JP3644369B2 - Steel for high energy beam welding - Google Patents

Steel for high energy beam welding Download PDF

Info

Publication number
JP3644369B2
JP3644369B2 JP2000295648A JP2000295648A JP3644369B2 JP 3644369 B2 JP3644369 B2 JP 3644369B2 JP 2000295648 A JP2000295648 A JP 2000295648A JP 2000295648 A JP2000295648 A JP 2000295648A JP 3644369 B2 JP3644369 B2 JP 3644369B2
Authority
JP
Japan
Prior art keywords
toughness
steel
weld metal
high energy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000295648A
Other languages
Japanese (ja)
Other versions
JP2002105590A (en
Inventor
昌彦 濱田
孝浩 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000295648A priority Critical patent/JP3644369B2/en
Publication of JP2002105590A publication Critical patent/JP2002105590A/en
Application granted granted Critical
Publication of JP3644369B2 publication Critical patent/JP3644369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子ビームまたはレーザービーム等の高エネルギービーム溶接して得られる溶接部、具体的には溶接金属と溶接熱影響部の靭性がともに良好な高エネルギービーム溶接用鋼材に関する。
【0002】
【従来の技術】
種々の溶接構造物の製造にあたっては、被覆アーク溶接法、ガスメタルアーク溶接法、ガスタングステンアーク溶接法、サブマージアーク溶接法等のいわゆるアーク溶接法が主に用いられてきた。これらの溶接方法では、母材の板厚が厚くなるにつれ加速度的に積層数が増加して施工時間が増加し膨大な施工コストの増加を招く。また、積層数の増加は、ブローホール、スラグ巻き込み等の欠陥の増加を招くことから信頼性の確保も大きな問題となる。
【0003】
これに対し、電子ビームやレーザービームに代表される高エネルギー密度熱源を用いた溶接方法では、アーク溶接法に比べてより深い溶け込み形状が得られることから、厚肉材であっても一層溶接できるという特徴を有する。すなわち、高エネルギー密度熱源を利用した溶接方法の適用により板厚増加による積層数の増加という問題を解決することが可能である。
【0004】
一方、高エネルギー密度熱源を用いた溶接では、溶接金属および溶接熱影響部の靭性を確保することが困難となることが知られており、種々の改善方法が提案されている。例えば、特開昭63−126683号公報には、鋼材中のAl量を制御することにより低酸素の電子ビーム溶接金属においてもアシキュラーフェライトを生成せしめて溶接金属の靭性を改善する方法が示されている。
【0005】
また、特開平5−39538号公報には、上記公報に示される技術では溶接熱影響部の靭性が確保できないとして、母材鋼材をAl無添加、微量のTi添加鋼とすることにより電子ビーム溶接金属の組織をアシキュラーフェライトとし、さらに母材鋼中にTi酸化物を分散させることによって溶接熱影響部の靭性改善を図るようにした鋼材が示されている。しかし、この特開平5−39538号公報に示される技術では、溶接熱影響部の靭性を改善するのに必要な充分な量の微細なTi酸化物およびTiを含む酸化物を分散させることが困難であるという問題があった。
【0006】
さらに、特開平5−295480号公報には、母材鋼材をTi、Nb、V等の炭窒化物を形成する元素の無添加鋼とすることにより電子ビーム溶接部の靭性を改善する方法が示されている。しかし、この公報に示される方法では、溶接金属組織の微細化に有効なTiを充分に活用できないという問題があった。
【0007】
【発明が解決しようとする課題】
本発明は、上記の現状に鑑みてなされたもので、その目的は、溶接金属および溶接熱影響部の靭性ともに良好な溶接部が得られる高エネルギービーム溶接用鋼材を提供することにある。
【0008】
【課題を解決するための手段】
本発明の要旨は、下記の高エネルギービーム溶接用鋼材にある。
【0009】
質量%で、C:0.15%以下、Si:0.05%未満、Mn:1.5%を超え2.5%以下、P:0.03%以下、S:0.01%以下、Ti:0.002〜0.02%、Al:0.005〜0.04%、B:0.0001〜0.002%、O:0.005%以下、N:0.004%以下を含み、残部は実質的にFeである高エネルギービーム溶接用鋼材。
【0010】
上記本発明の鋼材は、Feの一部に代えて、質量%で、Cu:0.02〜3%、Ni:0.02〜10%、Cr:0.02〜19%、Mo:0.02〜4%、V:0.01〜0.5%およびNb:0.01〜0.5%のうちから選ばれた1種または2種以上、または/およびCa:0.002〜0.01%を含むものであってもよい。
【0011】
上記の本発明は、次に述べる知見に基づいて完成させた。すなわち、本発明者等は、上記の目的を達成するために、鋭意実験研究を行った結果、以下のことが判明した。
【0012】
Si量を低減すると、溶接金属の靭性が向上する。その理由は、詳細には不明であるが、酸化物の組成が変化するためと推定される。
【0013】
適量のTiを添加してその酸化物を微細分散させると、溶接金属の靭性が向上する。
【0014】
Al量を適正に制御してアルミナの生成防止を図ると、溶接金属の靭性が向上する。
【0015】
適量のBを添加してフェライトの粒界析出防止を図ると、溶接金属の靭性が向上する。
【0016】
N量を低減すると、地組織の靭性が向上し、これに伴って溶接熱影響部の靭性が向上する。
【0017】
【発明の実施の形態】
以下、本発明の高エネルギービーム溶接用鋼材の化学組成を上記のように定めた理由について詳細に説明する。なお、以下において、「%」は「質量%」を意味する。
【0018】
C:0.15%以下
Cは、母材の強度を得るのに有効な元素であるが、Cの増加はマルテンサイト硬さを上昇させるため、高エネルギー密度熱源溶接においては溶接部の硬さを著しく硬化させる。よって、C含有量は少なければ少ないほど好ましいが、0.15%までであれば許容できることから、その上限を0.15%とした。好ましい上限は0.12%、より好ましい上限は0.07%である。
【0019】
Si:0.05%未満
Si量の低減は、本発明の最大の特徴点である。Si量の低減は、溶接金属の靭性改善に必須であるとともに、溶接熱影響部の靭性改善にも有効である。すなわち、溶接金属の靭性改善には、酸化物を活用した組織の微細化が有効である。組織の微細化に有効な酸化物としてはTi23、TiO、スピネル酸化物(Ti、Mn、Al)34が知られており、これらの酸化物がフェライトと良好な結晶整合性を有することが原因として考えられている。
【0020】
一方、Si酸化物は、非晶質相を形成するため、溶接金属の微細化には効果がない。高エネルギー密度熱源を用いた溶接では、溶接金属中の酸素量が通常のアーク溶接に比べて著しく低いために、分散した酸化物個数が通常のアーク溶接金属に比べて少なくなる。よって、高エネルギー密度熱源により得られる溶接金属では、酸化物に占めるSi酸化物の低減が通常のアーク溶接金属に比べて組織の微細化により顕著にあらわれたものと推定できる。これに対し、溶接熱影響部の靭性改善は、靭性に悪影響を及ぼす島状マルテンサイトの低減による。いずれの効果についても、Si量は低いほど好ましくが、0.05%未満であれば許容できることから、Si含有量は0.05%未満とした。
【0021】
Mn:1.5%を超え2.5%以下
Mnは、母材の強度確保および溶接金属の靭性改善を目的として添加される。充分な効果を得るためには1.5%を超えるMn添加が必要である。しかし、2.5%を超える過剰なMn添加は、中心偏析を助長し鋼質の悪化を招く。このため、Mn含有量は1.5%を超え2.5%以下とした。好ましい範囲は1.65〜2.3%、より好ましい範囲は1.75〜2.2%である。なお、Mn添加による溶接金属の靭性改善は、酸化物中のスピネル酸化物の生成促進が原因であると推定される。
【0022】
P:0.03%以下
S:0.01%以下
P、Sは、いずれも、鋼中に含まれる不純物元素であり、これら元素の含有量は低ければ低いほど好ましいが、Pは0.03%まで、Sは0.01%までであれば許容できることから、P含有量の上限は0.03%、S含有量の上限は0.01%とした。Pの好ましい上限は0.015%、より好ましい上限は0.01%であり、Sの好ましい上限は0.005%、より好ましい上限は0.003%である。
【0023】
Ti:0.002〜0.02%
Tiは、溶接金属の靭性改善を目的に添加される。この効果を得るには最低でも0.002%以上が必要である。しかし、0.02%を超える過剰な添加は、溶接熱影響部の靭性悪化を生じる。このため、Ti含有量は0.002〜0.02%とした。好ましい範囲は0.005〜0.015%である。なお、Ti添加による溶接金属の靭性改善は、酸化物中のスピネル酸化物の生成促進が原因であると推定される。
【0024】
Al:0.005〜0.04%
Alは、脱酸を目的に添加され、その脱酸効果を充分に得るためには0.005%以上が必要である。しかし、0.04%を超える過剰な添加は、溶接金属の靱性を低下させる。よって、Al含有量は0.005〜0.04%とした。好ましい範囲は0.005〜0.02%、より好ましい範囲は0.005〜0.01%である。なお、本発明にいうAl含有量とは、Total.Alの含有量である。
【0025】
B:0.0001〜0.002%
Bは、溶接金属の靭性改善のために必須の元素である。溶接金属での粒界フェライトの析出防止のためには0.0001%以上が必要である。しかし、0.002%を超える過剰の添加は、効果が飽和するばかりでなく、むしろ過度の焼入性上昇をもたらす。よってB含有量は0.0001〜0.002%とした。好ましい範囲は0.0002〜0.0015%、より好ましい範囲は0.0003〜0.0015%である。
【0026】
O(酸素):0.005%以下
N:0.004%以下
OとNは、上記のP、Sと同様に、鋼中に含まれる不純物元素であり、これら元素の含有量は低ければ低いほど好ましく、特に、N量の低減は地組織の靭性改善を通じて溶接熱影響部の靭性改善に著しい効果をもたらす。許容できるO量の上限は0.005%、好ましい上限は0.003%、より好ましい上限は0.002%であり、N量の上限は0.004%、好ましい上限は0.003%、より好ましい上限は0.002%である。
【0027】
Cu、Ni、Cr、Mo、V、Nb
これらの元素は、添加しなくてもよい。添加すれば、いずれの元素も、母材の強度と靱性を向上させる効果を有する。よって、この効果を得たい場合には、これらの元素のうちから選ばれた1種を単独または2種以上を複合で添加してよい。その効果は、Cu、Ni、CrおよびMoではいずれも0.02%以上で、VおよびNbではいずれも0.01%以上で顕著になる。しかし、いずれの元素も、過剰な添加は、過度の焼入性上昇による溶接性の低下を招くので、添加する場合のCuは0.02〜3%、Niは0.02〜10%、Crは0.02〜19%、Moは0.02〜4%、Vは0.01〜0.5%、Nbは0.01〜0.5%とするのがよい。
【0028】
Ca:
Caは、添加しなくてもよい。添加すれば、硫化物の形態を球状化させて靭性を向上させる他、耐水素割れ性をも向上させる。このため、この効果を得たい場合には添加してよく、その効果は0.002%以上で顕著になる。しかし、0.01%を超える過剰な添加は、過度の焼入性上昇による溶接性の低下を招く。よって、添加する場合のCa含有量は0.002〜0.01%とするのがよい。
【0029】
以上に説明した本発明の鋼材を製造するにあたっては、如何なる公知の溶解方法、鋳造方法、圧延方法、熱処理方法、制御圧延方法を用いても本発明鋼の特徴を損なうものではない。なぜなら、本発明が目的としているのは、電子ビームまたはレーザービームのような高エネルギー密度熱源を利用し溶接を行った溶接部の靭性改善であるからである。溶接部において、特に靭性の確保が困難なのは、母材が溶解した後に再凝固した溶接金属および融点近傍の高温に再加熱された溶接熱影響部である。このような部位においては、母材の組織が完全に破壊されるため、母材の受けた如何なる熱履歴に関わりなく母材の化学組成により溶接後の組織が決定されるからである。
【0030】
容量150kgの真空精錬炉を用いて表1に示す化学組成を有する17種類の鋼を溶解し、インゴットに鋳造した。得られたインゴットを分塊、鍛造、圧延により板厚50mmの鋼板に仕上げた。得られた鋼板を850〜900℃に加熱後水冷して焼入処理を行った後、600〜650℃で焼戻を行い強度を調整した。
【0031】
【表1】

Figure 0003644369
これらの鋼板を母材として電子ビーム溶接を行い、母材の引張試験、継手の引張試験および溶接部のシャルピー試験を行った。ここで、電子ビーム溶接は、同一鋼種を突き合わせて加速電圧150kV、ビーム電圧220mA、溶接速度30cm/minで行った。この際、開先は取らず端面を機械加工で仕上げたいわゆるI(アイ)バット溶接を行った。
【0032】
母材および継手の引張試験には、鋼板の板厚方向の中央部から採取した平行部の直径が12.5mmの丸棒引張試験片を用いた。引張試験片の形状は、JISZ 2201に規定される10号試験片に準拠した。ただし、継手の引張試験用の試験片は、引張方向が溶接線に直行する方向で、かつ溶接部が試験片の長手方向の中央に位置するように採取した。
【0033】
溶接部のシャルピー試験は、板厚方向の中央部から採取したJIS(1980) Z2201に規定されるフルサイズの4号試験片を用いて試験温度−30℃で行い、−30℃での吸収エネルギーを調べることにより評価した。ノッチ位置は、溶接金属の中央と溶融線(具体的には溶接熱影響部と溶接金属が1:1になる位置)とした。
【0034】
母材のシャルピー試験は、板厚方向の中央部から採取したJIS(1980) Z 2201に規定されるフルサイズの4号試験片を用いて種々の試験温度で行い、破面遷移温度を調べることにより評価した。以上の試験結果を表2に示した。
【0035】
なお、具体的なデータ値の記載は省略するが、いずれの供試鋼板(母材)も、−30℃での吸収エネルギーは200J以上であった。
【0036】
【表2】
Figure 0003644369
No.1、2および3の鋼は、Si量が本発明で規定する上限を超えているために溶接金属の靱性が低い。これに対し、Si量が本発明で規定する上限値未満であるNo.4の鋼は、溶接金属の靱性が良好である。
【0037】
No. 5の鋼は、Tiを含まないために溶接金属の靭性が低い。また、No. 8の鋼は、Ti量が本願発で規定する上限値を超えているために溶接熱影響部の靭性が劣る。これに対し、Ti量が本発明で規定する範囲内のNo. 6と7の鋼は、溶接熱影響部および溶接金属の靭性ともに良好である。
【0038】
No.12の鋼は、Al量が本発明で規定する上限を超えているために溶接金属の靱性が低い。また、No.13の鋼は、Bを含まないために溶接金属の靱性が低い。さらに、No.15の鋼は、Mn量が本発明で規定する下限値よりも少ないために溶接金属の靱性が劣る。これに対し、化学組成が本発明で規定する範囲内のNo.10、11、14および16〜18の鋼は、いずれも溶接金属および溶接熱影響部の靱性が良好である。
【0039】
【発明の効果】
本発明の鋼材は高エネルギー密度溶接して得られる溶接部の溶接金属と溶接熱影響部の両方の靭性がともに優れるので、産業上多大な効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a welded portion obtained by high energy beam welding such as an electron beam or a laser beam, specifically, a steel material for high energy beam welding in which both the weld metal and the weld heat affected zone have good toughness.
[0002]
[Prior art]
In manufacturing various welded structures, so-called arc welding methods such as a covering arc welding method, a gas metal arc welding method, a gas tungsten arc welding method, and a submerged arc welding method have been mainly used. In these welding methods, as the thickness of the base metal becomes thicker, the number of layers increases at an accelerated rate, the construction time increases, and the construction cost increases enormously. In addition, since the increase in the number of layers causes an increase in defects such as blow holes and slag entrainment, securing reliability is also a big problem.
[0003]
On the other hand, a welding method using a high energy density heat source typified by an electron beam or a laser beam can obtain a deeper penetration shape compared to the arc welding method, so that even a thick material can be further welded. It has the characteristics. That is, it is possible to solve the problem of an increase in the number of layers due to an increase in plate thickness by applying a welding method using a high energy density heat source.
[0004]
On the other hand, in welding using a high energy density heat source, it is known that it is difficult to ensure the toughness of the weld metal and the weld heat affected zone, and various improvement methods have been proposed. For example, Japanese Patent Laid-Open No. 63-126683 discloses a method for improving the toughness of a weld metal by controlling the amount of Al in the steel material to generate acicular ferrite even in a low oxygen electron beam weld metal. ing.
[0005]
Further, in Japanese Patent Laid-Open No. 5-39538, the technique shown in the above publication cannot secure the toughness of the weld heat-affected zone, so that the base steel is made of Al-free steel and a small amount of Ti-added steel. A steel material is shown in which the structure of the metal is acicular ferrite and the toughness of the weld heat affected zone is improved by dispersing Ti oxide in the base steel. However, with the technique disclosed in Japanese Patent Laid-Open No. 5-39538, it is difficult to disperse a sufficient amount of fine Ti oxide and oxide containing Ti necessary to improve the toughness of the weld heat affected zone. There was a problem of being.
[0006]
Further, Japanese Patent Laid-Open No. 5-295480 discloses a method for improving the toughness of an electron beam welded portion by making the base steel material an additive-free steel that forms carbonitrides such as Ti, Nb, and V. Has been. However, the method disclosed in this publication has a problem that Ti that is effective for making the weld metal structure fine cannot be fully utilized.
[0007]
[Problems to be solved by the invention]
This invention is made | formed in view of said present condition, The objective is to provide the steel material for high energy beam welding from which a welded part with favorable toughness of a weld metal and a welding heat affected zone is obtained.
[0008]
[Means for Solving the Problems]
The gist of the present invention resides in the following steel materials for high energy beam welding.
[0009]
In mass%, C: 0.15% or less , Si: less than 0.05%, Mn: more than 1.5% and 2.5% or less, P: 0.03% or less, S: 0.01% or less, Including Ti: 0.002 to 0.02%, Al: 0.005 to 0.04%, B: 0.0001 to 0.002%, O: 0.005% or less, N: 0.004% or less The remainder is a steel for high energy beam welding which is substantially Fe.
[0010]
In the steel material of the present invention, instead of a part of Fe, by mass%, Cu: 0.02 to 3%, Ni: 0.02 to 10%, Cr: 0.02 to 19%, Mo: 0.00. 02-4 %, V : 0.01-0.5 % and Nb: one or more selected from 0.01-0.5 %, or / and Ca: 0.002-0. It may contain 01%.
[0011]
The present invention has been completed based on the following knowledge. That is, the present inventors have conducted extensive experimental studies to achieve the above object, and as a result, have found the following.
[0012]
When the amount of Si is reduced, the toughness of the weld metal is improved. Although the reason is unknown in detail, it is estimated that the composition of the oxide changes.
[0013]
When an appropriate amount of Ti is added and the oxide is finely dispersed, the toughness of the weld metal is improved.
[0014]
When the amount of Al is appropriately controlled to prevent the formation of alumina, the toughness of the weld metal is improved.
[0015]
When an appropriate amount of B is added to prevent precipitation of ferrite grain boundaries, the toughness of the weld metal is improved.
[0016]
When the amount of N is reduced, the toughness of the ground structure is improved, and accordingly, the toughness of the weld heat affected zone is improved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason why the chemical composition of the steel material for high energy beam welding of the present invention is determined as described above will be described in detail. In the following, “%” means “mass%”.
[0018]
C: 0.15% or less C is an element effective for obtaining the strength of the base material. However, since an increase in C increases the martensite hardness, the hardness of the welded portion in high energy density heat source welding. Is significantly cured. Therefore, the smaller the C content, the better. However, the upper limit is set to 0.15% because it is acceptable up to 0.15%. A preferable upper limit is 0.12%, and a more preferable upper limit is 0.07%.
[0019]
Si: Less than 0.05% Reduction of the Si amount is the greatest feature of the present invention. The reduction of the Si amount is essential for improving the toughness of the weld metal and is also effective for improving the toughness of the weld heat affected zone. That is, to improve the toughness of the weld metal, it is effective to refine the structure using an oxide. Ti 2 O 3 , TiO, and spinel oxides (Ti, Mn, Al) 3 O 4 are known as effective oxides for refining the structure, and these oxides have good crystal matching with ferrite. It is considered as a cause.
[0020]
On the other hand, since Si oxide forms an amorphous phase, it has no effect on miniaturization of the weld metal. In welding using a high energy density heat source, the amount of oxygen in the weld metal is significantly lower than in ordinary arc welding, so the number of dispersed oxides is smaller than in ordinary arc weld metal. Therefore, in the weld metal obtained by a high energy density heat source, it can be presumed that the reduction of the Si oxide in the oxide is more noticeable due to the refinement of the structure than in the normal arc weld metal. On the other hand, the improvement of the toughness of the heat affected zone is due to the reduction of island martensite that adversely affects the toughness. For any effect, the lower the Si content, the better. However, since it is acceptable if it is less than 0.05%, the Si content is less than 0.05%.
[0021]
Mn: more than 1.5% and 2.5% or less Mn is added for the purpose of securing the strength of the base metal and improving the toughness of the weld metal. In order to obtain a sufficient effect, Mn addition exceeding 1.5% is necessary. However, excessive Mn addition exceeding 2.5% promotes center segregation and causes deterioration of steel quality. Therefore, the Mn content exceeds 1.5% and is 2.5% or less. A preferable range is 1.65 to 2.3%, and a more preferable range is 1.75 to 2.2%. In addition, it is estimated that the improvement in the toughness of the weld metal by adding Mn is caused by the promotion of the formation of spinel oxide in the oxide.
[0022]
P: 0.03% or less S: 0.01% or less P and S are impurity elements contained in steel, and the lower the content of these elements, the more preferable, but P is 0.03. %, S up to 0.01% is acceptable, so the upper limit of P content was 0.03%, and the upper limit of S content was 0.01%. A preferable upper limit of P is 0.015%, a more preferable upper limit is 0.01%, a preferable upper limit of S is 0.005%, and a more preferable upper limit is 0.003%.
[0023]
Ti: 0.002 to 0.02%
Ti is added for the purpose of improving the toughness of the weld metal. To obtain this effect, at least 0.002% is necessary. However, excessive addition exceeding 0.02% causes toughness deterioration of the weld heat affected zone. For this reason, Ti content was made into 0.002 to 0.02%. A preferred range is 0.005 to 0.015%. In addition, it is estimated that the improvement of the toughness of the weld metal by addition of Ti is caused by the promotion of the formation of spinel oxide in the oxide.
[0024]
Al: 0.005 to 0.04%
Al is added for the purpose of deoxidation, and 0.005% or more is necessary to sufficiently obtain the deoxidation effect. However, excessive addition exceeding 0.04% reduces the toughness of the weld metal. Therefore, the Al content is set to 0.005 to 0.04%. A preferred range is 0.005 to 0.02%, and a more preferred range is 0.005 to 0.01%. In addition, Al content said to this invention is Total. It is the content of Al.
[0025]
B: 0.0001 to 0.002%
B is an essential element for improving the toughness of the weld metal. In order to prevent precipitation of grain boundary ferrite in the weld metal, 0.0001% or more is necessary. However, an excessive addition exceeding 0.002% not only saturates the effect, but rather leads to an excessive increase in hardenability. Therefore, the B content is set to 0.0001 to 0.002%. A preferable range is 0.0002 to 0.0015%, and a more preferable range is 0.0003 to 0.0015%.
[0026]
O (oxygen): 0.005% or less N: 0.004% or less O and N are impurity elements contained in steel as in the case of P and S described above, and the content of these elements is low if the content is low. In particular, the reduction in the amount of N has a significant effect on improving the toughness of the weld heat affected zone through improving the toughness of the ground structure. The upper limit of the allowable amount of O is 0.005%, the preferable upper limit is 0.003%, the more preferable upper limit is 0.002%, the upper limit of the N amount is 0.004%, and the preferable upper limit is 0.003%. A preferable upper limit is 0.002%.
[0027]
Cu, Ni, Cr, Mo, V , Nb
These elements do not need to be added. It is added, each element also that have a effect of improving the strength and toughness of the base material. Therefore, when it is desired to obtain this effect, one kind selected from these elements may be added alone or two or more kinds may be added in combination. The effect becomes remarkable when Cu, Ni, Cr and Mo are all 0.02% or more, and when V and Nb are both 0.01% or more. However, excessive addition of any element causes a decrease in weldability due to an excessive increase in hardenability, so when added, Cu is 0.02 to 3%, Ni is 0.02 to 10%, Cr Is 0.02 to 19%, Mo is 0.02 to 4 %, V is 0.01 to 0.5%, and Nb is 0.01 to 0.5%.
[0028]
Ca:
Ca need not be added. If added, the form of the sulfide is spheroidized to improve toughness, and hydrogen cracking resistance is also improved. For this reason, when this effect is desired, it may be added, and the effect becomes remarkable at 0.002% or more. However, excessive addition exceeding 0.01% causes a decrease in weldability due to an excessive increase in hardenability. Therefore, the Ca content when added is preferably 0.002 to 0.01%.
[0029]
In manufacturing the steel material of the present invention described above, any known melting method, casting method, rolling method, heat treatment method, and controlled rolling method do not impair the characteristics of the steel of the present invention. This is because the purpose of the present invention is to improve the toughness of a welded part that is welded using a high energy density heat source such as an electron beam or a laser beam. In the welded portion, it is particularly difficult to secure toughness in the weld metal that has been re-solidified after the base material has melted and the weld heat-affected zone that has been reheated to a high temperature near the melting point. This is because the structure of the base metal is completely destroyed at such a portion, and the structure after welding is determined by the chemical composition of the base metal regardless of any thermal history received by the base material.
[0030]
Using a vacuum smelting furnace with a capacity of 150 kg, 17 types of steel having the chemical composition shown in Table 1 were melted and cast into ingots. The obtained ingot was finished into a steel plate having a thickness of 50 mm by splitting, forging, and rolling. The obtained steel sheet was heated to 850 to 900 ° C. and then cooled with water and quenched, and then tempered at 600 to 650 ° C. to adjust the strength.
[0031]
[Table 1]
Figure 0003644369
Electron beam welding was performed using these steel plates as base materials, and base material tensile tests, joint tensile tests, and Charpy tests of welds were performed. Here, electron beam welding was performed by matching the same steel types at an acceleration voltage of 150 kV, a beam voltage of 220 mA, and a welding speed of 30 cm / min. At this time, a so-called I (eye) butt welding in which the end face was finished by machining without taking a groove was performed.
[0032]
In the tensile test of the base material and the joint, a round bar tensile test piece having a parallel part diameter of 12.5 mm taken from the central part in the thickness direction of the steel sheet was used. The shape of the tensile test piece conformed to the No. 10 test piece defined in JISZ 2201. However, the test piece for the tensile test of the joint was sampled so that the tensile direction was perpendicular to the weld line and the weld was located at the center in the longitudinal direction of the test piece.
[0033]
The Charpy test of the welded part is performed at a test temperature of -30 ° C using a full-size No. 4 test piece specified in JIS (1980) Z2201 taken from the center in the thickness direction, and the absorbed energy at -30 ° C It was evaluated by examining. The notch position was the center of the weld metal and the melting line (specifically, the position where the weld heat affected zone and the weld metal are 1: 1).
[0034]
The Charpy test of the base metal shall be conducted at various test temperatures using the full size No. 4 test piece specified in JIS (1980) Z 2201 collected from the central part in the thickness direction, and the fracture surface transition temperature shall be examined. It was evaluated by. The test results are shown in Table 2.
[0035]
In addition, although description of a specific data value is abbreviate | omitted, all the test steel plates (base material) were 200J or more in the absorbed energy in -30 degreeC.
[0036]
[Table 2]
Figure 0003644369
The steels of Nos. 1, 2 and 3 have low weld metal toughness because the Si content exceeds the upper limit specified in the present invention. On the other hand, No. 4 steel whose Si amount is less than the upper limit specified in the present invention has good toughness of the weld metal.
[0037]
No. 5 steel has low toughness of the weld metal because it does not contain Ti. Further, No. 8 steel is inferior in the toughness of the weld heat affected zone because the Ti amount exceeds the upper limit specified in the present application. On the other hand, the steels of Nos. 6 and 7 whose Ti amount is within the range defined by the present invention have good weld heat affected zone and weld metal toughness.
[0038]
Steel No. 12 has low weld metal toughness because the Al content exceeds the upper limit defined in the present invention. In addition, No. 13 steel does not contain B, so the toughness of the weld metal is low. Furthermore, the steel of No. 15 is inferior in toughness of the weld metal because the amount of Mn is less than the lower limit specified in the present invention . On the other hand, the steels of No. 10, 11 , 14, and 16 to 18 whose chemical compositions are within the range defined by the present invention have good toughness of the weld metal and the weld heat affected zone.
[0039]
【The invention's effect】
Since the steel material of the present invention is excellent in both the toughness of the weld metal and the weld heat affected zone of the welded portion obtained by high energy density welding, it has a great industrial effect.

Claims (3)

質量%で、C:0.15%以下、Si:0.05%未満、Mn:1.5%を超え2.5%以下、P:0.03%以下、S:0.01%以下、Ti:0.002〜0.02%、Al:0.005〜0.04%、B:0.0001〜0.002%、O:0.005%以下、N:0.004%以下を含み、残部は実質的にFeである高エネルギービーム溶接用鋼材。In mass%, C: 0.15% or less, Si: less than 0.05%, Mn: more than 1.5% and 2.5% or less, P: 0.03% or less, S: 0.01% or less, Including Ti: 0.002 to 0.02%, Al: 0.005 to 0.04%, B: 0.0001 to 0.002%, O: 0.005% or less, N: 0.004% or less The remainder is a steel for high-energy beam welding which is substantially Fe. Feの一部に代えて、質量%で、Cu:0.02〜3%、Ni:0.02〜10%、Cr:0.02〜19%、Mo:0.02〜4%、V:0.01〜0.5%およびNb:0.01〜0.5%のうちから選ばれた1種または2種以上を含む請求項1に記載の高エネルギービーム溶接用鋼材。Instead of a part of Fe, in mass%, Cu: 0.02 to 3%, Ni: 0.02 to 10%, Cr: 0.02 to 19%, Mo: 0.02 to 4 %, V : The steel material for high energy beam welding according to claim 1, comprising one or more selected from 0.01 to 0.5% and Nb: 0.01 to 0.5%. Feの一部に代えて、質量%で、Ca:0.002〜0.01%を含む請求項1または2に記載の高エネルギービーム溶接用鋼材。  The steel material for high energy beam welding according to claim 1 or 2, comprising Ca: 0.002 to 0.01% by mass% instead of a part of Fe.
JP2000295648A 2000-09-28 2000-09-28 Steel for high energy beam welding Expired - Fee Related JP3644369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000295648A JP3644369B2 (en) 2000-09-28 2000-09-28 Steel for high energy beam welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000295648A JP3644369B2 (en) 2000-09-28 2000-09-28 Steel for high energy beam welding

Publications (2)

Publication Number Publication Date
JP2002105590A JP2002105590A (en) 2002-04-10
JP3644369B2 true JP3644369B2 (en) 2005-04-27

Family

ID=18778046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000295648A Expired - Fee Related JP3644369B2 (en) 2000-09-28 2000-09-28 Steel for high energy beam welding

Country Status (1)

Country Link
JP (1) JP3644369B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4226626B2 (en) * 2005-11-09 2009-02-18 新日本製鐵株式会社 High tensile strength steel sheet with low acoustic anisotropy and excellent weldability, including yield stress of 450 MPa or more and tensile strength of 570 MPa or more, including the central part of the plate thickness, and method for producing the same
JP2011246804A (en) * 2010-04-30 2011-12-08 Nippon Steel Corp Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor
CN111088459A (en) * 2019-12-31 2020-05-01 兴化市锐达建材机械有限公司 High-strength corrosion-resistant stainless steel for bridge piles

Also Published As

Publication number Publication date
JP2002105590A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
JP5493659B2 (en) High strength steel with excellent toughness of heat affected zone
EP1533392A1 (en) Steel product for high heat input welding and method for production thereof
US20240051070A1 (en) Submerged arc welded joint
WO2018159719A1 (en) Fillet welded joint and manufacturing method thereof
JP4673710B2 (en) Two-electrode single-sided one-pass large heat input submerged arc welding method with excellent weld metal toughness
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
JPS6119700B2 (en)
JP6665658B2 (en) High strength steel plate
JPH0577740B2 (en)
JP2002256379A (en) Steel for high heat input welding
JP5229300B2 (en) Elementary pipe for high-strength thick-walled welded bend steel pipe with excellent weld toughness and method for producing the same
JP7104370B2 (en) Thick steel plate and its manufacturing method
JP2000319750A (en) High tensile strength steel for large heat input welding excellent in toughness of heat-affected zone
JP3644369B2 (en) Steel for high energy beam welding
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP2688312B2 (en) High strength and high toughness steel plate
KR20230158567A (en) Submerged Arc Welded Seams
JP2004114053A (en) Large heat input electroslag welding method
JP3852118B2 (en) Steel material with excellent toughness of weld heat affected zone
JPH0359134B2 (en)
JP2002371338A (en) Steel superior in toughness at laser weld
JP2002224835A (en) Method of welding high toughness high tension steel having excellent weld heat influence zone toughness
JP5145616B2 (en) High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness
JP4649753B2 (en) Elementary pipe for high strength thick welded bend steel pipe with excellent weld toughness and method for manufacturing the same
JP2002121642A (en) Laser welded joint of steel and laser welding method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3644369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees