JP3644209B2 - Flow measurement control device - Google Patents

Flow measurement control device Download PDF

Info

Publication number
JP3644209B2
JP3644209B2 JP22784097A JP22784097A JP3644209B2 JP 3644209 B2 JP3644209 B2 JP 3644209B2 JP 22784097 A JP22784097 A JP 22784097A JP 22784097 A JP22784097 A JP 22784097A JP 3644209 B2 JP3644209 B2 JP 3644209B2
Authority
JP
Japan
Prior art keywords
flow rate
fluid
measured
flow
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22784097A
Other languages
Japanese (ja)
Other versions
JPH1165673A (en
Inventor
茂 岩永
行則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP22784097A priority Critical patent/JP3644209B2/en
Publication of JPH1165673A publication Critical patent/JPH1165673A/en
Application granted granted Critical
Publication of JP3644209B2 publication Critical patent/JP3644209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Safety Devices In Control Systems (AREA)
  • Flow Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遮断機能を設けた流量計測制御装置に関するものである。
【0002】
【従来の技術】
従来この種の遮断機能を設けた流量計測装置としては、特開平9−43017号公報に示すものがある。以下、その構成について図面を参照して説明する。
【0003】
図10は従来の流量計測装置の垂直断面図である。1は流量測定部、2は第一の超音波振動子、3は第二の超音波振動子である。4は固定開口板、5は回動開口板、6は固定開口板4と回動開口板5で構成され、回動開口板5の回動開口部5aを固定開口板4の固定開口部4aに重ねて開弁し、回動開口板5の回動閉止部5bを固定開口板4の固定開口部4aに重ねて閉弁する流量制御弁である。7は回動開口板5を固定開口板4に押圧するバネであり、8は回動開口板5を回転させるモータ(駆動部)である。9はモータ8に連結された軸であり、軸9は回動開口板5に固定されるとともに、その一端は固定開口板4の軸受部4bで回転可能に支持されている。モータ8は保持具10に取り付けられており、保持具10は支持部11により管路12に固定されている。13はモータ8の制御部であり、14は超音波振動子2、3に接続されこの超音波振動子2、3からの信号を基に流量を算出する流量演算部である。
【0004】
このような構成において、一方の超音波振動子から発した超音波を他方の超音波振動子で検出するまでの時間を計測し、この時間から流体の速度を演算して流量を算出するとともに、異常検知時では、例えば地震による以上振動を検知するとモータ8の制御部13が作動し、モータ8を駆動して回動開口板5を所定値回転させて回動開口板5の回動閉止部5bを固定開口板4の固定開口部4aに重ねて流れを閉止するものである。
【0005】
【発明が解決しようとする課題】
しかしながら従来例では、流量制御弁6は流体の使用時は全開状態に有り、予期せぬ時に発生する地震などの異常時には流量制御弁6は全開状態から全閉状態まで全ストロークを動作させる必要があり、使用状態から流動停止状態まで時間が長くなるという課題があった。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するために、被計測流体が流動する流路と、前記被計測流体の流量を計測する流量計測手段と、前記被計測流体の流量を調節する流量調節手段と、前記流量調節手段を制御する制御手段を有し、前記制御手段は、被計測流体の利用状態に基づいて前記流量調節手段の開度を設定する開度設定部と、異常発生時は前記被計測流体の流動を停止させる安全遮断部とを備え、前記制御手段は流量計測手段の流量計測範囲の上限値により設定する最大開度設定部を備えたものである。
【0007】
上記発明によれば、被計測流体の利用条件に応じて流量調節手段の開度を設定するため、異常発生時では常時全開で利用する場合に比べてより短時間で被計測流体の流動を停止できるため安全性が向上できるという効果があり、さらに前記流量計測手段の流量計測の上限流量が異なる場合でも同じ流量調節手段を装着して開度設定部による開度制御で流量規制ができ、異なる流量計測範囲の装置に対して同じ流量調節手段の共用化がなされ生産性が向上できる
【0008】
【発明の実施の形態】
本発明は、被計測流体が流動する流路と、前記被計測流体の流量を計測する流量計測手段と、前記被計測流体の流量を調節する流量調節手段と、前記流量調節手段を制御する制御手段を有し、前記制御手段は、前記被計測流体の利用状態に基づいて前記流量調節手段の開度を設定する開度設定部と、異常発生時は前記被計測流体の流動を停止させる安全遮断部とを備えたものである。そして、異常発生時では常時全開で利用する場合に比べてより短時間で被計測流体の流動を停止できるため安全性が向上できる。
【0009】
さらに、制御手段は前記流量計測手段の流量計測範囲の上限値により設定する最大開度設定部を備えたものである。そして、流量計測手段の流量計測範囲の上限である被計測流体の許容最大流量が設定されるため流量計測の精度が確保でき計測の信頼性が向上でき、さらに前記流量計測手段の流量計測の上限流量が異なる場合でも同じ流量調節手段を装着して開度設定部による開度制御で流量規制ができ、異なる流量計測範囲の装置に対して同じ流量調節手段の共用化がなされ生産性が向上できる。
【0010】
また、制御手段は前記被計測流体の流体判別部と前記流体判別部の判別結果に基づく流体別開度設定部を備えたものである。そして、被計測流体の種類に対応して流量調節手段での流動抵抗損失を判断した開度設定がなされ、より適切な必要最小限の開度で流動させるため異常発生時では流動停止の短時間化が一層促進でき安全性が向上できる。
【0011】
また、制御手段は前記流量計測手段の下流側に設けた前記被計測流体を利用する機器の種類により開度を設定する機器別開度設定部を備えたものである。そして、機器に必要な流量が即座に判断できるため、流量調節手段は機器の運転に影響しない必要最小限の開度に設定でき、正常時での機器の特性確保と異常発生時での流動停止の短時間化が両立できる。
【0012】
また、制御手段は前記流量計測手段で計測する下流側で使用される実使用流量を基に開度を設定する使用流量別開度設定部を備えたものである。そして、被測定流体の実使用流量により流量調節手段の開度を設定するため、その開度は一番の最小化ができ、異常発生時での流動停止時間がより一層低減でき瞬時化できる。
【0013】
また、制御手段は前記流路に設けた流体圧力計測手段で検出した圧力を判定する圧力判定部と前記圧力判定部に基づき開度を設定し下流側の圧力を安定化させる圧力別開度設定部を備えたものである。そして、上流側である一次側の圧力が高い場合では開度を小さ目にして下流側である二次側圧力の安定化を図り下流側に設け被測定流体を利用する機器を最適条件で運転させ、機器の特性あるいは信頼性の向上ができる。
【0014】
また、流量計測手段は前記流路に設けた超音波振動子と前記超音波振動子からの信号を基に流量を算出する演算部を有する超音波式とし、前記超音波振動子からの信号を基に流体を判別する流体判別部を備えたものである。そして、流量計測手段を流体判別部に共用できるため生産性が向上でき、さらに超音波式による瞬時流体判別で開度制御の応答性を高めて安全性が向上できる。
【0015】
また、流量計測手段は前記被計測流体の瞬時流量を計測する推測式としたものである。そして、実使用流量に変動を生じても瞬時に流量が計測されて流量調節手段の開度を流量変化に追従して設定でき、どのような時に異常が発生しても常に最短の流動停止が確保でき安全性が一層向上できる。
【0016】
【実施例】
以下、本発明の実施例について図面を参照して説明する。
【0017】
(実施例1)
図1は本発明の実施例1を示す流量計測制御装置の構成図である。図1において、15は被計測流体が流動する流路であり、16は流路15に設け被計測流体の流量を計測する流量計測手段であり、17は流量計測手段16の上流側の流路15に設け被計測流体の流量を調節する流量調節手段である。18は流量調節手段17を制御する制御手段であり、この制御手段18は被計測流体の使用状態を基に流量調節手段17の開度を可変設定する開度設定部19と、異常発生時は被計測流体の流動を停止させる安全遮断部20とを備えている。21は開度設定部19あるいは安全遮断部20の信号により流量調節手段17に開度あるいは閉止の動作を指示する動作支持部であり、22は安全遮断部20に接続した地震を検知する感震部である。23は流量計測手段16の上流側と下流側との被計測流体の圧力差を検知する差圧検出部であり、この差圧検出部23は開度設定部19に接続されている。
【0018】
図2は流量調節手段17の構成を示す断面図である。図2において、24は外周部に永久磁石による磁極25を有するロータであり、26は励磁コイル27を囲み磁性材料で形成したステータであり、ステータ26は軸方向に二層設けるとともにロータ24の磁極25の外側に対向して配置されてモータを構成している。28はロータ24に設けたロータ回転軸であり、ロータ回転軸28の外周部には雄ねじを送り手段29として設けている。30は送り手段29に螺合する雌ねじを設けた移動体であり、31は移動体30がロータ回転軸28に対して回転しないようにする回動防止体である。32は流路15中の弁座33に対向して配置され流体の流動状態を規制する流れ規制体であり、流れ規制体32は移動体30に対して軸方向に移動可能に連結されている。
【0019】
図2では、流れ規制体32と弁座33との軸方向の距離いわゆる開度Lは最大に離れた全開時を示している。34は移動体30と流れ規制体32の間に介在させ軸方向に互いに離れようとする付勢力を加える付勢体である。35は被計測流体側にあるロータ24およびそれに連なる流れ規制体32側とステータ26側とを気密に分離する隔壁であり、36はロータ回転軸28の外周を支持する第一の軸受であり、37はロータ回転軸28の外周を支持する第二の軸受である。
【0020】
次に動作を説明する。ここでは、被計測流体として家庭用のガスの場合を説明する。ガス器具(図示せず)の使用とともに、ガスは図1の矢印で示すように流量調節手段17、流量計測手段16を通過して流路15中を貫流する。この時、流路15の管路抵抗により生じたガスの圧力損失は差圧検出部23で検出され、開度設定部19に信号伝達される。開度設定部19では、差圧検出部23で検出された圧力損失が所定値より大きい場合は流量調節手段17の開度を大きくするように開度を再設定し、差圧検出部23で検出された圧力損失が所定値より小さい場合は流量調節手段17の開度を小さくするように開度を再設定する。動作指示部21では、開度設定部19で決めた開度になるように流量調節手段17を動作させるもので、ステータ26の励磁コイル27に通電してロータ24を回転させ、ロータ回転軸28に螺合する移動体30と連結された流れ規制体32を弁座33から離れる方向に動かして開度を大きくしたり、励磁コイル27に通電する方向を変えてロータ24を逆方向に回転させることで流れ規制体32を弁座33に接近する方向に動かして開度を小さくするとともに、開度を変更せずに同じ開度を維持する時あるいはガスを使用しない時は励磁コイル27への通電を停止して消費電力が低減できる。また、流量計測手段16では使用されたガスの流量を計測するもので、この流量計測値を基にして使用料金が別途計算される。
【0021】
このように流量調節手段17はガスの使用状態に関わらずいつもその開度をできるだけ小さくなるように動作がなされ、流量調節手段17をその開度が最も小さくなるように制御してガスを使用している時に、感震部22が地震を検知しその地震の大きさがガスの流動を停止させる必要があると安全遮断部20で判定した場合は、動作指示部21に遮断信号を送り、動作指示部21が流量調節手段17を短時間で閉止させる。特に、家庭用のガスメータにおいて電池で十年などの長期間動作させる場合は、ガスを使用しない時は閉止せずに直前の開度を維持させ、差圧が小さい時は直前の開度を維持させることで、開度はその家庭で以前使用した最大の流量で決まるようになり、流量調節手段17の開度変更の動作回数が極力低減される。
【0022】
なお、安全遮断部20は感震部22からの地震検知信号を受ける場合を示したが、流量計測手段16からの流量値を基に、例えば過大な流量が所定時間以上続き使用状態が異常と思われる場合や微少な流量が長期間継続し配管などからの漏洩が考えられる場合では、安全遮断部20が異常検知信号を動作指示部21に送って流量調節手段17を閉止しても良いのは言うまでもない。
【0023】
このように、被測定流体を使用している時はいつも流量調節手段17の開度を最小状態に設定しているため、異常発生時は閉止するための移動距離が全開状態よりも小さくなり、より短時間で閉止完了することで安全性を向上できる。また、差圧が大きい時のみ開度を大きくすることで不要な動作を削減し、開度を変更しない時あるいはガスを使用しない時は流量調節手段17への通電を停止することで電力消費を無くし低入力化でき、電池による長期間の動作が実現できる。
【0024】
このため、異常発生時では常時全開で利用する場合に比べてより短時間で被計測流体の流動を停止できるため安全性が向上できる。さらに、低入力化により電池での長期間の動作が実現できる。
【0025】
(実施例2)
図3は本発明の実施例2を示す流量計測制御装置の構成図である。図において、図1の実施例と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
【0026】
流量調節手段17を制御する制御手段18の開度設定部19は、被計測流体の許容最大流量を設定する許容最大流量設定部38と、許容最大流量設定部38で設定された流量値を基に流量調節手段17の開度を設定する最大開度設定部39を備えている。
【0027】
次に動作を説明する。ここでは、実施例1の場合と同様に被計測流体として家庭用のガスとしたガスメータで説明する。ガスメータでは被計測流体のガスの使用最大流量が定められ能力として号数(例えば、使用最大流量が6m3/hでは6号)が表示されるとともに、その使用最大流量に対して計測精度が確保されている。また、ガス料金の算出の時に基本料金がガスメータの号数により決まる場合が有り(一般に号数が大きくなるほど高額となる)、小さな号数のメータで表示流量以上のより大きな流量域まで使用できると実用上問題となることが考えられる。そこで、使用最大流量に対応する許容最大流量を許容最大流量設定部38に設定し、その設定値を基に最大開度設定部39により流量調節手段17の最大開度を決定する。
【0028】
許容最大流量設定部38への設定としてはマイコンのメモリ(図示せず)に記憶させる方法や流量設定スイッチ(図示せず)を切換える方法などがある。最大開度を決定された流量調節手段17は被計測流体の使用により実施例1で説明した差圧値による開度の制御は可能であるが、被計測流体がどのように使用されてもその開度が最大開度を超えて開くことはなく、許容最大流量を超えると圧力損失が大きくなるように設定することにより許容最大流量以上では利用しにくくできる。
【0029】
従って、使用される最大流量が規制できるため流量計測の精度が確保できる。また、流路15、流量計測手段16あるいは流量調節手段17が同じ物を採用しても、流量調節手段17の最大開度により使用最大流量の異なる流量計測装置が実現でき、部品の共用化により流量計測装置の生産性の向上ができるとともに低コスト化が促進できる。
【0030】
このように、流量計測手段の流量計測範囲の上限である被計測流体の許容最大流量が設定されるため流量計測の精度が確保でき計測の信頼性が向上でき、さらに前記流量計測手段の流量計測の上限流量が異なる場合でも同じ流量調節手段を装着して開度設定部による開度制御で流量規制ができ、異なる流量計測範囲の装置に対して同じ流量調節手段の共用化がなされ生産性が向上できる。
【0031】
(実施例3)
図4は本発明の実施例3を示す流量計測制御装置の構成図である。図において、図1〜図3の実施例と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
【0032】
40は被計測流体の種類を判別する流体判別部であり、41は流体判別部40の判別に基づいて流量調節手段17の開度を設定する流体別開度設定部である。流体判別部40としては種類設定スイッチ(図示せず)によるスイッチ切換やマイコンの記憶装置(図示せず)に登録するなど手動による方法と、流路15に臨ませた流体検出部(図示せず)で検出した情報を基に流体判別部40でその種類を自動的に判別する方法があり、ここでは手動による方法を示している。
【0033】
このため、この流量計測装置を利用するに際して、まず利用者が手動で被計測流体の種類を設定する。流体判別部40で被計測流体の種類が設定されると、流体別開度設定部41が流体の種類および差圧検出部23で検出する差圧に基づいて流体の種類に対応して流量調節手段17での流動抵抗損失を判断して流量調節手段17の開度を設定し、動作指示部21が流量調節手段17を所定の開度になるように動作させる。特に、気体や液体など流体の相が異なる場合は差圧だけで管理していてはその開度を可能な限り最小化するには限界があるが、流体の種類を判別して流体に適した圧力損失を設定することで被計測流体を使用している時の流量調節手段17の開度を一層小さくできる。ここで、最大開度設定部39は前述のように開度の上限値を設定するもので、流量調節手段17の開度は最大開度設定部39が決める最大開度以下の範囲で可変される。
【0034】
このように、被計測流体の種類に対応して流量調節手段での流動抵抗損失を判断した開度設定がなされ、より適切な必要最小限の開度で被計測流体を流動させるため異常発生時では流動停止の短時間化が一層促進でき安全性をより高めることができる。
【0035】
(実施例4)
図5は本発明の実施例4を示す流量計測制御装置の構成図である。図において、図1〜図4の実施例と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
【0036】
42は流量計測手段16の下流側に接続して設けた被計測流体を利用する機器であり、43は下流側の機器42の種類を判別する機器判別部であり、44は機器判別部43の判別に基づいて流量調節手段17の開度を設定する機器別開度設定部である。ここでは、機器判別部43は流量計測手段16での流量計測により判別するもので、機器42の使用開始による流量変化や定常状態へ移行した時の流量値により判別する。
【0037】
次に動作を説明する。ここでは、実施例1の場合と同様に家庭用のガスを流体としたガスメータを流量計測制御装置とし、機器42は機器Aがガス給湯機、機器Bがガスコンロ、機器Cがガスファンヒータとして説明する。いま、機器Aのガス給湯機が使用開始されると、流量計測手段16で計測される着火時の流量変化および流量値、定常移行時の流量値を基に機器判別部43で機器Aのガス給湯機が使用されていると判断される。ガス給湯機、ガスコンロ、ガスファンヒータなどではその着火特性や定常時の流量値が異なるため機器の判別ができるものであり、機器判別部43に下流側に接続する機器42を事前に登録することで一層判別精度を高めることができる。このようにして使用される機器を判別することにより、機器に必要な最大流量が事前に判り、機器42の使用に影響の少ない流量調節手段17の開度が設定できる。
【0038】
このように、機器に必要な流量が即座に判断できるため、流量調節手段は機器の運転に影響しない必要最小限の開度に設定でき、正常時での機器の特性確保と異常発生時での流動停止の短時間化が両立できる。
【0039】
(実施例5)
図6は本発明の実施例5を示す流量計測制御装置の構成図である。図において、図1〜図4の実施例と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
【0040】
45は流量計測手段16で計測される下流側での実使用量を基に流量調節手段17の開度を設定する使用流量別開度設定部である。この使用流量別開度設定部45は使用流量の増加とともに流量調節手段17の開度が大きくなるように設定するが、最大開度設定部39で設定した最大開度以上にはならないようにされている。また、使用流量別開度設定部45は実使用流量が減少するとともに流量調節手段17の開度を小さくしていくものである。
【0041】
次に動作を説明する。実使用流量が少ない時は流量計測装置の流路15の圧力損失および下流側での接続管路(図示せず)の圧力損失が小さくなる。従って、流量調節手段17の開度を小さくして圧力損失を増大させ、流量計測装置の入口から下流側に設ける機器(図示せず)までの管路での圧力損失が同等以下になるようすれば機器の特性には悪い影響を与えないことになる。そこで、下流側の管路の長さあるいは横断面積を事前に想定して流量調節手段17での許容できる圧力損失増加量を想定することで開度を設定できる。このため、実使用流量による開度設定が最も小さい開度を実現できる。従って、地震などの異常時ではより一層短時間で流体の流動を停止できる。また、流量計測手段16を開度を設定する情報源として流量計測と併用でき、他の開度設定のための情報源となるセンサ等が不要であるため、構成の簡略化および部品点数の低減により低コスト化ができる。
【0042】
このように、被測定流体の実使用流量により流量調節手段の開度を設定するため、その開度は一番の最小化ができ、異常発生時での流動停止時間をより一層低減して瞬時化でき、安全性が一層向上できる。
【0043】
(実施例6)
図7は本発明の実施例6を示す流量計測制御装置の構成図である。図において、図1〜図3の実施例と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
【0044】
46は流量計測手段16の下流側の流路15に設けた流体圧力計測手段であり、47はこの流体圧力計測手段46で検出した圧力値を所定値と比較して高低を判定する圧力判定部であり、48はこの圧力判定部47での判定値に基づいて流量調節手段17の開度を設定する圧力別開度設定部である。
【0045】
次に動作を説明する。流量計測制御装置の下流側である二次側に接続する機器はその特性を発揮するために所定の圧力が必要であるが、所定の圧力以上の圧力は不要である。従って、流量計測制御装置の上流側である一次側の流体供給圧力が大きい場合は流量計測制御装置の圧力損失が大きくなっても構わないものである。そこで、二次側圧力を流体圧力計測手段46で計測しその圧力値を圧力判定部47であらかじめ設定した所定値と比較し、二次側がこの所定値より大きい場合は圧力別開度設定部48で流量調節手段17の開度を小さくするように開度を設定する。このように、二次側の圧力が所定値より高い場合は順次開度を小さくしていくものである。
【0046】
もし、開度が小さすぎて二次側の圧力が所定値より小さい時は反対に開度を順次大きくするが、最大開度設定部39で設定する最大開度を超えて開度を大きくすることはない。特に、被測定流体をガスとした家庭用のガスメータでは、供給側のガス圧力が高い目となっている場合が多く、開度を小さくして使用することが多くなり、地震などの異常時に短時間で流体の流動を停止できる。
【0047】
このため、二次側の機器は安定した一定の圧力で運転できるため、機器の特性の向上あるいは信頼性を高めた運転ができ、さらに異常時の短時間での流動停止が促進でき安全性を向上できる。
【0048】
このように、開度を小さくして異常時の短時間の流動停止により安全性を向上でき、さらに上流側である一次側の圧力が高い場合では開度を小さ目にして下流側である二次側圧力の安定化を図り下流側に設け被測定流体を利用する機器を最適条件で運転させ、機器の特性あるいは信頼性の向上ができる。
【0049】
(実施例7)
図8は本発明の実施例7を示す流量計測制御装置の構成図である。図において、図1〜図4の実施例と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
【0050】
49および50は流路15に設けた計測部51に互いに対向するように配置した超音波振動子であり、上流側の超音波振動子49と下流側の超音波振動子50は距離Lを隔てるとともに速度Vの被計測流体の流れに対して角度θ傾けて設置されている。52は接続された超音波振動子49,50に対して超音波の送受信をさせる信号発生処理部であり、53は信号発生処理部52での信号を基に速度、音速などを計算する演算部であり、54は演算部53の結果を基に流体の種類を判別する流体判別部である。この流体判別部54は流体別開度設定部41に接続されている。このように、流量計測手段16は瞬時計測ができる推測式流量計である超音波式流量計とし、流体判別部54は超音波振動子49,50からの信号を基に流体を判別している。
【0051】
次に動作を説明する。計測部51を被計測流体が流れている時に、信号発生処理部52の作用により超音波振動子49,50間で計測部51を横切るようにして超音波の送受が行われる。すなわち、上流側の超音波振動子49から発せられた超音波が下流側の超音波振動子50で受信されるまでの経過時間T1を計時する。また一方、下流側の超音波振動子50から発せられた超音波が上流側の超音波振動子49で受信されるまでの経過時間T2を計時する。このようにして測定された経過時間T1およびT2を基に、以下の演算式により演算部53で流量が算出される。
【0052】
いま、被計測流体の流れと超音波伝播路とのなす角度をθとし、流量測定部である超音波振動子49,50間の距離をL、被測定流体の音速をCとすると、流速Vは以下の式にて算出される。
【0053】
T1=L/(C+Vcosθ)
T2=L/(C−Vcosθ)
T1の逆数からT2の逆数を引き算する式より音速Cを消去して
V=(L/2cosθ)((1/T1)−(1/T2))
θおよびLは既知なのでT1およびT2の値より流速Vが算出できる。いま、空気の流量を計ることを考え、角度θ=45度、距離L=70mm、音速C=340m/s、流速V=8m/sを想定すると、T1=2.0×10-4秒、T2=2.1×10-4秒であり、瞬時計測ができる。
【0054】
ここで、計測部51の横断面積sより、流量Qは
V=kVs
ここで、kは横断面積sにおける流速分布を考慮した換算係数である。
【0055】
さらに、演算部53では経過時間T1の逆数とT2の逆数を足し算して得られる以下の式で音速Cを算出する。
【0056】
C=L((1/T1)+(1/T2))/2
こうして音速Cを求め、この算出された音速Cにより被計測流体の種類を判別するとともに音速あるいは被計測流体の種類に適した超音波流量計としての計測条件を設定する。この超音波流量計としての計測条件としては、超音波振動子の駆動周波数や駆動電圧などの駆動パワーあるいは経過時間T1、T2を何回計測して流速を算出するのかという繰返し回数などがある。
【0057】
なお、使用されると想定される流体を流体判別部54に予め登録しておくことで被計測流体の種類を判別する精度を高めることができ、さらに温度により音速Cは変化するため被計測流体の温度を検出する温度センサ(図示せず)を設けることで一層被計測流体の種類を判別する精度を高めることができるのは言うまでもない。流体判別部54で被計測流体の種類が設定されると、実施例3ですでに説明したように流体別開度設定部41が流体の種類および差圧検出部23で検出する差圧に基づいて流体の種類に対応して流量調節手段17での流動抵抗損失を判断して流量調節手段17の開度を設定し、動作指示部21が流量調節手段17を所定の開度になるように動作させる。しかも、この流体判別部54は超音波を利用して瞬時に計測するため流体判別は高速でなされ、流量調節手段17の開度は応答性を高めた制御が実施でき、いつ異常時が発生しても短時間での遮断が実現できる。
【0058】
このように、流量計測手段を流体判別部に共用できるため生産性が向上でき、さらに超音波式による瞬時流体判別で開度制御の応答性を高めて安全性が向上できる。
【0059】
(実施例8)
図9は本発明の実施例8を示す流量計測制御装置の構成図である。図において、図1〜図8の実施例と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
【0060】
55は流路15に設けた瞬時計測ができる推測式流量計測手段であり、この推測式流量計測手段55は前述した超音波振動子49,50に対して超音波の送受信をさせる信号発生処理部52と超音波振動子49,50からの信号を基に流量を算出する演算部53を備えた超音波式としている。演算部53は使用流量別開度設定部45に接続されている。
【0061】
次に動作を説明する。超音波振動子49,50から発せられる超音波により実施例7で述べたように被計測流体の流量計測が瞬時に実施され、被計測流体の流量が変化しても瞬時に流量変化が演算部53で算出され、瞬時、瞬時の流量値が使用流量別開度設定部45に送られる。従って、実施例5で説明したように被計測流体の流量変化に応じて流量調節手段17の開度が設定される。
【0062】
このため、実使用流量に変動を生じても瞬時に流量が計測されて流量調節手段の開度を流量変化に追従して設定でき、どのような時に異常が発生しても常に最短の流動停止が確保でき安全性が一層向上できる。
【0063】
上の説明から明らかなように本発明の各実施例によれば、次の効果が得られる。
【0064】
制御手段は、被計測流体の利用状態に基づいて流量調節手段の開度を設定する開度設定部と、異常発生時は前記被計測流体の流動を停止させる安全遮断部とを備えているので、異常発生時では常時全開で利用する場合に比べてより短時間で被計測流体の流動を停止でき、安全性が向上できるという効果がある。
【0065】
また、制御手段は前記流量計測手段の流量計測範囲の上限値により設定する最大開度設定部を備えているので、流量計測手段の流量計測範囲の上限である被計測流体の許容最大流量が設定されるため流量計測の精度が確保でき計測の信頼性が向上できるという効果があり、さらに前記流量計測手段の流量計測の上限流量が異なる場合でも同じ流量調節手段を装着して開度設定部による開度制御で流量規制ができ、異なる流量計測範囲の装置に対して同じ流量調節手段の共用化がなされ生産性が向上できるという効果がある。
【0066】
また、制御手段は前記被計測流体の流体判別部と前記流体判別部の判別結果に基づく流体別開度設定部を備えているので、被計測流体の種類に対応して流量調節手段での流動抵抗損失を判断した開度設定がなされ、より適切な必要最小限の開度で被計測流体を流動させるという効果があり、さらに異常発生時では流動停止の短時間化が一層促進でき安全性をより高めることができるという効果がある。
【0067】
また、制御手段は前記流量計測手段の下流側に設けた前記被計測流体を利用する機器の種類により開度を設定する機器別開度設定部を備えているので、機器に必要な流量が即座に判断できるため、流量調節手段は機器の運転に影響しない必要最小限の開度に設定できるという効果があり、さらに正常時での機器の特性確保と異常発生時での流動停止の短時間化が両立できるという効果がある。
【0068】
また、制御手段は前記流量計測手段で計測する下流側で使用される実使用流量を基に開度を設定する使用流量別開度設定部を備えているので、被測定流体の実使用流量により流量調節手段の開度を設定するため、その開度は一番の最小化ができるという効果があり、さらに異常発生時での流動停止時間をより一層低減して瞬時化でき安全性が一層向上できるという効果がある。
【0069】
また、制御手段は前記流路に設けた流体圧力計測手段で検出した圧力を判定する圧力判定部と前記圧力判定部に基づき開度を設定する圧力別開度設定部を備えているので、開度を小さくして異常時の短時間の流動停止により安全性を向上できるという効果があり、さらに上流側である一次側の圧力が高い場合では開度を小さ目にして下流側である二次側圧力の安定化を図り下流側に設け被測定流体を利用する機器を最適条件で運転させ機器の特性あるいは信頼性の向上ができるという効果がある。
【0070】
また、流量計測手段は前記流路に設けた超音波振動子と前記超音波振動子からの信号を基に流量を算出する演算部を有する超音波式とし、前記超音波振動子からの信号を基に流体を判別する流体判別部を備えているので、流量計測手段を流体判別部に共用できるため生産性が向上できるという効果があり、さらに超音波式による瞬時流体判別で開度制御の応答性を高めて安全性が向上できるという効果がある。
【0071】
また、流量計測手段は前記被計測流体の瞬時流量を計測する推測式としているので、実使用流量に変動を生じても瞬時に流量が計測されて流量調節手段の開度を流量変化に追従して設定できるという効果があり、さらにどのような時に異常が発生しても常に最短の流動停止が確保でき安全性が一層向上できるという効果がある。
【0072】
【発明の効果】
以上のように本発明の流量計測制御装置によれば、流量計測の精度が確保でき計測の信頼性が向上できるという効果があり、さらに前記流量計測手段の流量計測の上限流量が異なる場合でも同じ流量調節手段を装着して開度設定部による開度制御で流量規制ができ、異なる流量計測範囲の装置に対して同じ流量調節手段の共用化がなされ生産性が向上できるという効果がある。
【図面の簡単な説明】
【図1】 本発明の実施例1の流量計測制御装置の構成図
【図2】 同装置の流量調節手段の断面図
【図3】 本発明の実施例2の流量計測制御装置の構成図
【図4】 本発明の実施例3の流量計測制御装置の構成図
【図5】 本発明の実施例4の流量計測制御装置の構成図
【図6】 本発明の実施例5の流量計測制御装置の構成図
【図7】 本発明の実施例6の流量計測制御装置の構成図
【図8】 本発明の実施例7の流量計測制御装置の構成図
【図9】 本発明の実施例8の流量計測制御装置の構成図
【図10】 従来の流量計測制御装置の断面図
【符号の説明】
15 流路
16 流量計測手段
17 流量調節手段
18 制御手段
20 安全遮断部
38 許容最大流量設定部
39 最大開度設定部
40 流体判別部
41 流体別開度設定部
42 機器
43 機器判別部
44 機器別開度設定部
45 使用流量別開度設定部
46 流体圧力計測手段
47 圧力判定部
48 圧力別開度設定部
49、50 超音波振動子
53 演算部
54 流体判別部
55 推測式流量計測手段
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a flow rate measurement control device provided with a blocking function.
[0002]
[Prior art]
  Conventionally, as a flow measuring device provided with this kind of blocking function, there is one disclosed in Japanese Patent Laid-Open No. 9-43017. The configuration will be described below with reference to the drawings.
[0003]
  FIG. 10 is a vertical sectional view of a conventional flow rate measuring apparatus. 1 is a flow rate measuring unit, 2 is a first ultrasonic transducer, and 3 is a second ultrasonic transducer. Reference numeral 4 is a fixed aperture plate, 5 is a rotary aperture plate, 6 is a fixed aperture plate 4 and a rotary aperture plate 5, and the rotary aperture 5 a of the rotary aperture plate 5 is fixed to the fixed aperture 4 a of the fixed aperture plate 4. This is a flow rate control valve that opens and overlaps the rotation opening plate 5 and closes the rotation closing portion 5 b of the rotation opening plate 5 on the fixed opening portion 4 a of the fixed opening plate 4. Reference numeral 7 denotes a spring that presses the rotary aperture plate 5 against the fixed aperture plate 4, and 8 denotes a motor (drive unit) that rotates the rotary aperture plate 5. Reference numeral 9 denotes a shaft connected to the motor 8. The shaft 9 is fixed to the rotary opening plate 5, and one end of the shaft 9 is rotatably supported by the bearing portion 4 b of the fixed opening plate 4. The motor 8 is attached to a holder 10, and the holder 10 is fixed to the pipeline 12 by a support portion 11. Reference numeral 13 denotes a control unit of the motor 8, and reference numeral 14 denotes a flow rate calculation unit that is connected to the ultrasonic transducers 2 and 3 and calculates a flow rate based on signals from the ultrasonic transducers 2 and 3.
[0004]
  In such a configuration, the time until the ultrasonic wave emitted from one ultrasonic transducer is detected by the other ultrasonic transducer is measured, and the flow rate is calculated by calculating the fluid velocity from this time, At the time of abnormality detection, for example, when vibrations due to an earthquake are detected, the control unit 13 of the motor 8 operates to drive the motor 8 to rotate the rotation aperture plate 5 by a predetermined value to rotate the rotation closure plate 5. 5 b is overlapped with the fixed opening 4 a of the fixed opening plate 4 to close the flow.
[0005]
[Problems to be solved by the invention]
  However, in the conventional example, the flow control valve 6 is in the fully open state when the fluid is used, and it is necessary to operate the full stroke from the fully open state to the fully closed state when there is an abnormality such as an earthquake that occurs unexpectedly. There was a problem that the time from the use state to the flow stop state becomes longer.
[0006]
[Means for Solving the Problems]
  In order to solve the above problems, the present invention provides a flow path through which a fluid to be measured flows, a flow rate measuring means for measuring the flow rate of the fluid to be measured, a flow rate adjusting means for adjusting the flow rate of the fluid to be measured, Control means for controlling the flow rate adjusting means, the control means for setting the opening degree of the flow rate adjusting means based on the usage state of the fluid to be measured, and the fluid to be measured when an abnormality occurs. With a safety shut-off section that stops the flow ofThe control means includes a maximum opening setting unit that is set by an upper limit value of a flow rate measurement range of the flow rate measurement means.It is a thing.
[0007]
  According to the above invention, since the opening degree of the flow rate adjusting means is set according to the use condition of the fluid to be measured, the flow of the fluid to be measured is stopped in a shorter time when an abnormality occurs than when the fluid is always fully opened. Can improve safetyIn addition, even if the upper limit flow rate of the flow rate measurement means is different, the same flow rate adjustment means can be installed and the flow rate can be regulated by opening degree control by the opening degree setting unit, for devices with different flow rate measurement ranges The same flow control means can be shared and productivity can be improved..
[0008]
DETAILED DESCRIPTION OF THE INVENTION
  The present invention includes a flow path through which a fluid to be measured flows, a flow rate measuring unit that measures a flow rate of the fluid to be measured, a flow rate adjusting unit that adjusts a flow rate of the fluid to be measured, and a control that controls the flow rate adjusting unit. An opening setting unit that sets the opening of the flow rate adjusting unit based on a usage state of the fluid to be measured; and a safety that stops the flow of the fluid to be measured when an abnormality occurs. And a blocking part. In addition, when an abnormality occurs, the flow of the fluid to be measured can be stopped in a shorter time compared to the case where the fluid is always fully opened, so that safety can be improved.
[0009]
  Further, the control means is provided with a maximum opening setting section that is set by an upper limit value of the flow rate measurement range of the flow rate measurement means. And since the allowable maximum flow rate of the fluid to be measured, which is the upper limit of the flow rate measurement range of the flow rate measuring means, is set, the accuracy of the flow rate measurement can be ensured and the reliability of the measurement can be improved, and further the upper limit of the flow rate measurement of the flow rate measuring means Even if the flow rate is different, the same flow rate control means can be installed and the flow rate can be regulated by opening degree control by the opening degree setting unit, and the same flow rate adjustment means can be shared for devices in different flow rate measurement ranges and productivity can be improved .
[0010]
  The control means includes a fluid discriminating unit for the fluid to be measured and an opening setting unit for each fluid based on the discrimination result of the fluid discriminating unit. Then, the opening degree is set according to the type of fluid to be measured, and the flow resistance loss is judged by the flow rate adjustment means. Can be further promoted and safety can be improved.
[0011]
  Further, the control means includes a device-specific opening setting unit that sets the opening according to the type of the device that uses the fluid to be measured, which is provided on the downstream side of the flow rate measuring device. And since the flow rate required for the equipment can be immediately determined, the flow rate adjustment means can be set to the minimum required opening that does not affect the operation of the equipment, ensuring the characteristics of the equipment during normal operation and stopping the flow when an abnormality occurs Can be shortened.
[0012]
  Further, the control means includes an opening setting unit for each use flow rate that sets the opening based on the actual use flow rate used on the downstream side measured by the flow rate measurement means. Since the opening degree of the flow rate adjusting means is set according to the actual flow rate of the fluid to be measured, the opening degree can be minimized, and the flow stop time when an abnormality occurs can be further reduced and instantized.
[0013]
  In addition, the control means sets the opening based on the pressure determination section for determining the pressure detected by the fluid pressure measurement means provided in the flow path, and the pressure determination section for stabilizing the downstream pressure based on the pressure determination section. It has a part. If the pressure on the primary side, which is the upstream side, is high, the degree of opening is reduced, the secondary pressure on the downstream side is stabilized, and the equipment that uses the fluid to be measured is operated under the optimal conditions. , Device characteristics or reliability can be improved.
[0014]
  Further, the flow rate measuring means is an ultrasonic type having an ultrasonic transducer provided in the flow path and a calculation unit for calculating a flow rate based on a signal from the ultrasonic transducer, and a signal from the ultrasonic transducer is obtained. A fluid discrimination unit for discriminating a fluid is provided. And since the flow rate measuring means can be shared by the fluid discriminating section, productivity can be improved, and further, the responsiveness of the opening degree control can be enhanced by the instantaneous fluid discrimination by the ultrasonic type, and the safety can be improved.
[0015]
  Further, the flow rate measuring means is a prediction formula for measuring the instantaneous flow rate of the fluid to be measured. Even if the actual flow rate varies, the flow rate is instantaneously measured, and the opening of the flow rate adjustment means can be set to follow the flow rate change. Can be secured and safety can be further improved.
[0016]
【Example】
  Embodiments of the present invention will be described below with reference to the drawings.
[0017]
  Example 1
  FIG. 1 is a configuration diagram of a flow rate measurement control apparatus showing Embodiment 1 of the present invention. In FIG. 1, 15 is a flow path through which the fluid to be measured flows, 16 is a flow rate measuring means provided in the flow path 15 and measures the flow rate of the fluid to be measured, and 17 is a flow path upstream of the flow rate measuring means 16. 15 is a flow rate adjusting means for adjusting the flow rate of the fluid to be measured. Reference numeral 18 denotes a control means for controlling the flow rate adjusting means 17, and this control means 18 includes an opening degree setting unit 19 for variably setting the opening degree of the flow rate adjusting means 17 based on the use state of the fluid to be measured, and when an abnormality occurs. And a safety shut-off unit 20 that stops the flow of the fluid to be measured. Reference numeral 21 denotes an operation support unit for instructing the flow rate adjusting means 17 to perform an opening operation or a closing operation by a signal from the opening setting unit 19 or the safety shut-off unit 20, and 22 is a seismic sense for detecting an earthquake connected to the safety shut-off unit 20. Part. Reference numeral 23 denotes a differential pressure detection unit that detects a pressure difference between the fluid to be measured on the upstream side and the downstream side of the flow rate measuring unit 16, and the differential pressure detection unit 23 is connected to the opening setting unit 19.
[0018]
  FIG. 2 is a cross-sectional view showing the configuration of the flow rate adjusting means 17. In FIG. 2, reference numeral 24 denotes a rotor having a magnetic pole 25 made of a permanent magnet on the outer peripheral portion, 26 denotes a stator formed of a magnetic material surrounding the exciting coil 27, and the stator 26 is provided with two layers in the axial direction and magnetic poles of the rotor 24. The motor is configured so as to be opposed to the outside of 25. A rotor rotation shaft 28 is provided on the rotor 24, and a male screw is provided as a feeding means 29 on the outer periphery of the rotor rotation shaft 28. Reference numeral 30 denotes a moving body provided with an internal thread that is screwed into the feeding means 29, and reference numeral 31 denotes a rotation preventing body that prevents the moving body 30 from rotating relative to the rotor rotating shaft. Reference numeral 32 denotes a flow restricting body that is disposed facing the valve seat 33 in the flow path 15 and restricts the fluid flow state. The flow restricting body 32 is connected to the moving body 30 so as to be movable in the axial direction. .
[0019]
  In FIG. 2, the axial distance between the flow restricting body 32 and the valve seat 33, so-called opening degree L, indicates a fully open state at a maximum distance. Reference numeral 34 denotes an urging body that is interposed between the moving body 30 and the flow restricting body 32 and applies an urging force to be separated from each other in the axial direction. 35 is a partition wall that hermetically separates the rotor 24 on the measured fluid side and the flow restrictor 32 side and the stator 26 side that are connected to the rotor 24; 36 is a first bearing that supports the outer periphery of the rotor rotating shaft 28; Reference numeral 37 denotes a second bearing that supports the outer periphery of the rotor rotation shaft 28.
[0020]
  Next, the operation will be described. Here, the case of household gas as the fluid to be measured will be described. With the use of a gas appliance (not shown), the gas passes through the flow path 15 through the flow rate adjusting means 17 and the flow rate measuring means 16 as shown by the arrows in FIG. At this time, the pressure loss of the gas caused by the pipe resistance of the flow path 15 is detected by the differential pressure detection unit 23 and transmitted to the opening setting unit 19. In the opening setting unit 19, when the pressure loss detected by the differential pressure detection unit 23 is larger than a predetermined value, the opening is reset so as to increase the opening of the flow rate adjusting means 17, and the differential pressure detection unit 23 When the detected pressure loss is smaller than a predetermined value, the opening degree is reset so as to reduce the opening degree of the flow rate adjusting means 17. The operation instructing unit 21 operates the flow rate adjusting means 17 so that the opening degree determined by the opening degree setting unit 19 is reached. The rotor 24 is rotated by energizing the excitation coil 27 of the stator 26 to rotate the rotor 24. The flow restricting body 32 connected to the moving body 30 that is screwed to the valve seat 33 is moved away from the valve seat 33 to increase the opening degree, or the direction in which the excitation coil 27 is energized is changed to rotate the rotor 24 in the reverse direction. Thus, the flow restricting body 32 is moved in the direction approaching the valve seat 33 to reduce the opening, and when the same opening is maintained without changing the opening or when the gas is not used, the flow to the exciting coil 27 is reduced. Power consumption can be reduced by stopping energization. Further, the flow rate measuring means 16 measures the flow rate of the used gas, and a usage fee is separately calculated based on this flow rate measurement value.
[0021]
  In this way, the flow rate adjusting means 17 is always operated so as to make the opening thereof as small as possible regardless of the use state of the gas, and the gas is used by controlling the flow rate adjusting means 17 so that the opening degree becomes the smallest. When the seismic sensing unit 22 detects an earthquake and the safety shut-off unit 20 determines that the magnitude of the earthquake needs to stop the gas flow, it sends a shut-off signal to the operation instruction unit 21 The instruction unit 21 closes the flow rate adjusting means 17 in a short time. In particular, when a gas meter for home use is operated with a battery for a long period of time such as a decade, the previous opening is maintained without closing when gas is not used, and the previous opening is maintained when the differential pressure is small. By doing so, the opening degree is determined by the maximum flow rate previously used in the home, and the number of operations for changing the opening degree of the flow rate adjusting means 17 is reduced as much as possible.
[0022]
  In addition, although the safety | security interruption | blocking part 20 showed the case where the earthquake detection signal from the seismic sensing part 22 was received, on the basis of the flow value from the flow measurement means 16, for example, an excessive flow continues for a predetermined time or more and the use state is abnormal. If this is the case, or if the minute flow rate continues for a long time and leakage from the piping is considered, the safety shut-off unit 20 may send an abnormality detection signal to the operation instruction unit 21 to close the flow rate adjusting means 17. Needless to say.
[0023]
  Thus, since the opening degree of the flow rate adjusting means 17 is always set to the minimum state when using the fluid to be measured, the moving distance for closing when an abnormality occurs is smaller than the fully open state, Safety can be improved by completing closing in a shorter time. In addition, unnecessary operation is reduced by increasing the opening only when the differential pressure is large, and power consumption is reduced by stopping energization of the flow rate adjusting means 17 when the opening is not changed or when gas is not used. Loss can be reduced, and long-term operation with a battery can be realized.
[0024]
  For this reason, when an abnormality occurs, the flow of the fluid to be measured can be stopped in a shorter time as compared with the case where it is always fully opened, so that safety can be improved. Furthermore, long-term operation with a battery can be realized by reducing the input.
[0025]
  (Example 2)
  FIG. 3 is a configuration diagram of a flow rate measurement control device showing Embodiment 2 of the present invention. In the figure, the same members and the same functions as those in the embodiment of FIG. 1 are denoted by the same reference numerals, detailed description thereof will be omitted, and different points will be mainly described.
[0026]
  The opening degree setting unit 19 of the control unit 18 that controls the flow rate adjusting unit 17 is based on the allowable maximum flow rate setting unit 38 that sets the allowable maximum flow rate of the fluid to be measured and the flow rate value set by the allowable maximum flow rate setting unit 38. Is provided with a maximum opening setting unit 39 for setting the opening of the flow rate adjusting means 17.
[0027]
  Next, the operation will be described. Here, as in the case of the first embodiment, a gas meter that uses household gas as the fluid to be measured will be described. In the gas meter, the maximum flow rate of the gas of the fluid to be measured is determined, and the number is displayed as the capacity (for example, No. 6 when the maximum flow rate is 6 m3 / h), and the measurement accuracy is secured for the maximum flow rate used. ing. Also, when calculating the gas rate, the basic rate may be determined by the number of the gas meter (generally, the higher the number, the higher the number), and the smaller number of meters can be used up to a larger flow rate range than the indicated flow rate. It may be a problem in practice. Therefore, the allowable maximum flow rate corresponding to the maximum use flow rate is set in the allowable maximum flow rate setting unit 38, and the maximum opening degree of the flow rate adjusting means 17 is determined by the maximum opening degree setting unit 39 based on the set value.
[0028]
  Examples of the setting in the allowable maximum flow rate setting unit 38 include a method of storing in a microcomputer memory (not shown) and a method of switching a flow rate setting switch (not shown). The flow rate adjusting means 17 whose maximum opening degree is determined can control the opening degree by the differential pressure value described in the first embodiment by using the fluid to be measured. The opening does not open beyond the maximum opening, and it is difficult to use above the maximum allowable flow by setting the pressure loss to be large when the maximum allowable flow is exceeded.
[0029]
  Accordingly, since the maximum flow rate to be used can be regulated, the accuracy of flow rate measurement can be ensured. Further, even if the flow path 15, the flow rate measuring means 16 or the flow rate adjusting means 17 adopt the same thing, a flow rate measuring device having a different maximum use flow rate can be realized by the maximum opening degree of the flow rate adjusting means 17, and the parts can be shared. The productivity of the flow rate measuring device can be improved and cost reduction can be promoted.
[0030]
  In this way, the allowable maximum flow rate of the fluid to be measured, which is the upper limit of the flow rate measurement range of the flow rate measurement means, is set, so that the accuracy of flow rate measurement can be ensured and measurement reliability can be improved. Even if the upper limit flow rate is different, the same flow rate control means can be installed and the flow rate can be regulated by opening degree control by the opening degree setting unit, and the same flow rate adjustment means can be shared for devices in different flow rate measurement ranges, and productivity can be increased. Can be improved.
[0031]
  (Example 3)
  FIG. 4 is a configuration diagram of a flow rate measurement control apparatus showing Embodiment 3 of the present invention. In the figure, the same members and functions as those in the embodiment of FIGS. 1 to 3 are denoted by the same reference numerals, detailed description thereof is omitted, and different points will be mainly described.
[0032]
  Reference numeral 40 denotes a fluid discriminating unit that discriminates the type of fluid to be measured, and reference numeral 41 denotes a fluid-specific opening degree setting unit that sets the opening degree of the flow rate adjusting means 17 based on the discrimination of the fluid discriminating unit 40. As the fluid discriminating unit 40, a manual method such as switch switching by a type setting switch (not shown) or registration in a storage device (not shown) of a microcomputer, and a fluid detecting unit (not shown) facing the flow path 15 are used. There is a method of automatically discriminating the type by the fluid discriminating unit 40 based on the information detected in (1), and here, a manual method is shown.
[0033]
  For this reason, when using this flow measuring device, the user manually sets the type of fluid to be measured. When the type of the fluid to be measured is set by the fluid discriminating unit 40, the flow rate is adjusted according to the type of fluid based on the type of fluid and the differential pressure detected by the differential pressure detecting unit 23 by the fluid-specific opening degree setting unit 41. The flow resistance loss in the means 17 is determined, the opening degree of the flow rate adjusting means 17 is set, and the operation instruction unit 21 operates the flow rate adjusting means 17 so as to have a predetermined opening degree. In particular, when the phases of fluids such as gas and liquid are different, there is a limit to minimizing the opening as much as possible by managing only the differential pressure, but it is suitable for the fluid by identifying the type of fluid. By setting the pressure loss, the opening degree of the flow rate adjusting means 17 when using the fluid to be measured can be further reduced. Here, the maximum opening degree setting unit 39 sets the upper limit value of the opening degree as described above, and the opening degree of the flow rate adjusting means 17 is varied within a range below the maximum opening degree determined by the maximum opening degree setting unit 39. The
[0034]
  In this way, the opening is set based on the flow resistance loss at the flow rate adjustment means corresponding to the type of fluid to be measured, and when an abnormality occurs to cause the fluid to be measured to flow at a more appropriate minimum opening Then, the shortening of the flow stop can be further promoted, and the safety can be further enhanced.
[0035]
  Example 4
  FIG. 5 is a configuration diagram of a flow rate measurement control apparatus showing Embodiment 4 of the present invention. In the figure, the same members and functions as those in the embodiment of FIGS. 1 to 4 are denoted by the same reference numerals, detailed description thereof is omitted, and different points will be mainly described.
[0036]
  42 is a device that uses a fluid to be measured connected to the downstream side of the flow rate measuring means 16, 43 is a device determination unit that determines the type of the downstream device 42, and 44 is a device determination unit 43. It is a device-specific opening setting unit that sets the opening of the flow rate adjusting means 17 based on the determination. Here, the device discriminating unit 43 is discriminated by the flow rate measurement by the flow rate measuring means 16, and is discriminated by the flow rate change at the start of use of the device 42 or the flow rate value when shifting to the steady state.
[0037]
  Next, the operation will be described. Here, as in the case of the first embodiment, a gas meter using household gas as a fluid is a flow measurement control device, the device 42 is a gas water heater, a device B is a gas stove, and a device C is a gas fan heater. To do. Now, when the gas water heater of the device A is started to be used, the device discriminating unit 43 uses the gas flow of the device A based on the flow rate change and flow value at the time of ignition measured by the flow rate measuring means 16 and the flow value at the steady transition It is determined that a water heater is being used. Gas water heaters, gas stoves, gas fan heaters, etc. have different ignition characteristics and steady-state flow rate values, so that devices can be identified, and devices 42 connected downstream are registered in the device determination unit 43 in advance. Thus, the discrimination accuracy can be further improved. By discriminating the device to be used in this way, the maximum flow rate required for the device can be known in advance, and the opening degree of the flow rate adjusting means 17 having little influence on the use of the device 42 can be set.
[0038]
  In this way, since the flow rate required for the equipment can be immediately determined, the flow rate adjustment means can be set to the minimum required opening that does not affect the operation of the equipment, ensuring the characteristics of the equipment during normal operation and when an abnormality occurs It is possible to shorten the flow stoppage.
[0039]
  (Example 5)
  FIG. 6 is a configuration diagram of a flow rate measurement control apparatus showing Embodiment 5 of the present invention. In the figure, the same members and functions as those in the embodiment of FIGS. 1 to 4 are denoted by the same reference numerals, detailed description thereof is omitted, and different points will be mainly described.
[0040]
  Reference numeral 45 denotes an opening setting unit for each used flow rate that sets the opening of the flow rate adjusting unit 17 based on the actual downstream usage amount measured by the flow rate measuring unit 16. The opening setting unit 45 for each use flow rate is set so that the opening degree of the flow rate adjusting means 17 increases as the use flow rate increases, but is not set to exceed the maximum opening set by the maximum opening setting unit 39. ing. Also, the opening setting unit 45 for each use flow rate decreases the opening of the flow rate adjusting means 17 as the actual use flow rate decreases.
[0041]
  Next, the operation will be described. When the actual flow rate is small, the pressure loss of the flow path 15 of the flow rate measuring device and the pressure loss of the connecting pipe line (not shown) on the downstream side are small. Therefore, the pressure loss is increased by reducing the opening degree of the flow rate adjusting means 17 so that the pressure loss in the pipe line from the inlet of the flow rate measuring device to the equipment (not shown) provided on the downstream side becomes equal or less. This will not adversely affect the characteristics of the equipment. Therefore, the opening degree can be set by assuming an allowable pressure loss increase amount in the flow rate adjusting means 17 assuming the length of the downstream pipe line or the cross-sectional area in advance. For this reason, the opening degree with the smallest opening degree setting by an actual use flow rate is realizable. Therefore, when an abnormality such as an earthquake occurs, the fluid flow can be stopped in a shorter time. Further, since the flow rate measuring means 16 can be used in combination with flow rate measurement as an information source for setting the opening degree, and a sensor or the like as another information source for setting the opening degree is unnecessary, the configuration is simplified and the number of parts is reduced. Can reduce the cost.
[0042]
  In this way, since the opening degree of the flow rate adjusting means is set by the actual flow rate of the fluid to be measured, the opening degree can be minimized, and the flow stop time when an abnormality occurs can be further reduced and instantaneously reduced. The safety can be further improved.
[0043]
  (Example 6)
  FIG. 7 is a configuration diagram of a flow rate measurement control apparatus showing Embodiment 6 of the present invention. In the figure, the same members and functions as those in the embodiment of FIGS. 1 to 3 are denoted by the same reference numerals, detailed description thereof is omitted, and different points will be mainly described.
[0044]
  46 is a fluid pressure measuring means provided in the flow path 15 on the downstream side of the flow rate measuring means 16, and 47 is a pressure determining unit that compares the pressure value detected by the fluid pressure measuring means 46 with a predetermined value to determine the level. 48 is an opening setting unit for each pressure that sets the opening of the flow rate adjusting means 17 based on the determination value in the pressure determination unit 47.
[0045]
  Next, the operation will be described. A device connected to the secondary side, which is the downstream side of the flow rate measurement control device, requires a predetermined pressure in order to exhibit its characteristics, but does not require a pressure higher than the predetermined pressure. Therefore, when the fluid supply pressure on the primary side, which is the upstream side of the flow measurement control device, is large, the pressure loss of the flow measurement control device may be large. Therefore, the secondary pressure is measured by the fluid pressure measuring means 46, and the pressure value is compared with a predetermined value set in advance by the pressure determining unit 47. If the secondary side is larger than the predetermined value, the opening setting unit 48 for each pressure is set. The opening is set so as to reduce the opening of the flow rate adjusting means 17. Thus, when the pressure on the secondary side is higher than a predetermined value, the opening degree is sequentially reduced.
[0046]
  If the opening is too small and the pressure on the secondary side is smaller than the predetermined value, the opening is increased sequentially, but the opening is increased beyond the maximum opening set by the maximum opening setting unit 39. There is nothing. In particular, household gas meters that use the fluid to be measured as gas often have high gas pressure on the supply side, and are often used with a small opening, which can be used in an emergency such as an earthquake. The flow of fluid can be stopped in time.
[0047]
  For this reason, the secondary side equipment can be operated at a stable and constant pressure, so that the equipment characteristics can be improved or the reliability can be improved. Can be improved.
[0048]
  In this way, the opening degree can be reduced to improve safety by stopping the flow for a short time at the time of abnormality, and when the primary side pressure on the upstream side is high, the opening degree is reduced and the secondary side on the downstream side is reduced. It is possible to improve the characteristics or reliability of the equipment by stabilizing the side pressure and operating the equipment that is provided downstream and uses the fluid to be measured under the optimum conditions.
[0049]
  (Example 7)
  FIG. 8 is a configuration diagram of a flow rate measurement control apparatus showing Embodiment 7 of the present invention. In the figure, the same members and functions as those in the embodiment of FIGS. 1 to 4 are denoted by the same reference numerals, detailed description thereof is omitted, and different points will be mainly described.
[0050]
  Reference numerals 49 and 50 denote ultrasonic transducers arranged so as to face the measuring unit 51 provided in the flow path 15. The upstream ultrasonic transducer 49 and the downstream ultrasonic transducer 50 are separated from each other by a distance L. At the same time, it is installed at an angle θ with respect to the flow of the fluid to be measured at the velocity V. Reference numeral 52 denotes a signal generation processing unit that transmits / receives ultrasonic waves to / from the connected ultrasonic transducers 49 and 50, and 53 denotes a calculation unit that calculates speed, sound speed, and the like based on signals from the signal generation processing unit 52. 54 is a fluid discrimination unit for discriminating the type of fluid based on the result of the calculation unit 53. The fluid discrimination unit 54 is connected to the fluid-specific opening setting unit 41. As described above, the flow rate measuring means 16 is an ultrasonic flow meter that is a speculative flow meter capable of instantaneous measurement, and the fluid discriminating unit 54 discriminates the fluid based on the signals from the ultrasonic transducers 49 and 50. .
[0051]
  Next, the operation will be described. When the fluid to be measured flows through the measurement unit 51, ultrasonic waves are transmitted and received between the ultrasonic transducers 49 and 50 across the measurement unit 51 by the action of the signal generation processing unit 52. That is, the elapsed time T1 until the ultrasonic wave emitted from the upstream ultrasonic transducer 49 is received by the downstream ultrasonic transducer 50 is counted. On the other hand, the elapsed time T <b> 2 until the ultrasonic wave emitted from the downstream ultrasonic transducer 50 is received by the upstream ultrasonic transducer 49 is counted. Based on the elapsed times T1 and T2 measured in this way, the flow rate is calculated by the calculation unit 53 by the following calculation formula.
[0052]
  Now, if the angle between the flow of the fluid to be measured and the ultrasonic propagation path is θ, the distance between the ultrasonic transducers 49 and 50 as the flow rate measurement unit is L, and the sound velocity of the fluid to be measured is C, the flow velocity V Is calculated by the following equation.
[0053]
  T1 = L / (C + Vcosθ)
  T2 = L / (C−Vcos θ)
The speed of sound C is eliminated from the equation that subtracts the reciprocal of T2 from the reciprocal of T1.
  V = (L / 2 cos θ) ((1 / T1) − (1 / T2))
  Since θ and L are known, the flow velocity V can be calculated from the values of T1 and T2. Assuming that the air flow rate is measured, assuming that the angle θ = 45 degrees, the distance L = 70 mm, the sound velocity C = 340 m / s, and the flow velocity V = 8 m / s, T1 = 2.0 × 10 −4 seconds, T2 = 2.1 × 10 −4 seconds and instantaneous measurement is possible.
[0054]
  Here, from the cross-sectional area s of the measurement unit 51, the flow rate Q is
  V = kVs
  Here, k is a conversion coefficient considering the flow velocity distribution in the cross-sectional area s.
[0055]
  Further, the computing unit 53 calculates the sound speed C by the following formula obtained by adding the reciprocal of the elapsed time T1 and the reciprocal of T2.
[0056]
  C = L ((1 / T1) + (1 / T2)) / 2
  In this way, the speed of sound C is obtained, the type of fluid to be measured is determined based on the calculated speed of sound C, and measurement conditions as an ultrasonic flowmeter suitable for the speed of sound or the type of fluid to be measured are set. The measurement conditions for the ultrasonic flowmeter include the driving frequency of the ultrasonic transducer, the driving power such as the driving voltage, or the number of repetitions of how many times the elapsed times T1 and T2 are measured to calculate the flow velocity.
[0057]
  In addition, by registering in advance the fluid that is supposed to be used in the fluid discriminating unit 54, it is possible to improve the accuracy of discriminating the type of fluid to be measured, and the sound velocity C changes depending on the temperature. It goes without saying that the accuracy of discriminating the type of fluid to be measured can be further improved by providing a temperature sensor (not shown) for detecting the temperature of the fluid. When the type of the fluid to be measured is set by the fluid discriminating unit 54, based on the type of fluid and the differential pressure detected by the differential pressure detecting unit 23, as described above in the third embodiment. The flow resistance loss in the flow rate adjusting means 17 is determined according to the type of fluid and the opening degree of the flow rate adjusting means 17 is set, so that the operation instruction unit 21 sets the flow rate adjusting means 17 to a predetermined opening degree. Make it work. In addition, since the fluid discriminating unit 54 measures instantaneously using ultrasonic waves, the fluid discrimination is performed at high speed, and the opening degree of the flow rate adjusting means 17 can be controlled with improved responsiveness. Even a short interruption can be realized.
[0058]
  In this way, the flow rate measuring means can be shared by the fluid discriminating unit, so that the productivity can be improved. Further, the responsiveness of the opening degree control can be enhanced by the instantaneous fluid discrimination by the ultrasonic method, and the safety can be improved.
[0059]
  (Example 8)
  FIG. 9 is a configuration diagram of a flow rate measurement control apparatus showing Embodiment 8 of the present invention. In the figure, the same members and the same functions as those in the embodiment of FIGS.
[0060]
  55 is a speculative flow rate measuring means provided in the flow path 15 and capable of instantaneous measurement, and the speculative flow rate measuring means 55 is a signal generation processing unit for transmitting and receiving ultrasonic waves to and from the ultrasonic transducers 49 and 50 described above. 52 and an ultrasonic type equipped with a calculation unit 53 that calculates a flow rate based on signals from the ultrasonic transducers 49 and 50. The computing unit 53 is connected to the opening setting unit 45 for each used flow rate.
[0061]
  Next, the operation will be described. As described in the seventh embodiment, the flow rate of the fluid to be measured is instantaneously measured by the ultrasonic waves generated from the ultrasonic vibrators 49 and 50, and the flow rate change is instantaneously calculated even when the flow rate of the fluid to be measured changes. 53, the instantaneous flow rate value is sent to the opening setting unit 45 for each used flow rate. Therefore, as described in the fifth embodiment, the opening degree of the flow rate adjusting means 17 is set according to the flow rate change of the fluid to be measured.
[0062]
  For this reason, even if fluctuations occur in the actual flow rate, the flow rate is instantaneously measured and the opening of the flow rate adjustment means can be set to follow the flow rate change. Can be secured and safety can be further improved.
[0063]
Less thanAs is apparent from the above description, the present inventionExamplesThe following effects can be obtained.
[0064]
  The control means includes an opening setting unit that sets the opening of the flow rate adjusting unit based on the usage state of the fluid to be measured, and a safety shut-off unit that stops the flow of the fluid to be measured when an abnormality occurs. When an abnormality occurs, the flow of the fluid to be measured can be stopped in a shorter period of time than in the case of using the battery fully open, and the safety can be improved.
[0065]
  In addition, since the control means includes a maximum opening setting unit that is set by the upper limit value of the flow rate measurement range of the flow rate measurement means, the allowable maximum flow rate of the fluid to be measured that is the upper limit of the flow rate measurement range of the flow rate measurement means is set. Therefore, there is an effect that accuracy of flow measurement can be ensured and measurement reliability can be improved, and even if the upper limit flow rate of flow measurement of the flow measurement means is different, the same flow rate adjusting means is attached and the opening setting unit is used. The flow rate can be regulated by opening degree control, and the same flow rate adjusting means can be shared for apparatuses having different flow rate measurement ranges, thereby improving the productivity.
[0066]
  In addition, since the control means includes a fluid discriminating section for the fluid to be measured and an opening setting section for each fluid based on the discrimination result of the fluid discriminating section, the flow in the flow rate adjusting means corresponds to the type of the fluid to be measured. The opening is set based on the resistance loss, which has the effect of allowing the fluid to be measured to flow with a more appropriate minimum opening. In addition, when an abnormality occurs, the flow stoppage can be further shortened and safety can be further improved. There is an effect that it can be further increased.
[0067]
  In addition, since the control means includes a device-specific opening setting unit that sets the opening according to the type of the device that uses the fluid to be measured, provided downstream of the flow measuring device, the flow rate required for the device is immediately Therefore, the flow rate adjustment means can be set to the minimum required opening that does not affect the operation of the equipment, and the characteristics of the equipment during normal operation and the flow stoppage when an abnormality occurs are shortened. Is effective.
[0068]
  In addition, since the control means has an opening setting unit for each use flow rate that sets the opening based on the actual use flow rate measured on the downstream side measured by the flow rate measurement means, the control means depends on the actual use flow rate of the fluid to be measured. Since the opening of the flow rate control means is set, the opening can be minimized, and the flow stop time when an abnormality occurs can be further reduced and instantly improved, further improving safety. There is an effect that can be done.
[0069]
  In addition, the control means includes a pressure determination unit that determines the pressure detected by the fluid pressure measurement unit provided in the flow path, and an opening setting unit for each pressure that sets the opening based on the pressure determination unit. The effect is that safety can be improved by stopping the flow for a short time when there is an abnormality, and if the primary pressure on the upstream side is high, the opening is reduced and the secondary side on the downstream side There is an effect that it is possible to improve the characteristics or reliability of the device by stabilizing the pressure and operating the device which is provided downstream and uses the fluid to be measured under the optimum conditions.
[0070]
  Further, the flow rate measuring means is an ultrasonic type having an ultrasonic transducer provided in the flow path and a calculation unit for calculating a flow rate based on a signal from the ultrasonic transducer, and a signal from the ultrasonic transducer is obtained. Since it has a fluid discriminating unit that discriminates the fluid based on it, the flow rate measuring means can be shared with the fluid discriminating unit, which has the effect of improving productivity, and the response of opening control by instantaneous fluid discrimination by ultrasonic method This has the effect of improving safety and improving safety.
[0071]
  In addition, since the flow rate measuring means is a predictive formula that measures the instantaneous flow rate of the fluid to be measured, even if the actual flow rate varies, the flow rate is instantaneously measured and the opening of the flow rate adjusting means follows the flow rate change. In addition, there is an effect that the shortest flow stop can always be secured and safety can be further improved regardless of when an abnormality occurs.
[0072]
【The invention's effect】
  As described above, according to the flow rate measurement control device of the present invention, there is an effect that accuracy of flow rate measurement can be ensured and measurement reliability can be improved, and even when the upper limit flow rate of the flow rate measurement of the flow rate measurement unit is different, the same. The flow rate can be regulated by mounting the flow rate adjusting means and the opening degree control by the opening degree setting unit, and the same flow rate adjusting means can be shared for apparatuses having different flow rate measurement ranges, thereby improving the productivity.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a flow rate measurement control device according to a first embodiment of the present invention.
FIG. 2 is a sectional view of the flow rate adjusting means of the apparatus
FIG. 3 is a configuration diagram of a flow rate measurement control apparatus according to a second embodiment of the present invention.
FIG. 4 is a configuration diagram of a flow rate measurement control apparatus according to a third embodiment of the present invention.
FIG. 5 is a configuration diagram of a flow rate measurement control device according to a fourth embodiment of the present invention.
FIG. 6 is a configuration diagram of a flow rate measurement control device according to a fifth embodiment of the present invention.
FIG. 7 is a configuration diagram of a flow rate measurement control device according to a sixth embodiment of the present invention.
FIG. 8 is a configuration diagram of a flow rate measurement control device according to a seventh embodiment of the present invention.
FIG. 9 is a configuration diagram of a flow rate measurement control device according to an eighth embodiment of the present invention.
FIG. 10 is a sectional view of a conventional flow rate measurement control device.
[Explanation of symbols]
  15 channel
  16 Flow rate measuring means
  17 Flow rate adjusting means
  18 Control means
  20 Safety shut-off part
  38 Allowable maximum flow rate setting section
  39 Maximum opening setting section
  40 Fluid discrimination part
  41 Opening setting section for each fluid
  42 Equipment
  43 Device discriminator
  44 Opening setting section by device
  45 Opening setting section for each flow rate used
  46 Fluid pressure measuring means
  47 Pressure judgment part
  48 Opening setting section by pressure
  49, 50 Ultrasonic transducer
  53 Calculation unit
  54 Fluid discrimination part
  55 Estimated flow measurement means

Claims (6)

被計測流体が流動する流路と、前記被計測流体の流量を計測する流量計測手段と、前記被計測流体の流量を調節する流量調節手段と、前記流量調節手段を制御する制御手段を有し、前記制御手段は、前記被計測流体の利用状態に基づいて前記流量調節手段の開度を設定する開度設定部と、異常発生時は前記被計測流体の流動を停止させる安全遮断部とを備え、前記制御手段は流量計測手段の流量計測範囲の上限値により設定する最大開度設定部を備えた流量計測制御装置。A flow path through which the fluid to be measured flows, flow rate measuring means for measuring the flow rate of the fluid to be measured, flow rate adjusting means for adjusting the flow rate of the fluid to be measured, and control means for controlling the flow rate adjusting means. The control means includes an opening degree setting unit that sets an opening degree of the flow rate adjusting unit based on a use state of the fluid to be measured, and a safety shut-off unit that stops the flow of the fluid to be measured when an abnormality occurs. And the control means includes a maximum opening setting unit that is set by an upper limit value of a flow rate measurement range of the flow rate measurement means . 制御手段は被計測流体の流体判別部と流体判別部の判別結果に基づく流体別開度設定部を備えた請求項1記載の流量計測制御装置。Control means according to claim 1 Symbol placement of the flow measurement and control device with a fluid by opening setting unit based on the determination result of the fluid determination section and the fluid determination section of the fluid to be measured. 被計測流体が流動する流路と、前記被計測流体の流量を計測する流量計測手段と、前記被計測流体の流量を調節する流量調節手段と、前記流量調節手段を制御する制御手段を有し、前記制御手段は、前記被計測流体の利用状態に基づいて前記流量調節手段の開度を設定する開度設定部と、異常発生時は前記被計測流体の流動を停止させる安全遮断部とを備え、前記制御手段は被計測流体の流体判別部と流体判別部の判別結果に基づく流体別開度設定部を備えた流量計測制御装置。 A flow path through which the fluid to be measured flows, flow rate measuring means for measuring the flow rate of the fluid to be measured, flow rate adjusting means for adjusting the flow rate of the fluid to be measured, and control means for controlling the flow rate adjusting means. The control means includes an opening degree setting unit that sets an opening degree of the flow rate adjusting unit based on a use state of the fluid to be measured, and a safety shut-off unit that stops the flow of the fluid to be measured when an abnormality occurs. wherein the control means is flow rate measurement control device including a fluid-specific opening setting unit based on the determination result of the fluid determination section and the fluid determination section of the fluid to be measured. 被計測流体が流動する流路と、前記被計測流体の流量を計測する流量計測手段と、前記被計測流体の流量を調節する流量調節手段と、前記流量調節手段を制御する制御手段を有し、前記制御手段は、前記被計測流体の利用状態に基づいて前記流量調節手段の開度を設定する開度設定部と、異常発生時は前記被計測流体の流動を停止させる安全遮断部とを備え、前記制御手段は流量計測手段の下流側に設けた被計測流体を利用する機器の種類により開度を設定する機器別開度設定部を備えた流量計測制御装置。 A flow path through which the fluid to be measured flows, flow rate measuring means for measuring the flow rate of the fluid to be measured, flow rate adjusting means for adjusting the flow rate of the fluid to be measured, and control means for controlling the flow rate adjusting means. The control means includes an opening degree setting unit that sets an opening degree of the flow rate adjusting unit based on a use state of the fluid to be measured, and a safety shut-off unit that stops the flow of the fluid to be measured when an abnormality occurs. wherein the control means the flow amount measuring control device having a device-opening setting portion that sets an opening degree according to the type of device that utilizes the fluid to be measured which is provided on the downstream side of the flow rate measuring means. 制御手段は流量計測手段の下流側に設けた被計測流体を利用する機器の種類により開度を設定する機器別開度設定部を備えた請求項1〜3のいずれか1項に記載の流量計測制御装置。  The flow rate according to any one of claims 1 to 3, wherein the control unit includes a device-specific opening setting unit that sets the opening according to the type of the device that uses the fluid to be measured provided on the downstream side of the flow rate measuring unit. Measurement control device. 流量計測手段は流路に設けた超音波振動子からの信号を基に流量を算出する演算部を有する超音波式とし、前記超音波振動子からの信号を基に流体を判別する流体判別部を備えた請求項3記載の流量計測制御装置。  The flow rate measuring means is an ultrasonic type having a calculation unit that calculates a flow rate based on a signal from an ultrasonic transducer provided in a flow path, and a fluid discrimination unit that discriminates a fluid based on the signal from the ultrasonic transducer A flow rate measurement control device according to claim 3.
JP22784097A 1997-08-25 1997-08-25 Flow measurement control device Expired - Fee Related JP3644209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22784097A JP3644209B2 (en) 1997-08-25 1997-08-25 Flow measurement control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22784097A JP3644209B2 (en) 1997-08-25 1997-08-25 Flow measurement control device

Publications (2)

Publication Number Publication Date
JPH1165673A JPH1165673A (en) 1999-03-09
JP3644209B2 true JP3644209B2 (en) 2005-04-27

Family

ID=16867200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22784097A Expired - Fee Related JP3644209B2 (en) 1997-08-25 1997-08-25 Flow measurement control device

Country Status (1)

Country Link
JP (1) JP3644209B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131098A (en) * 2000-10-20 2002-05-09 Matsushita Electric Ind Co Ltd Fluid supply device
JP2002196825A (en) * 2000-12-26 2002-07-12 Matsushita Electric Ind Co Ltd Fluid controller
JP2002310753A (en) * 2001-04-12 2002-10-23 Matsushita Electric Ind Co Ltd Fuel gage
GB0227109D0 (en) * 2002-11-20 2002-12-24 Air Prod & Chem Volume flow controller
JP2005099053A (en) * 2004-12-27 2005-04-14 Matsushita Electric Ind Co Ltd Gas meter
JP4888464B2 (en) * 2008-10-10 2012-02-29 パナソニック株式会社 Flow measuring device
JP2009008691A (en) * 2008-10-10 2009-01-15 Panasonic Corp Flow measuring apparatus
JP5316236B2 (en) * 2009-06-08 2013-10-16 パナソニック株式会社 Shut-off valve flow path unit
JP6753799B2 (en) * 2017-02-23 2020-09-09 アズビル株式会社 Maintenance judgment index estimation device, flow control device and maintenance judgment index estimation method

Also Published As

Publication number Publication date
JPH1165673A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
JP3644209B2 (en) Flow measurement control device
JP5663335B2 (en) Shut-off valve device
JP2014517172A5 (en)
EP1193475A1 (en) Flowmeter
JP2002131098A (en) Fluid supply device
JP2000028404A (en) Fluid control device and flow-rate measuring device provided with the same
JP5961815B2 (en) Water heater
JP6087694B2 (en) Ultrasonic gas meter
JP5092185B2 (en) Flow measuring device
JPH1165672A (en) Flow rate measurement controller
JP2008020187A (en) Fluid controller, and flow measuring instrument equipped with fluid controller
JP2002357362A (en) Hot-water supplier
JP2002139401A (en) Leak monitoring apparatus for pipeline
JP3915823B2 (en) Flow measurement device with safety function
JP4032944B2 (en) Gas appliance discrimination device and gas shut-off device
JP4368616B2 (en) Flowmeter
JPH0470515A (en) Flow rate sensor with valve gear
JP4070842B2 (en) Flow measurement device with safety function
JP4883161B2 (en) Fluid control device
JP2005099053A (en) Gas meter
JP4759822B2 (en) Flow measuring device
JP4973713B2 (en) Fluid control device
JP5974270B2 (en) Water heater
JP2002350213A (en) Gas meter
JP2002196825A (en) Fluid controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees