JP3645417B2 - Liquid transfer method - Google Patents

Liquid transfer method Download PDF

Info

Publication number
JP3645417B2
JP3645417B2 JP09579598A JP9579598A JP3645417B2 JP 3645417 B2 JP3645417 B2 JP 3645417B2 JP 09579598 A JP09579598 A JP 09579598A JP 9579598 A JP9579598 A JP 9579598A JP 3645417 B2 JP3645417 B2 JP 3645417B2
Authority
JP
Japan
Prior art keywords
liquid
transfer
line
pump
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09579598A
Other languages
Japanese (ja)
Other versions
JPH11294699A (en
Inventor
康昭 山口
文尚 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP09579598A priority Critical patent/JP3645417B2/en
Publication of JPH11294699A publication Critical patent/JPH11294699A/en
Application granted granted Critical
Publication of JP3645417B2 publication Critical patent/JP3645417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pipeline Systems (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体の移送方法に関する。
【0002】
【従来の技術】
一般的に化学プロセスは、反応や分離といった単位操作に使用される複数のプロセス機器が、パイプ等のラインにより接続されて構成されており、該ラインを用いて気体や液体や個体の状態で原料や中間反応物が移送され、各プロセス機器で処理されて最終的な製造物が生産される。
【0003】
液体状態で移送されるプロセス物質は、ラインに設けたポンプを用いて圧送されるのが一般的であるが、液体中で気泡が発生する現象(キャビテーション)により機器が損傷を受けたりするという問題点がある。
例えば、プロピレンの様な単量体を液相存在下に重合してポリプロピレンのような重合体を製造する際に、その重合熱は、気化した液相の一部(気化蒸気)を冷却凝縮して凝縮液を重合槽へ戻す還流冷却器を用いて除去されるが、上記の気化蒸気は重合槽中で撹拌されて、その一部は重合体の懸濁液と共に重合槽より抜き出されて、回収工程といった次工程へと圧送するために使用されるポンプの吸入配管に混入し、キャビテーションを引き起こすことがある。
【0004】
或いは、重合体の懸濁液から原料単量体や添加剤を減圧して回収する為の脱ガス槽の抜き出し液をポンプで圧送する際にも問題となる。
また、上記のような問題は、重合槽や脱ガス槽といった撹拌槽から懸濁液を移送する場合に限らず、例えば、液体サイクロンのような分離機器を用いて懸濁液から清澄液を分離して移送する場合にも、液体サイクロンの遠心作用やその抵抗により圧力が降下して気化し易くなったりして、清澄液側の気化蒸気の存在割合が高くなり、清澄液の移送ラインに設置されたポンプにおいてもしばしば問題となる。
【0005】
一般的に、ポンプを設置する場合には、ポンプの吸込口における気化蒸気の発生条件を判断し、機種の選定、配置等が行われるが、移送元のプロセス機器中で発生する気化蒸気(気泡)がどの程度、吸入配管に巻き込まれるかを予測する事は困難となっている。また、ポンプ設置時の運転条件以外の条件で運転しなければならない場合もある。
【0006】
キャビテーションを防止する方法としては、例えば上記プロセス機器出口にボルテックスブレーカーを設置する方法や、プロセス機器からの抜き出しラインを二重管として、その内管に抜き出し液を、外側に冷却媒体を流すことによって懸濁液を冷却し、気泡を低減する方法等が挙げられる。
しかしながら、ボルテックスブレーカーを設置しても気泡混入を防止する効果は十分でない。また、二重管で冷却する方法では、プロセス機器からポンプまでの移送ラインの長さが長くなったり、あるいは非常に低温の冷却媒体を必要とするためにその冷却に要するコストが高いものになったりするという問題点がある。多管式熱交換器で冷却する方法においても、該熱交換器が閉塞したり、スケールの付着により総括伝熱係数が低下したりといった問題点がある。
【0007】
【発明が解決しようとする課題】
本発明においては、移送ラインに付帯するポンプのキャビテーションの発生を防止しながら液体を移送する方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
すなわち、本発明の要旨は、移送ラインに設置されたポンプを用いてプロセス機器から液体を圧送するに際し、移送される液体が、重合体の懸濁液であり、移送元のプロセス機器と上記ポンプとの間の移送ラインに液体を注入するラインを設け、かつ注入ラインから注入される液体が該重合体の原料単量体であることを特徴とする液体の移送方法に存する。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明方法は、ポンプを付帯する移送ラインを用いて重合槽や撹拌槽等の種々のプロセス機器から抜き出した液体混合物を移送する際に、移送ラインから液体を注入することにより、上記ポンプのキャビテーションを抑制しながら移送する物である。
【0010】
移送される液体は、混合液や懸濁液であっても良く、特に限定されないが、揮発性の高い液体への適用は効果が大きいので好適であり、プロピレンや塩化ビニルのような重合体の原料単量体等が例示される。
移送ラインから注入される液体としては、それ自身と移送される液体との混合液の蒸気圧が、注入以前の移送される液体の蒸気圧よりも低くなるような液体を選定すればよいが、液体の顕熱を利用する観点からは移送される液体よりも低い温度の液体を用いれば混合後の液体混合物の温度が低下して気泡消去の効果がより大きくなるので好ましく、更に、後段のプロセスにおける分離・精製等の操作を考慮すると、移送される液体の主成分と同一のものがより好ましく選定される。
ポンプの種類も特に限定されず、移送される液体の種類や圧力といったプロセス条件に応じて選定すればよい。
【0011】
また、移送元のプロセス機器も液体を処理するプロセスで使用される機器であれば良いが、撹拌槽や、重合槽、脱ガス槽、液体サイクロンの様な気化蒸気が発生しやすい機器における適用は、気泡の低減によるキャビテーション抑止の効果が大きく好ましい。
以下、本発明を実際のプロセスに適用した例を図に示してより詳細に説明する。
【0012】
図1は本発明を重合体の懸濁液の移送に適用した例を示す説明図である。
液体単量体の重合反応が重合槽1内の液相部で撹拌装置2によって撹拌されながら行われる。該液相の一部がその重合熱によって気化されて蒸気となり、その気化蒸気はブロワー6によって吸引され、凝縮器4により冷却されて凝縮液と非凝縮ガスに分離される。該凝縮液及び非凝縮ガスは、それぞれ凝縮液ライン8および非凝縮ライン5、7を経て重合槽1に循環される。
上記の図1に示されるような重合系の液相部には、重合熱によって発生した気化蒸気や凝縮器から循環されて液相部へと戻された非凝縮ガスが気泡として存在し、液相部で撹拌混合されて分裂・合一等しながら液相に滞留した後、一部は気相部へ抜けていき、残部は重合体と共に懸濁液として抜き出されるので、ポンプ吸入ライン9に設置された液注ライン10より液体を導入することにより、気泡の消去または低減を図る。
【0013】
ポンプ吸入ライン9より抜き出され重合体懸濁液は、移送ポンプ11により移送ライン12を通して後段のプロセスへと移送される。移送先である後段のプロセスとしては、後段の重合槽や未反応ガスの回収槽が例示される。或いは、冷却器や分級器などを経由して重合槽1自身へ循環されても良い。また、移送先は、単一であっても良いし、複数のプロセスであっても良い。このような例においては、移送ラインより注入される液体としては、移送後の分離・精製プロセスにおいて余分な操作を省いたり、重合系へ循環される場合には重合を阻害しないという観点から原料単量体自身が好ましい態様として例示される。
【0014】
図2は、本発明を、重合反応させた後の未反応ガス等を回収する脱ガス槽13中の懸濁液の移送に適用した場合の説明図である。脱ガス槽13はコンプレッサー18によって吸引されている。気化蒸気は、気化蒸気ライン3から冷却器16に導入されて凝縮液と非凝縮ガスに分離される。該非凝縮ガスは、ライン17および19を経て回収系等へ送られ、その凝縮液はライン8を経て脱ガス槽13へ戻される。脱ガス槽13中の濁液は、気化蒸気の一部と共にポンプ吸入ライン9を経て移送ポンプ11により後段のプロセスへと移送される。ポンプ吸入ラインには液注ライン10が設置されており、懸濁液中の気泡を消去又は減少させる為の液体が導入される。
【0015】
図3は、図1の重合系の場合において、液注ライン10を凝縮ライン8に接続し、液注ライン10から注入される液体として凝縮器の凝縮液の一部を適用した例であり、このような場合、重合系の冷却効率上は循環系を構成するのが好ましい。
図1〜3を用いて説明した様に本発明を重合プロセスに適用する場合には、移送ラインに注入される液体としては、重合槽へ導入される原料単量体等の液体が例示される。一般的に、これらの重合槽へ導入される液体は、重合反応温度よりも低いので、この一部を利用するのが最も容易な方法である。さらには、循環系を形成する場合には、本来、重合槽へ直接導入するものを、この循環系を経て重合槽に導入される事になるだけであり、冷却液を無駄なく利用する事が可能となる。
【0016】
【実施例】
次に、本発明方法の具体的態様を実施例を用いて説明するが、本発明は、その要旨を越えない限り、以下の実施例によって限定されるものではない。
<実施例1>
図1に示す重合槽で、液状プロピレンの溶液重合を槽内の重合温度を65℃に制御して連続で行った。ポンプ吸入ライン10からの重合体の懸濁液の抜き出し量は5.7ton/hであり、ポンプ吸入ライン9に設けられた液注ライン10から重合槽へ原料単量体として供給されるのと同一の、温度35℃のプロピレンを、ポンプ吸入ライン9に注入し、凝縮冷却器循環ガスブロワーのガス循環量を徐々に増加させることにより、重合槽中の気泡率を変化させた。ポンプ吸入ライン9の重合槽液抜出口の近傍およびポンプ吸入口近傍に密度測定装置を設置し、配管中の顕濁液の密度を連続測定し、該懸濁液密度から算出することにより気泡率(体積分率)を測定した。
【0017】
液注ライン10より注入された液体の注入量と、ポンプ吸入ライン9を流れる懸濁液の気泡率の関係を図4に示す。液体を注入するにつれて懸濁液の気泡率は減少し、さらには消滅する。気泡の減少は少量の懸濁液の注入でも顕著である。この結果より、懸濁液の注入量と気泡の消去率に相関関係があることが判る。
【0018】
<比較例1>
重合槽液相抜出口から移送ポンプのまでの間での冷却液の導入を行わないこと以外は実施例1と同様にして重合反応を行い気泡率を測定した。図5に移送ポンプ11の電流値と、ポンプ吸入口近傍における気泡率の時間変化を示す。気泡率は徐々に上昇し、20vol%を越えてくると電流値の絶対値は低下傾向を示し、同時に、電流値の振れが大きくなってキャビテーションの兆候を示したため、それ以降は運転継続が不可能と判断して凝縮冷却器循環ガスブロワーのガス循環量を減少させた。図6に図5と同時間帯のポンプの吐出流量の変化を示すが、ポンプの吐出流量の低下が大きくなっていることが示されている。
【0019】
<比較例2>
重合槽液抜出口と移送ポンプ吸入との間に2重管式クーラーを設置して、該二重管の外管に冷却水を流して顕濁液の冷却を行った以外は実施例1と同様にして重合反応を行い、気泡率を測定した。図7は、重合槽抜出口近傍における気泡率が20vol%の時のポンプ吸入口近傍における気泡率と、冷却水の入出温度と冷却水量から求めたクーラー除熱量の相関関係を示したものである。この結果、明らかに顕濁液の冷却によって気泡を減少させ、さらには消滅させる事ができ、そのクーラー除熱量と気泡の消去率に相関関係があることが判る。
【0020】
比較例1において、気化蒸気による気泡の混入によってポンプがキャビテーションに至る例を示し、比較例2において、その場合にも、冷却する事によって気泡率を下げ、キャビテーションを回避する例を示した。しかし、冷却器の様な過剰な付帯設備を設置しなくても、本発明方法を用いることで容易に気泡を減少させ、キャビテーションを回避できる事を実施例1により示した。
【0021】
【発明の効果】
本発明方法によれば、移送ラインに付帯するポンプのキャビテーションの発生を防止しながら液体を移送する事ができ、ポンプの損傷の可能性を低減でき、また、移送ラインの接続元である重合槽等のプロセス機器を安定して運転することができる。
【図面の簡単な説明】
【図1】本発明を重合体の懸濁液の移送に適用した一例を示す説明図
【図2】本発明を重合体の懸濁液の移送に適用した他の例を示す説明図
【図3】本発明を重合体の懸濁液の移送に適用した他の例を示す説明図
【図4】本発明を適用した際の液体の注入量と気泡率の関係の一例を表すグラフ
【図5】従来の技術における重合体懸濁液の移送時の電流値と対応する気泡率のトレンドグラフ
【図6】従来の技術における重合体懸濁液の移送時の懸濁液流量のトレンドグラフ
【図7】従来の技術におけるクーラー除熱量と気泡率の関係を表すグラフ
【符号の説明】
1 重合槽
2 攪拌装置
3 気化蒸気ライン
4 還流凝縮器
5、7 非凝縮ガスライン
6 ブロワー
8 凝縮液ライン
9 ポンプ吸入ライン
10 液注ライン
11 移送ポンプ
12 液輸送ライン
13 脱ガス槽
16 冷却器
17、19 回収ガスライン
18 コンプレッサー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid transfer method.
[0002]
[Prior art]
In general, a chemical process consists of a plurality of process equipment used for unit operations such as reaction and separation, connected by lines such as pipes, and raw materials in the state of gas, liquid or solid using the lines. And intermediate reactants are transferred and processed by each process equipment to produce a final product.
[0003]
Process substances that are transferred in a liquid state are generally pumped using a pump provided in the line, but the problem is that the equipment is damaged due to the phenomenon of bubbles in the liquid (cavitation). There is a point.
For example, when a polymer such as polypropylene is produced by polymerizing a monomer such as propylene in the presence of a liquid phase, the polymerization heat cools and condenses a part of the vaporized liquid phase (vaporized vapor). The condensate is removed using a reflux condenser that returns the polymerized liquid to the polymerization tank. The vaporized vapor is stirred in the polymerization tank, and a part of the vapor is extracted from the polymerization tank together with the polymer suspension. In some cases, it may enter the suction pipe of the pump used for pumping to the next process such as the recovery process, causing cavitation.
[0004]
Alternatively, there is a problem when pumping out the liquid extracted from the degassing tank for recovering the raw material monomer and additive by reducing the pressure from the polymer suspension.
Moreover, the above problems are not limited to the case where the suspension is transferred from a stirring tank such as a polymerization tank or a degassing tank. For example, the clarified liquid is separated from the suspension using a separation device such as a liquid cyclone. Even if it is transferred, the pressure drops due to the centrifugal action of the hydrocyclone and its resistance, making it easier to vaporize, and the proportion of vaporized vapor on the clarified liquid side increases, and it is installed in the clarified liquid transfer line. This is often a problem even in the pumps used.
[0005]
Generally, when installing a pump, the conditions for generating vaporized vapor at the pump inlet are judged, and the model is selected and arranged. However, vaporized vapor (bubbles) generated in the process equipment of the transfer source ) Is difficult to predict how much will be caught in the suction pipe. In some cases, it is necessary to operate under conditions other than the operating conditions when the pump is installed.
[0006]
As a method of preventing cavitation, for example, a method of installing a vortex breaker at the outlet of the process equipment, or a double line as an extraction line from the process equipment, by letting an extraction liquid flow into the inner pipe and a cooling medium to flow outside. Examples include a method of cooling the suspension and reducing bubbles.
However, even if a vortex breaker is installed, the effect of preventing air bubbles from mixing is not sufficient. In addition, in the method of cooling with a double pipe, the length of the transfer line from the process equipment to the pump becomes long, or a very low temperature cooling medium is required, so that the cost required for the cooling becomes high. There is a problem that. Even in the method of cooling with a multi-tube heat exchanger, there is a problem that the heat exchanger is blocked or the overall heat transfer coefficient is reduced due to the adhesion of scale.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for transferring a liquid while preventing the occurrence of cavitation of a pump attached to the transfer line.
[0008]
[Means for Solving the Problems]
That is, the gist of the present invention is that when a liquid is pumped from a process device using a pump installed in a transfer line, the liquid to be transferred is a suspension of a polymer , and the source process device and the pump The liquid transfer method is characterized in that a line for injecting liquid is provided in the transfer line between and the liquid, and the liquid injected from the injection line is a raw material monomer of the polymer .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the method of the present invention, when a liquid mixture extracted from various process equipment such as a polymerization tank and a stirring tank is transferred using a transfer line attached to a pump, the liquid is injected from the transfer line, thereby cavitation of the pump. It is a thing to move while suppressing.
[0010]
The liquid to be transferred may be a mixed liquid or a suspension, and is not particularly limited, but it is suitable for application to a highly volatile liquid because it has a large effect, and is suitable for polymers such as propylene and vinyl chloride. Examples include raw material monomers.
The liquid injected from the transfer line may be selected such that the vapor pressure of the liquid mixture of itself and the transferred liquid is lower than the vapor pressure of the transferred liquid before injection, From the viewpoint of using the sensible heat of the liquid, it is preferable to use a liquid having a temperature lower than that of the liquid to be transferred because the temperature of the liquid mixture after mixing is lowered and the effect of eliminating bubbles is further increased. Considering operations such as separation and purification in the above, the same main component as the liquid to be transferred is more preferably selected.
The type of pump is not particularly limited, and may be selected according to the process conditions such as the type of liquid to be transferred and the pressure.
[0011]
In addition, the transfer source process equipment may be any equipment that is used in the liquid processing process, but it is applicable to equipment that easily generates vaporized vapor such as a stirring tank, polymerization tank, degassing tank, and liquid cyclone. The effect of inhibiting cavitation due to the reduction of bubbles is great and preferable.
Hereinafter, an example in which the present invention is applied to an actual process will be described in detail with reference to the drawings.
[0012]
FIG. 1 is an explanatory view showing an example in which the present invention is applied to transfer of a suspension of a polymer.
The polymerization reaction of the liquid monomer is performed while being stirred by the stirring device 2 in the liquid phase portion in the polymerization tank 1. A part of the liquid phase is vaporized by the polymerization heat to become vapor, and the vaporized vapor is sucked by the blower 6, cooled by the condenser 4, and separated into a condensed liquid and a non-condensed gas. The condensate and non-condensable gas are circulated to the polymerization tank 1 via a condensate line 8 and non-condensation lines 5 and 7, respectively.
In the liquid phase part of the polymerization system as shown in FIG. 1 above, vaporized vapor generated by polymerization heat and non-condensed gas circulated from the condenser and returned to the liquid phase part exist as bubbles, After stirring and mixing in the phase part and staying in the liquid phase while splitting and coalescing, etc., a part of the gas part is discharged to the gas phase part, and the remaining part is withdrawn as a suspension together with the polymer. By introducing a liquid from the liquid injection line 10 installed in, bubbles are eliminated or reduced.
[0013]
The polymer suspension extracted from the pump suction line 9 is transferred to the subsequent process through the transfer line 12 by the transfer pump 11. Examples of the subsequent process as the transfer destination include a subsequent polymerization tank and an unreacted gas recovery tank. Or you may circulate to the superposition | polymerization tank 1 itself via a cooler, a classifier, etc. Further, the transfer destination may be a single process or a plurality of processes. In such an example, as the liquid injected from the transfer line, the raw material is simply used from the viewpoint of eliminating unnecessary operations in the separation / purification process after transfer or not inhibiting the polymerization when recycled to the polymerization system. The mer itself is exemplified as a preferred embodiment.
[0014]
FIG. 2 is an explanatory diagram when the present invention is applied to the transfer of the suspension in the degassing tank 13 for recovering the unreacted gas after the polymerization reaction. The degassing tank 13 is sucked by the compressor 18. The vaporized steam is introduced into the cooler 16 from the vaporized vapor line 3 and separated into a condensed liquid and a non-condensed gas. The non-condensed gas is sent to a recovery system or the like via lines 17 and 19 , and the condensed liquid is returned to the degassing tank 13 via line 8. Suspension Nigoeki in the degassing tank 13 is transported to the subsequent process by the transfer pump 11 through a pump suction line 9 with a portion of the vaporized steam. A liquid injection line 10 is installed in the pump suction line 9 to introduce a liquid for eliminating or reducing bubbles in the suspension.
[0015]
FIG. 3 is an example in which in the case of the polymerization system of FIG. 1, the liquid injection line 10 is connected to the condensation line 8 and a part of the condensate in the condenser is applied as the liquid injected from the liquid injection line 10. In such a case, it is preferable to constitute a circulation system in terms of cooling efficiency of the polymerization system.
As described with reference to FIGS. 1 to 3, when the present invention is applied to the polymerization process, examples of the liquid injected into the transfer line include liquids such as raw material monomers introduced into the polymerization tank. . Generally, the liquid introduced into these polymerization tanks is lower than the polymerization reaction temperature, so it is the easiest method to use a part of the liquid. Furthermore, when a circulation system is formed, what is originally introduced directly into the polymerization tank is merely introduced into the polymerization tank via this circulation system, and the coolant can be used without waste. It becomes possible.
[0016]
【Example】
Next, specific embodiments of the method of the present invention will be described using examples, but the present invention is not limited by the following examples unless it exceeds the gist.
<Example 1>
In the polymerization tank shown in FIG. 1, solution polymerization of liquid propylene was carried out continuously with the polymerization temperature in the tank controlled at 65 ° C. The amount of the polymer suspension extracted from the pump suction line 10 is 5.7 ton / h, and is supplied as a raw material monomer from the liquid injection line 10 provided in the pump suction line 9 to the polymerization tank. The same propylene having a temperature of 35 ° C. was injected into the pump suction line 9, and the gas circulation rate of the condenser cooler circulation gas blower was gradually increased to change the bubble ratio in the polymerization tank. By installing a density measuring device in the vicinity of the polymerization tank liquid outlet of the pump suction line 9 and in the vicinity of the pump suction port, the density of the turbid liquid in the pipe is continuously measured, and the bubble rate is calculated from the suspension density. (Volume volume) was measured.
[0017]
FIG. 4 shows the relationship between the amount of liquid injected from the liquid injection line 10 and the bubble rate of the suspension flowing through the pump suction line 9. As the liquid is injected, the bubble rate of the suspension decreases and then disappears. The reduction of bubbles is significant even when a small amount of suspension is injected. From this result, it can be seen that there is a correlation between the injection amount of the suspension and the bubble erasing rate.
[0018]
<Comparative Example 1>
The polymerization reaction was carried out in the same manner as in Example 1 except that the cooling liquid was not introduced between the liquid phase extraction outlet of the polymerization tank and the transfer pump, and the bubble rate was measured. FIG. 5 shows the time change of the current value of the transfer pump 11 and the bubble ratio in the vicinity of the pump suction port. The bubble rate gradually increased, and when it exceeded 20 vol%, the absolute value of the current value tended to decrease, and at the same time, the current value fluctuated and showed signs of cavitation. Judging that it was possible, the gas circulation rate of the condenser cooler circulation gas blower was reduced. FIG. 6 shows a change in the pump discharge flow rate in the same time zone as in FIG. 5, but it is shown that the decrease in the pump discharge flow rate is large.
[0019]
<Comparative example 2>
Example 1 except that a double pipe type cooler was installed between the polymerization tank liquid outlet and the suction of the transfer pump, and the turbid liquid was cooled by flowing cooling water through the outer pipe of the double pipe. The polymerization reaction was performed in the same manner, and the bubble rate was measured. FIG. 7 shows the correlation between the bubble ratio in the vicinity of the pump inlet when the bubble ratio in the vicinity of the polymerization tank outlet is 20 vol%, the cooler heat removal amount obtained from the cooling water inlet / outlet temperature and the amount of cooling water. . As a result, it is apparent that the bubbles can be reduced and further eliminated by cooling the turbid solution, and that there is a correlation between the amount of heat removal from the cooler and the elimination rate of the bubbles.
[0020]
In Comparative Example 1, an example is shown in which the pump reaches cavitation due to mixing of bubbles by vaporized vapor. In Comparative Example 2, an example in which the bubble rate is lowered by cooling to avoid cavitation is also shown. However, Example 1 shows that air bubbles can be easily reduced and cavitation can be avoided by using the method of the present invention without installing ancillary equipment such as a cooler.
[0021]
【The invention's effect】
According to the method of the present invention, the liquid can be transferred while preventing the occurrence of cavitation of the pump incidental to the transfer line, the possibility of damage to the pump can be reduced, and the polymerization tank which is the connection source of the transfer line Etc. can be operated stably.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example in which the present invention is applied to the transfer of a polymer suspension. FIG. 2 is an explanatory diagram illustrating another example in which the present invention is applied to a transfer of a polymer suspension. 3 is an explanatory view showing another example in which the present invention is applied to the transfer of a polymer suspension. FIG. 4 is a graph showing an example of the relationship between the liquid injection amount and the bubble rate when the present invention is applied. 5] Trend graph of the current value during the transfer of the polymer suspension in the conventional technology and the corresponding bubble ratio [Fig. 6] Trend graph of the suspension flow rate during the transfer of the polymer suspension in the conventional technology [ FIG. 7 is a graph showing the relationship between the amount of heat removed from the cooler and the bubble rate in the prior art.
DESCRIPTION OF SYMBOLS 1 Polymerization tank 2 Stirrer 3 Vaporization vapor line 4 Reflux condenser 5, 7 Non-condensing gas line 6 Blower 8 Condensate line 9 Pump suction line 10 Liquid injection line 11 Transfer pump 12 Liquid transport line 13 Degassing tank
16 cooler
17, 19 Recovery gas line
18 compressors

Claims (5)

移送ラインに設置されたポンプを用いてプロセス機器から液体を圧送するに際し、移送される液体が、重合体の懸濁液であり、移送元のプロセス機器と上記ポンプとの間の移送ラインに液体を注入するラインを設け、かつ注入ラインから注入される液体が該重合体の原料単量体であることを特徴とする液体の移送方法。When the liquid is pumped from the process equipment using a pump installed in the transfer line, the liquid to be transferred is a suspension of the polymer, and the liquid is transferred to the transfer line between the source process equipment and the pump. A liquid transfer method characterized in that a line for injecting the liquid is provided and the liquid injected from the injection line is a raw material monomer of the polymer . 重合体がポリプロピレンであり、原料単量体がプロピレンである請求項に記載の液体の移送方法。Polymer is polypropylene, the transfer method of a liquid according to claim 1 the raw material monomer is propylene. 移送ラインの移送元が重合槽である請求項1又は2に記載の液体の移送方法。The liquid transfer method according to claim 1 or 2 , wherein a transfer source of the transfer line is a polymerization tank. 移送ラインの移送元が重合反応後のガス成分を除去する脱ガス槽である請求項1又は2に記載の液体の移送方法。The liquid transfer method according to claim 1 or 2 , wherein a transfer source of the transfer line is a degas tank for removing a gas component after the polymerization reaction. 移送ラインの移送元が液体サイクロンである請求項1又は2に記載の液体の移送方法。The liquid transfer method according to claim 1 or 2 , wherein a transfer source of the transfer line is a liquid cyclone.
JP09579598A 1998-04-08 1998-04-08 Liquid transfer method Expired - Fee Related JP3645417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09579598A JP3645417B2 (en) 1998-04-08 1998-04-08 Liquid transfer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09579598A JP3645417B2 (en) 1998-04-08 1998-04-08 Liquid transfer method

Publications (2)

Publication Number Publication Date
JPH11294699A JPH11294699A (en) 1999-10-29
JP3645417B2 true JP3645417B2 (en) 2005-05-11

Family

ID=14147389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09579598A Expired - Fee Related JP3645417B2 (en) 1998-04-08 1998-04-08 Liquid transfer method

Country Status (1)

Country Link
JP (1) JP3645417B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013338A1 (en) * 2004-03-17 2005-10-06 Uhde High Pressure Technologies Gmbh Method for suspending and feeding solids into a high pressure process

Also Published As

Publication number Publication date
JPH11294699A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
US20060159595A1 (en) Pumping apparatus and process for polymerization in loop reactors
JP2015166180A (en) Continuous processing method of mixture
EP1178055B1 (en) Method for recovering a polymer from solution
JP3645417B2 (en) Liquid transfer method
CN206736286U (en) A kind of exhaust heat of slag flushing water recovery system based on flash distillation
PL194225B1 (en) Method and apparatus for concentrating slurried solids
CN106084098B (en) Butene-1 polymerization reaction kettle and butene-1 polymerization reaction heat taking method
US6588450B2 (en) Storage tank for viscous oil containing easily polymerizable compounds
JP2008536981A (en) Method and apparatus for generating reduced pressure and separating volatile compounds during polycondensation reaction
US5383958A (en) Deaeration system
CN215139822U (en) Butadiene prevents from gathering device
US4050901A (en) Cooling unit for large polymerization vessels
JP2002226427A (en) Method for cooling equipment
JP3742166B2 (en) Polymer adhesion prevention method
JP2001187331A (en) Method for removing heat using reflux condenser, polymerization method using the same, and stirring tank and polymerization reactor to be used in these methods
JPH1149804A (en) Polymerization equipment and polymerization
CN114029016A (en) Styrene self-polymerization prevention device and process
CN215162252U (en) Chloroethylene recovery monomer dewatering device
CN219615514U (en) Polymerization reaction device of polyolefin elastomer
AU695211B2 (en) Distillation apparatus
JP3785207B2 (en) Low pressure steam heating device using heat medium
CN212687608U (en) Vacuum treatment system and sewage treatment system
CN215427390U (en) Polymer polyol tail gas recovery condensing tower
CN215841627U (en) Evaporation apparatus
RU2112577C1 (en) Plant for production of vacuum at distillation of liquid product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees