発明組成物には、金属粒子、無機系または有機系粒子その他の充填剤、結晶核剤、酸化防止剤、紫外線吸収剤などの安定剤、染料、顔料などの着色剤、帯電防止剤、難燃剤、滑剤、離型剤、撥水剤、可塑剤、抗菌剤その他の添加剤を配合することが出来る。
【0029】
以下の実施例において、%、部は特に断らない限り重量比である。脂肪族ポリエステルの分子量は、試料の0.1%クロロホルム溶液のGPC分析において、分子量1000以下の成分を除く高分子成分の分散の重量平均値である。
【0030】
【実施例】
[実施例1]
光学純度99.5%以上のL−ラクチド97部、分子量8000のポリエチレングリコール(以下PEGと記す)5部、酸化防止剤としてチバガイギー社のイルガノックス1010をPEGに対して0.1%、重合触媒としてオクチル酸錫100ppm、結晶核剤として直径9nmの窒化ボロン0.5%を混合し、2軸混練部押出機に連続供給し185℃で15分間反応した後、口金より押出し水で冷却後切断してポリL−乳酸/PEG=約95/5のブロック共重合体のチップC1を得た。チップC1を、乾燥後、140℃の窒素気流中で3時間熱処理(固相重合)したのち、塩酸を0.1%含むアセトンで洗浄し、さらに塩酸を含まぬアセトンで5回洗浄し、触媒および残存モノマーを完全に除去し、乾燥してチップA1を得た。チップA1の分子量は13.3万、融点は170℃であった。 ポリブチレンサクシネート(PBS)/ポリブチレンアジペート(PBA)=4/1(モル比)のランダム共重合物で、分子量12.7万、融点92℃のものをCP1とする。CP1を90部、L−ラクチド11部、結晶核剤として直径8nmのシリカ粒子0.8%、オクチル酸錫をL−ラクチドに対して100ppm混合し、以下チップA1と同様にしてチップB1を得た。PBS/PBA共重合体CP1は、PBAが20モル%ランダム共重合されているが、PBSとPBAは分子構造が近いため、PBAの結晶妨害作用は弱く、共重合体は結晶性を保つ。しかしCP1は、融点がPBSより約25℃低下しており、球晶の発達のため不透明である。チップB1は、CP1/ポリ乳酸=約90/10のブロック共重合体で、分子量13.1万、融点89℃、透明度は、ブロック共重合の効果と結晶核剤の効果が共に作用して、CP1よりかなり改良されている。
【0031】
チップA1とチップB1とを4/1で混合し、さらにイルガノックス1010を全体の50ppmとなるよう加えつつ、200℃の2軸混練押出機で平均4分間溶融混合し、200℃のT型口金より押し出し、冷却ロールで冷却固化して厚さ0.3mmのシートS1を得た。シートS1を75℃の型を用い圧空成型し、電気ひげそり器の容器(ブリスター)BL1を製造した。なお、シートS1を120℃で2時間熱処理(結晶化)した試料のDSC分析で、融点として90℃と169℃の2つの吸熱ピークが観測され、それぞれの吸熱量は、7.0J/g及び37.9J/gであった。この2つの吸熱ピークは、それぞれPBS/PBA共重合体セグメントとポリ乳酸セグメントの結晶の融点である。
【0032】
比較のため、ポリL−乳酸ホモポリマー(未変性品)で、分子量13.5万、融点175℃のものを用い、溶融温度220℃でシート化し、以下ブリスターBL1と同様にしてブリスターBL2を得た。同じく比較のため、上記PBS/PBA=4/1(モル比)のランダム共重合体CP1を用い、溶融温度200℃でシート化し、65℃で圧空成型してブリスターBL3を得た。同じく比較のため、上記ポリ乳酸ホモポリマーのチップと、ランダム共重合体CP1のチップとを4/1で混合し、以下BL1と同様にしてブリスターBL4を得た。各ブリスターを、熱帯地方を船で輸送することを想定した耐熱変形試験、すなわち60℃、相対湿度80%の空気中に100時間静置した後、変形の程度および透明性を評価した。その結果を表1に示す。表1に見るように、本発明によるブリスターは熱変形がほとんどなく透明性にすぐれ内部の商品がよく見える。他方、比較例は耐熱変形性および透明性の一方または両方が劣っている。
【0033】
【表1】

Figure 0003645647
[実施例2]
実施例1のPEGのかわりに、分子量8000、両末端が水酸基のポリヘキサンカーボネートを用い、以下実施例1のA1と同様ににして、ポリ乳酸との共重合体A2を得た。以下実施例1のブリスターBL1とほぼ同様にして、ただしA2のチップとPBS/PBA共重合体とポリ乳酸の共重合体B1のチップを4/1で混合して溶融成型してシートを作成、圧空成型してブリスターBL5を得た。ブリスターBL5を耐熱変形試験を行ったところ、ほとんど変形は見られず、ほぼ透明で、内部の商品はよく見えた。なお、ブリスターBL5を熱処理したもののDSC分析では、融点として90℃と169℃の2つの吸熱ピークが観測され、それぞれの吸熱量は、7.2J/g及び35.9J/gであった。この二つの吸熱ピークは、それぞれPBS/PBA共重合体セグメントとポリ乳酸セグメントの結晶の融点である。
【0034】
【発明の効果】
本発明により、透明性は優れるが、射出成型や押出し成型などで溶融状態から急冷されたとき、ガラス転移点(約60℃)と結晶化温度(約100℃)との間で、成型品が(自重などで)大きく変形するポリ乳酸の欠点が大幅に改善され、透明性と耐熱変形性の両方に優れる生分解性重合体組成物を得ることができる。更に本発明組成物は、溶融流動性に優れるポリエーテルなどの成分およびガラス転移点が常温以下(多くの場合0℃以下)の成分を持つため、別の効果として溶融成型性、製造の容易性、成型品の耐衝撃性、柔軟性、透明性に優れ、各種容器などの成型品の製造に極めて好適に応用される。同様に、本発明重合体組成物は、その優れた透明性、耐熱性、耐衝撃性、柔軟性、成型性などを生かし(必要に応じ延伸して)、優れたシート、フィルム、繊維、各種成型品を製造することができる。
【0035】
本発明により、ポリ乳酸系樹脂の実用性が著るしく高まり、地球環境の保全に大きく貢献することが期待される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biodegradable polymer composition having improved heat resistance, transparency, impact resistance, flexibility, and the like, and a molded article thereof.
[0002]
[Prior art]
From the standpoint of protecting the natural environment, biodegradable polymers that decompose in the natural environment and molded articles thereof are required. In recent years, natural degradable resins such as aliphatic polyesters are being developed. In particular, polylactic acid has a sufficiently high melting point of 170 to 180 ° C. and is highly expected as a packaging material because of its excellent transparency. However, polylactic acid has a drawback that it is inferior in impact resistance and brittle due to its rigid molecular structure. Furthermore, surprisingly, the present inventors have inferior the heat deformation resistance of products obtained by injection molding or extrusion molding of polylactic acid, and the present inventors easily deform even at relatively low temperatures of about 50 to 100 ° C. below its melting point. I found it. Many food packaging containers are naturally required to have high heat distortion resistance, and even general containers and packaging materials are exposed to a temperature of, for example, about 40 to 60 ° C. during transportation, storage and use after molding. Therefore, a material having a high heat deformation temperature that can withstand the above is required. In addition, packaging materials and containers often require high transparency. Conventional molded articles of aliphatic polyester are difficult to achieve both heat resistance and transparency, and biodegradable packaging materials and containers that satisfy both are required. Furthermore, polylactic acid has a problem that it has a high melt viscosity and is difficult to produce and mold. JP-A-7-173266 discloses that a block copolymer of poly (lactic acid) with another aliphatic polyester can provide a polymer having excellent flexibility and transparency. However, the current situation is that there is no known improvement in heat distortion resistance, particularly those having both heat resistance and transparency.
[0003]
[Problems to be solved by the invention]
The object of the present invention is a novel polylactic acid that can be completely decomposed in a natural environment, has improved both heat distortion temperature and transparency, and has improved melt flowability and has greatly improved practicality. An object of the present invention is to provide a polymer composition and a molded product thereof.
[0004]
[Means for Solving the Problems]
The object of the present invention is achieved by a novel polymer composition that satisfies all the following items (1), (2), (3), and (4), and a molded product thereof.
[0005]
(1) Copolymerization of 1 to 30% by weight of one or more components selected from the group of “aliphatic polyether, aliphatic polylactone, aliphatic lactone, aliphatic polycarbonate and oligomers thereof” containing lactic acid as a main component. The resulting crystalline polyester polymer (A) is mixed with a polyester block copolymer (B) in which a crystalline polyester segment comprising an aliphatic dicarboxylic acid and a chain diol and a polylactic acid segment are bonded. ing.
[0006]
(2) The melting point of the polylactic acid segment crystal of the polymer (A) in the composition is 140 ° C. or higher, and the melting endotherm is 10 joules / gram or higher.
[0007]
(3) The melting point of the crystal of the segment of the polymer (B) in the composition containing the dicarboxylic acid and the diol as components is in the range of 60 to 130 ° C., and the lactic acid in the constituent component of the polymer (B) The ratio of the derived component is 3 to 50% by weight.
[0008]
(4) The mixing ratio (A / B) of the polymer (A) and the polymer (B) is in the range of 97/3 to 40/60.
[0009]
Here, the polyester polymer (A) containing lactic acid as a main component refers to a polyester in which a component derived from L-lactic acid and / or D-lactic acid in the polymer is 50% or more, and a poly L-lactic acid homopolymer, This includes all poly-D-lactic acid homopolymers, poly-L / D lactic acid copolymers, and those obtained by copolymerizing or / and mixing 50% by weight or less of these other components. A crystalline polymer is a polymer in which a main chain crystal can be detected when a polymer sample sufficiently crystallized by heat treatment and / or stretching is analyzed by a scanning differential calorimeter (DSC) or an X-ray diffractometer. For example, in DSC, detection is easy if the endothermic peak due to melting of the crystal is 0.5 Joule (J) / gram (g) or more, particularly 1 J / g or more. The melting point of the polymer is the peak temperature of the endotherm due to melting when a sufficiently crystallized and dried polymer is subjected to DSC analysis in nitrogen gas with a sample amount of 10 mg and a heating rate of 10 ° C./min. A segment refers to a part of a polymer molecular chain and is sometimes referred to as a block.
[0010]
As the component copolymerizable with polylactic acid, those that form an ester bond are well known. For example, (1) aliphatic hydroxycarboxylic acids such as glycolic acid and hydroxybutylcarboxylic acid, (2) glycolide, Aliphatic lactones such as butyrolactone and caprolactone, (3) aliphatic diols such as ethylene glycol, propylene glycol, butanediol, hexanediol, (4) polyethylene glycol, polypropylene glycol, polyethylene / propylene glycol (copolymer), Polybutylene ether, diethylene glycol, triethylene glycol, polyalkylene ether such as ethylene / propylene glycol and oligomers thereof, (5) polybutylene carbonate having hydroxyl groups at both ends, polyhexane Boneto, aliphatic polycarbonates and their oligomers such as poly octane carbonate, (6) succinic acid, adipic acid, azelaic acid, sebacic acid, and aliphatic dicarboxylic acids such as decanedicarboxylic acid. In addition, aromatic components such as terephthalic acid, isophthalic acid, sulfoisophthalic acid, phthalic acid, and naphthalenedicarboxylic acid are also applicable. The polyester polymerization raw material can be randomly copolymerized and / or block copolymerized with polylactic acid. In general, in random copolymerization, the crystallinity of the polymer tends to be impaired, and in order to maintain crystallinity, the copolymerization ratio (weight ratio) of the second component is preferably about 20% or less, particularly preferably about 1 to 10%. There are many. On the other hand, in block copolymerization, for example, impact resistance and flexibility can be improved without much loss of crystallinity. In addition to the polyester polymerization raw material, for example, an isocyanate compound, an epoxy compound, a monofunctional compound, a trifunctional or higher polyfunctional compound can be used as a secondary agent.
[0011]
The polymer (A) constituting the composition of the present invention contains at least one member of the group of “aliphatic polyether, aliphatic polylactone, aliphatic lactone, aliphatic polycarbonate and oligomer thereof” as an essential component other than lactic acid. Of 1 to 30% by weight is copolymerized. Polylactic acid has problems that the difference between the melting point and the decomposition temperature is small and the melt viscosity is high, making it difficult to produce and process. By copolymerization of the above components, (1) lowering of melting point, lowering of polymerization temperature / molding temperature, etc., improvement of ease of production / processing, (2) reduction of melt viscosity, improvement of ease of production / processing I can do it. For the purposes of the present invention, the copolymerization ratio of the above components should be in the range of 1-30% by weight, with 2-25% being particularly preferred, and 3-20% being the most widely used.
[0012]
As the aliphatic polyether, those having an alkyl group having 2 to 4 carbon atoms are particularly preferred, and examples thereof include polyethylene glycol (polyethylene ether), polypropylene glycol, polybutylene ether, and copolymers thereof. Similarly, those oligomers, that is, those having a degree of polymerization of about 2 to 20 are also used. The molecular weight of the aliphatic polyether is arbitrary, but when the copolymerization ratio is large, for example, when the copolymerization ratio is 5% or more, the molecular weight is preferably 3000 or more, particularly preferably 6000 or more. For example, by copolymerizing 2 to 10% of aliphatic polyether, it is easy to make the melt viscosity of the polylactic acid-based polymer about 1/10 or less of that of polylactic acid having the same molecular weight. That is, polyether is one of the most excellent melt fluidity improvers. In addition, even when an aliphatic polyether (preferably having a molecular weight of 50,000 or less) is mixed with polylactic acid, the same fluidity improving effect is observed, but the stability of the composition is inferior to that of copolymerization, and unevenness is observed. There is a tendency for the bleed-out phenomenon to be seen and the transparency to decrease. The aliphatic polyether has a high affinity for the polylactic acid / aliphatic polyether block copolymer and can be stably mixed. If necessary, the composition of the present invention may be mixed with a small amount (for example, 10% or less, particularly 5% or less) of an aliphatic polyether and other secondary components. In addition, it is preferable to use a hindered phenol and other antioxidants and stabilizers for the composition containing an aliphatic polyether as a component.
[0013]
As the aliphatic polylactone, those having an alkyl group having 2 or more carbon atoms are preferable, and examples thereof include caprolactone, butyrolactone, glycolide and the like. The copolymerization may be block copolymerization or random copolymerization, but the effect of lowering the melting point is large by the random copolymerization method. In terms of the effect of decreasing the melt viscosity, a lactone polymer having 6 or more carbon atoms, such as polycaprolactone, is preferable because of its high effect. A block copolymer can be obtained by reacting a polymer or oligomer having a hydroxyl group at a terminal with lactide in a molten state, and a random copolymer can be obtained by reacting lactide with a lactone monomer thereof. In the case of block copolymerization, the molecular weight of the aliphatic polylactone is preferably 4000 or more, particularly preferably 6000 or more, and the molecular weight of 8000 to 300,000 is most widely used. Aliphatic polylactone (preferably having a molecular weight of 50,000 or less) can be mixed with polylactic acid to lower the melt viscosity, but the transparency and stability are inferior to those of the copolymerization method. However, since the polylactic acid / polylactone block copolymer has a high affinity with the polylactone and a more uniform and stable mixture can be obtained, the aliphatic polylactone is added to the composition of the present invention as in the case of the polyether. It can be used as a secondary additive (such as a fluidity improver).
[0014]
As the aliphatic polycarbonate, those having an alkyl group having 4 or more carbon atoms are preferable, and examples thereof include polybutylene carbonate, polyhexane carbonate, and polyoctane carbonate, and oligomers thereof are also used in the same manner. The block copolymer can be obtained by reacting a polymer or oligomer having a hydroxyl group at a terminal with lactide in a molten state. In this case, the molecular weight of the aliphatic polycarbonate is preferably 4000 or more, particularly preferably 6000 or more. 8000 to 300,000 are the most widely used. Aliphatic polycarbonate can be mixed with polylactic acid to lower the melt viscosity, but stability and transparency are inferior compared to copolymerization. However, the polylactic acid / aliphatic polycarbonate block copolymer has a high affinity with the polycarbonate, and the aliphatic polycarbonate can be mixed as a secondary additive of the composition of the present invention as in the case of the polyether. I can do it.
[0015]
The polymer (B) constituting the composition of the present invention is one in which a crystalline segment having an aliphatic dicarboxylic acid and a chain diol as components and a polylactic acid segment are combined. The aliphatic dicarboxylic acid preferably has an alkyl group having about 4 to 20 carbon atoms, and examples thereof include succinic acid, adipic acid, azelaic acid, sebacic acid, and decanedicarboxylic acid.
[0016]
The chain diol includes an aliphatic diol, a diol having an ether bond, and a diol having a carbonate bond. The aliphatic diol preferably has an alkyl group having about 2 to 12 carbon atoms, and examples thereof include ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, and decanediol. The diol having an ether bond preferably has an alkyl group having about 2 to 8 carbon atoms, and examples thereof include diethylene glycol, triethylene glycol, dipropylene glycol, hydroxyethyl / hydroxypropyl ether, and bishydroxyethoxyhexane. The diol having a carbonate bond is preferably one having an alkyl group having about 4 to 8 carbon atoms, and examples thereof include bishydroxybutylene carbonate and bishydroxyhexane carbonate.
[0017]
Polylactic acid has a glass transition temperature of about 60 ° C., which is particularly high among aliphatic polyesters, and a crystallization temperature of about 100 ° C., which is considerably high. For this reason, when it is rapidly cooled from the molten state by injection molding, extrusion molding, etc., polylactic acid becomes almost non-crystalline (although transparency is excellent), and the temperature range from the vicinity of the glass transition point to the crystallization temperature (50- 100 ° C.), it has been found that there is a tendency to easily deform due to gravity and external force. The melting point in the composition of the crystalline segment comprising the aliphatic dicarboxylic acid and the chain diol constituting the polymer (B) is in the range of 60 to 130 ° C., but the glass transition point and crystallization temperature are Crystallizes at room temperature or lower, even when quenched from a molten state. Therefore, the molded product of the composition of the present invention containing this low-melting crystalline polymer can withstand the heat of about 40 to 120 ° C. due to the low-melting crystal, and the polylactic acid constituting the polymer (A) at a temperature higher than that. It crystallizes so that the molded product withstands heat and does not deform. That is, thermal deformation at a relatively low temperature and thermal deformation at a relatively high temperature are prevented by being shared by mixing two kinds of crystalline polymers having different melting points (and crystallization temperatures).
[0018]
However, the low melting point polymer composed of an aliphatic dicarboxylic acid and a chain diol and polylactic acid have slightly low compatibility, and the mixture tends to become cloudy and the transparency tends to decrease. In the present invention, a polylactic acid segment, which is the main component of the polymer (A), is introduced into the polymer (B) to improve the compatibility between them and to suppress and improve the above-mentioned cloudiness. In order to obtain this effect, the amount of the polylactic acid component contained in the polymer (B) needs to be in the range of 3 to 50% by weight, particularly preferably 5 to 30%, and more preferably 7 to 20%. Most widely used. This is because if the amount of the lactic acid component in the polymer (B) is too small, the compatibility improvement of both components is insufficient, and if it is too large, the crystallization of the low-melting polymer composed of the aliphatic dicarboxylic acid and the chain diol is hindered. Similarly, in order to improve the affinity of both components, a small amount (for example, 30% or less, particularly 3 to 20%) of a low melting point polymer comprising an aliphatic dicarboxylic acid and a chain diol is added to the polymer (A). Polymerization is also a preferred embodiment of the present invention.
[0019]
The main component of the polymer (B) is an aliphatic crystalline polyester having a melting point of 60 to 130 ° C., and specific examples thereof include polyethylene suberate (melting point: about 65 ° C.), polyethylene sebacate (melting point: about 75 ° C.), polyethylene Examples thereof include candicarboxylate (melting point: about 86 ° C.), polybutylene succinate (melting point: about 117 ° C.), polybutylene adipate (melting point: about 72 ° C.), polybutylene sebacate (melting point: about 66 ° C.), and the like. By block copolymerization of polylactic acid with these homopolymers, the affinity with the polymer (A) containing polylactic acid as a main component can be increased without significantly reducing the melting point. The first factor that inhibits the transparency of the composition is the mixed state (particularly, microphase separation) as described above, which is improved by improving the affinity between the components. The second factor is the polymer spherulite. Of course, when the polymer is made amorphous, heat resistance cannot be obtained as described above. Therefore, it is preferable that the size (diameter) of the spherulite is as small as possible and is 100 nm or less, particularly 80 nm or less, which is considerably smaller than the wavelength of visible light (400 to 800 nm). The size of the spherulites can be controlled by two methods: (1) copolymerization method and (2) application of crystal nucleating agent.
[0020]
The copolymerization method includes block copolymerization and random copolymerization. In any case, it is necessary to maintain crystallinity (melting point) and to suppress crystallinity to some extent. In random copolymerization, the average length of crystalline segments (homopolymer portions) can be controlled relatively easily. For example, if 1 mol% of different components are randomly copolymerized, the average length of the crystalline segments is estimated to be about 100 degree of polymerization. If it is 10 mol%, the average length of the crystalline segment is estimated to be about 10 degrees of polymerization. However, in order to actually detect the crystal as a crystal by DSC or the like and bring about an effect on heat resistance, the average degree of polymerization of the crystalline segment Is estimated to be about 20 or more.
[0021]
In order to suppress the spherulite size, the average polymerization degree of the crystalline segment is estimated to be about 1000 or less, particularly about 500 or less. The crystal interfering action of different components varies depending on the three-dimensional structure of the components, so it cannot be generally stated. However, in the case of random copolymerization, the required amount of different (copolymerization) components is approximately 0.05 to 5 mol%. The range of is often appropriate. In the case of block copolymerization, it is very complicated, but the necessary amount of the different (copolymerization) component is usually about 1 to 50% by weight, particularly about 3 to 30% by weight in many cases. Examples of copolymerization combinations include polyethylene sebacate / polybutylene sebacate, polyethylene sebacate / polypropylene sebacate, polybutylene succinate / polybutylene adipate, polybutylene succinate / polyethylene adipate, etc. And combinations of different types of glycols. Of course, other raw materials such as lactam and hydroxycarboxylic acid can also be applied. In general, those with side chains, aromatic nuclei and alicyclic groups (eg, propylene glycol, terephthalic acid, isophthalic acid, phthalic acid, sulfoisophthalic acid, naphthalenedicarboxylic acid, cyclohexanedimethanol, etc.) have a strong crystal interfering effect and a small amount It is effective in.
[0022]
The crystal nucleating agent is an inorganic particle, organic compound particle, organic compound crystal particle, or the like that causes a polymer to crystallize using it as a nucleus. When the crystal nucleating agent is fully functional, there should be one nucleating agent particle in the center of all spherulites. Therefore, the spherulite size decreases as the nucleating agent particles increase. For example, if there is a spherulite having a diameter of 100 nm around a nucleating agent particle having a diameter of 10 nm, the mixing (volume) ratio of the nucleating agent is 1/1000 = 0.1%. If the diameter of the spherulite is 50 nm, the volume ratio is 1/125 = 0.8%. Considering that the nucleating agent does not work completely and its specific gravity, in order to make the spherulites sufficiently small, a nucleating agent having a diameter of 100 nm or less, particularly 50 nm or less, is about 0.1 to 5% by weight, in particular About 2-3% is preferably mixed with the polymer.
[0023]
As nucleating agent for aliphatic polyester, inorganic particles such as talc, calcium silicate, boron nitride, calcium titanate, titanium oxide, silica, zinc oxide, calcium carbonate, saccharin sodium salt, sodium benzoate, polylactic acid polymer In addition, fine particles of polymers such as polybutylene terephthalate and polypropylene having a high melting point and other organic compounds can be used. The nucleating agent can reduce the size of the spherulites without reducing the crystallinity, and is an excellent method from the viewpoint of the heat resistance of the product. Of course, it is also preferable to use a nucleating agent method and a copolymerization method in combination.
[0024]
The molecular weight of the polymer constituting the composition of the present invention is not particularly limited. However, the polymer part of the polymer (A) forms the skeleton of the composition, and the average molecular weight is preferably 50,000 or more, particularly preferably 80 to 300,000, in order to give the molded product sufficient strength. The range of 100,000 to 200,000 is most widely used. On the other hand, the polymer portion of the polymer (B) contributes to the heat resistance of the molded product, and the molecular weight is preferably 10,000 or more, particularly preferably 2 to 300,000, and most preferably in the range of 3 to 200,000.
[0025]
The melt viscosity of the composition of the present invention is not particularly limited, but is 500 to 20000 poise under normal melt molding conditions such as a temperature of about 150 to 250 ° C., often 170 to 230 ° C., and most often 180 to 220 ° C. About 1000 to 10000 poise, most often 1500 to 8000 poise is preferred. Although it is desirable that the temperature dependence and the shear rate dependence of the melt viscosity be small, the composition of the present invention contains a component for improving melt fluidity (polyether, polycarbonate, etc.), so that even if the molecular weight is relatively high, It can be molded at low temperatures, and can be molded with excellent moldability and excellent strength, flexibility and impact resistance.
[0026]
The composition of the present invention is easily produced by mixing the polymer (A) and the polymer (B). The mixing method and the mixing apparatus are not particularly limited, but those that can be continuously processed are industrially advantageous and preferable. For example, the pellets of both polymers (A) and (B) are mixed at a predetermined ratio, melted with a single screw extruder or a twin screw kneading extruder, and immediately molded by injection molding, film formation or spinning. Good. Moreover, after melt-mixing both components, it may be once pelletized and then melt-molded as necessary. Similarly, both polymers may be melted by separate extruders, mixed at a predetermined ratio by a static mixer or / and a mechanical stirring device, and immediately molded, or once pelletized. You may combine mixing by mechanical stirring, such as an extruder, and a static mixer. You may mix in a solution state using a solvent.
[0027]
In the melt mixing method, it is necessary to substantially prevent copolymer degradation due to polymer degradation, alteration, and transesterification reaction, and it is preferable to mix within a short time at the lowest possible temperature. For example, the temperature is preferably 230 ° C. or less, particularly preferably 210 ° C. or less, most preferably 190 ° C. or less, and the time is within 30 minutes, particularly within 20 minutes, most preferably within 10 minutes. In order to prevent alteration and transesterification due to melting, it is desirable to remove or reduce the hydroxyl group, carboxyl group, residual monomer and polymerization catalyst at the molecular end. When the transesterification reaction occurs (substantially) to the extent that it cannot be ignored, a block or random copolymer of the polymer (A) and the polymer (B) is produced, and the crystallinity and heat resistance of the composition are lowered.
[0028]
The composition of the present invention includes metal particles, inorganic or organic particles and other fillers, crystal nucleating agents, antioxidants, stabilizers such as ultraviolet absorbers, colorants such as dyes and pigments, antistatic agents, difficulty A flame retardant, a lubricant, a release agent, a water repellent, a plasticizer, an antibacterial agent and other additives can be blended.
[0029]
In the following examples,% and parts are by weight unless otherwise specified. The molecular weight of the aliphatic polyester is a weight average value of dispersion of polymer components excluding components having a molecular weight of 1000 or less in GPC analysis of a 0.1% chloroform solution of a sample.
[0030]
【Example】
[Example 1]
97 parts of L-lactide having an optical purity of 99.5% or more, 5 parts of polyethylene glycol (hereinafter referred to as PEG) having a molecular weight of 8000, 0.1% of irganox 1010 manufactured by Ciba Geigy as an antioxidant, 0.1% relative to PEG, polymerization catalyst After mixing with tin octylate 100ppm and boron nitride 0.5% as a crystal nucleating agent, supply continuously to a twin-screw kneading section extruder and react at 185 ° C for 15 minutes, then cool with extrusion water from the die and cut As a result, a block copolymer chip C1 of poly L-lactic acid / PEG = about 95/5 was obtained. After the chip C1 is dried and heat-treated in a nitrogen stream at 140 ° C. for 3 hours (solid phase polymerization), the chip C1 is washed with acetone containing 0.1% hydrochloric acid, and further washed five times with acetone containing no hydrochloric acid. Then, the remaining monomer was completely removed and dried to obtain a chip A1. Chip A1 had a molecular weight of 13,000 and a melting point of 170 ° C. A random copolymer of polybutylene succinate (PBS) / polybutylene adipate (PBA) = 4/1 (molar ratio) having a molecular weight of 17,000 and a melting point of 92 ° C. is designated as CP1. 90 parts of CP1, 11 parts of L-lactide, 0.8% of silica particles having a diameter of 8 nm as a nucleating agent, and 100 ppm of tin octylate with respect to L-lactide were mixed, and chip B1 was obtained in the same manner as chip A1. It was. PBS / PBA copolymer CP1 is randomly copolymerized with 20 mol% of PBA. However, since PBS and PBA have a close molecular structure, PBA has a weak crystal interfering action, and the copolymer maintains crystallinity. However, CP1 has a melting point about 25 ° C. lower than that of PBS and is opaque due to the development of spherulites. Chip B1 is a block copolymer of CP1 / polylactic acid = about 90/10, the molecular weight is 131,000, the melting point is 89 ° C., and the transparency is the effect of both the block copolymer and the crystal nucleating agent. This is a significant improvement over CP1.
[0031]
Chip A1 and chip B1 were mixed at a ratio of 4/1, and Irganox 1010 was added to a total of 50 ppm, and melted and mixed for an average of 4 minutes with a 200 ° C. twin-screw kneading extruder. The sheet was further extruded and cooled and solidified with a cooling roll to obtain a sheet S1 having a thickness of 0.3 mm. Sheet S1 was pressure-air molded using a 75 ° C. mold to produce an electric shaver container (blister) BL1. In the DSC analysis of the sample obtained by heat-treating (crystallizing) the sheet S1 at 120 ° C. for 2 hours, two endothermic peaks of 90 ° C. and 169 ° C. were observed as melting points, and the endothermic amounts were 7.0 J / g and It was 37.9 J / g. These two endothermic peaks are the melting points of the crystals of the PBS / PBA copolymer segment and the polylactic acid segment, respectively.
[0032]
For comparison, a poly L-lactic acid homopolymer (unmodified product) having a molecular weight of 135,000 and a melting point of 175 ° C. was formed into a sheet at a melting temperature of 220 ° C., and blister BL 2 was obtained in the same manner as blister BL 1 below. It was. Similarly, for comparison, a random copolymer CP1 having the above PBS / PBA = 4/1 (molar ratio) was used to form a sheet at a melting temperature of 200 ° C., and subjected to pressure molding at 65 ° C. to obtain blister BL3. For comparison, the polylactic acid homopolymer chip and the random copolymer CP1 chip were mixed 4/1, and blister BL4 was obtained in the same manner as BL1. Each blister was subjected to a heat-resistant deformation test assuming that it was transported by ship in the tropics, that is, after standing in air at 60 ° C. and a relative humidity of 80% for 100 hours, the degree of deformation and transparency were evaluated. The results are shown in Table 1. As can be seen in Table 1, the blisters according to the present invention have almost no heat deformation and are excellent in transparency, so that the products inside can be seen well. On the other hand, the comparative example is inferior in one or both of heat-resistant deformation and transparency.
[0033]
[Table 1]
Figure 0003645647
[Example 2]
Instead of PEG of Example 1, polyhexane carbonate having a molecular weight of 8000 and hydroxyl groups at both ends was used, and a copolymer A2 with polylactic acid was obtained in the same manner as A1 of Example 1 below. Substantially the same as the blister BL1 of Example 1 below, except that the A2 chip, PBS / PBA copolymer, and polylactic acid copolymer B1 chip were mixed at 4/1 and melt-molded to create a sheet. Blister BL5 was obtained by pressure forming. When the heat resistance deformation test was performed on blister BL5, almost no deformation was observed, the film was almost transparent, and the product inside was clearly visible. In the DSC analysis of the heat-treated blister BL5, two endothermic peaks of 90 ° C. and 169 ° C. were observed as melting points, and the endothermic amounts were 7.2 J / g and 35.9 J / g, respectively. These two endothermic peaks are the melting points of the crystals of the PBS / PBA copolymer segment and the polylactic acid segment, respectively.
[0034]
【The invention's effect】
According to the present invention, the transparency is excellent, but when it is rapidly cooled from the molten state by injection molding or extrusion molding, the molded product is between the glass transition point (about 60 ° C.) and the crystallization temperature (about 100 ° C.). The disadvantage of polylactic acid that deforms greatly (by its own weight, etc.) is greatly improved, and a biodegradable polymer composition excellent in both transparency and heat distortion resistance can be obtained. Furthermore, since the composition of the present invention has components such as polyether having excellent melt flowability and components having a glass transition point of room temperature or lower (in most cases 0 ° C. or lower), melt moldability and ease of production are another effect. The molded article is excellent in impact resistance, flexibility, and transparency, and is very suitably applied to the production of molded articles such as various containers. Similarly, the polymer composition of the present invention makes use of its excellent transparency, heat resistance, impact resistance, flexibility, moldability, etc. (extending as necessary), and has excellent sheets, films, fibers, various Molded products can be manufactured.
[0035]
According to the present invention, the practicality of the polylactic acid resin is remarkably increased, and it is expected that it will greatly contribute to the preservation of the global environment.

Claims (6)

次の(1)、(2)、(3)及び(4)の項目を全て満足する重合体組成物。
(1)乳酸を主成分とし、「脂肪族ポリエーテル、脂肪族ポリラクトン、脂肪族ラクトン、脂肪族ポリカーボネート及びそれらのオリゴマー」の群より選ばれた1種以上の成分が1〜30重量%共重合された結晶性ポリエステル重合体(A)と、脂肪族ジカルボン酸および鎖状ジオールを成分とする結晶性ポリエステルセグメントとポリ乳酸セグメントとが結合されているポリエステルブロック共重合体(B)とが混合されている。
(2)組成物中の重合体(A)のポリ乳酸セグメントの結晶の融点が、140℃以上であり、且つその溶融吸熱量が、10ジュール/グラム以上である。
(3)組成物中の重合体(B)の上記ジカルボン酸とジオールを成分とするセグメントの結晶の融点が、60〜130℃の範囲であり、且つ重合体(B)の構成成分中の乳酸由来の成分の比率が3〜50重量%である。
(4)重合体(A)と重合体(B)との混合比率(A/B)が、97/3〜40/60の範囲である。
A polymer composition satisfying all the following items (1), (2), (3) and (4).
(1) Copolymerization of 1 to 30% by weight of one or more components selected from the group of “aliphatic polyether, aliphatic polylactone, aliphatic lactone, aliphatic polycarbonate and oligomers thereof” containing lactic acid as a main component. The resulting crystalline polyester polymer (A) is mixed with a polyester block copolymer (B) in which a crystalline polyester segment comprising an aliphatic dicarboxylic acid and a chain diol and a polylactic acid segment are bonded. ing.
(2) The melting point of the polylactic acid segment crystal of the polymer (A) in the composition is 140 ° C. or higher, and the melting endotherm is 10 joules / gram or higher.
(3) The melting point of the crystal of the segment of the polymer (B) in the composition containing the dicarboxylic acid and the diol as components is in the range of 60 to 130 ° C., and the lactic acid in the constituent component of the polymer (B) The ratio of the derived component is 3 to 50% by weight.
(4) The mixing ratio (A / B) of the polymer (A) and the polymer (B) is in the range of 97/3 to 40/60.
重合体(A)のポリ乳酸セグメント結晶の融点が150℃以上で、その溶融吸熱量が20ジュール/グラム以上であり、且つ重合体(B)のジカルボン酸とジオールを成分とする結晶性セグメントの融点が70〜130℃で、その溶融吸熱量が1ジュール/グラム以上である、請求項1記載の組成物。  The crystalline segment of the polylactic acid segment crystal of the polymer (A) has a melting point of 150 ° C. or higher, the melting endotherm is 20 joules / gram or more, and the crystalline segment comprising the dicarboxylic acid and diol of the polymer (B) as components The composition according to claim 1, having a melting point of 70 to 130 ° C and a melting endotherm of 1 Joule / gram or more. 請求項1又は2記載の組成物からなる成型品。  A molded article comprising the composition according to claim 1. 請求項1又は2記載の組成物からなる繊維。  A fiber comprising the composition according to claim 1 or 2. 請求項1又は2記載の組成物からなるフィルム。  A film comprising the composition according to claim 1. 請求項1又は2記載の組成物からなる各種容器。  Various containers comprising the composition according to claim 1 or 2.
JP08375196A 1996-04-05 1996-04-05 Polylactic acid polymer composition and molded product thereof Expired - Lifetime JP3645647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08375196A JP3645647B2 (en) 1996-04-05 1996-04-05 Polylactic acid polymer composition and molded product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08375196A JP3645647B2 (en) 1996-04-05 1996-04-05 Polylactic acid polymer composition and molded product thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002204768A Division JP3723157B2 (en) 2002-07-12 2002-07-12 Polylactic acid polymer composition

Publications (2)

Publication Number Publication Date
JPH09272790A JPH09272790A (en) 1997-10-21
JP3645647B2 true JP3645647B2 (en) 2005-05-11

Family

ID=13811246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08375196A Expired - Lifetime JP3645647B2 (en) 1996-04-05 1996-04-05 Polylactic acid polymer composition and molded product thereof

Country Status (1)

Country Link
JP (1) JP3645647B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3723157B2 (en) * 2002-07-12 2005-12-07 トヨタ自動車株式会社 Polylactic acid polymer composition
EP1548161B1 (en) * 2002-08-30 2010-08-25 Toray Industries, Inc. Polylactic acid fiber, yarn package, and textile product
JP4620997B2 (en) * 2004-10-19 2011-01-26 日本エステル株式会社 Polylactic acid-based spontaneous crimped fiber
JP2006143314A (en) * 2004-11-24 2006-06-08 Risu Pack Co Ltd Transporting container for synthetic resin product
WO2008129245A1 (en) 2007-04-18 2008-10-30 Smith & Nephew Plc Expansion moulding of shape memory polymers
JP5680957B2 (en) 2007-04-19 2015-03-04 スミス アンド ネフュー インコーポレーテッドSmith & Nephew,Inc. Graft fixation
JP6255188B2 (en) * 2013-08-23 2017-12-27 旭化成株式会社 Polyamide resin composition and molded product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3105020B2 (en) * 1991-05-10 2000-10-30 三井化学株式会社 Thermoplastic decomposable polymer composition
JP3316972B2 (en) * 1993-10-22 2002-08-19 大日本インキ化学工業株式会社 Lactic acid based polymer composition

Also Published As

Publication number Publication date
JPH09272790A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
EP1460107B1 (en) Polylactic acid-based resin compositions, molded articles and process for producing the same
WO1999025758A1 (en) Biodegradable film and process for producing the same
WO2006025520A1 (en) Polylactic acid resin composition, moldings, and process for production thereof
JP4042206B2 (en) Film and sheet comprising polylactic acid composition
JP3783426B2 (en) Polylactic acid resin composition containing a polycarbonate compound
JPWO2008096895A1 (en) Method for producing polylactic acid
JP4417834B2 (en) Polyester blend composition and biodegradable film made therefrom
JP6866722B2 (en) Resin composition and resin molded products molded using it
JPH11222528A (en) Biodegradable film and its production
JP2003192883A (en) Polylactic acid-based resin composition, molded article and method for producing the molded article
WO2011043187A1 (en) Eyeglasses molded article, process for production of same, and eyeglasses
JP3723157B2 (en) Polylactic acid polymer composition
JP3645647B2 (en) Polylactic acid polymer composition and molded product thereof
JP4503215B2 (en) Lactic acid-based resin composition, peroxide-modified lactic acid-based resin composition, and molded articles thereof
JPH11181262A (en) Lactic acid-based polymer composition and its molded product
JP3989406B2 (en) Polylactic acid-based resin composition, molded article and method for producing the same
JP3508678B2 (en) Polylactic acid composition and molded article thereof
JP3773501B2 (en) Polylactic acid-based resin composition, molded article and method for producing the same
JP2006335904A (en) Polylactic acid-based oriented film
US6258452B1 (en) Transparent articles of polyester resin
JP3726401B2 (en) Method for producing polylactic acid copolymer and polylactic acid copolymer
JP4246523B2 (en) Lactic acid resin composition
JP2008063582A (en) Lactic acid resin composition, peroxide-modified lactic acid resin composition and their molded products
JP4534806B2 (en) Aliphatic polyester composition and method for producing the same
JP2016124966A (en) Mixed pellet containing pellets of polyester and resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

EXPY Cancellation because of completion of term