JP3643647B2 - Operation method of fuel supply system for combined cycle power plant - Google Patents

Operation method of fuel supply system for combined cycle power plant Download PDF

Info

Publication number
JP3643647B2
JP3643647B2 JP15674996A JP15674996A JP3643647B2 JP 3643647 B2 JP3643647 B2 JP 3643647B2 JP 15674996 A JP15674996 A JP 15674996A JP 15674996 A JP15674996 A JP 15674996A JP 3643647 B2 JP3643647 B2 JP 3643647B2
Authority
JP
Japan
Prior art keywords
crude oil
fuel
boiling fraction
amount
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15674996A
Other languages
Japanese (ja)
Other versions
JPH102204A (en
Inventor
正樹 飯島
聡 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15674996A priority Critical patent/JP3643647B2/en
Publication of JPH102204A publication Critical patent/JPH102204A/en
Application granted granted Critical
Publication of JP3643647B2 publication Critical patent/JP3643647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • F01K23/105Regulating means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油焚きガスタービン・コンバインド・サイクル発電に関する。
【0002】
【従来の技術】
現在日本における火力発電は、ボイラにより生じた高温高圧の蒸気で蒸気タービンを回転させて発電する方式が主なものである。そのボイラ燃料としては、主に重油や原油が使用されているが、それらのうち、原油焚きの場合はワックス分が多く、かつSOxの発生量の少ない低硫黄含有原油、例えばミナス産原油や大慶産原油が好んで使用されている。
【0003】
そのほか、最近では良質燃料であるLNGを用いたコンバインド・サイクル発電設備も採用されている。前記原油や重油のボイラ焚き及び蒸気タービンによる発電では、熱効率が40%前後/HHV基準(HHV:高位発熱量)と比較的低い。
【0004】
これに対して、LNG焚きで採用されているコンバインド・サイクル発電は、ガスタービンにおいて燃料を燃焼させ、その高温排ガスをボイラで再燃させて蒸気タービンを運転し再度発電する方法(いわゆる排気再燃型)であり、熱効率が48%前後/HHV基準と飛躍的に向上する。
【0005】
このため、石油消費量増大抑制の見地からより熱効率の高い発電方法へと転換を迫られている近年においては、上記コンバインド・サイクル発電の発展が強く望まれている。ところが、従来のLNGのコンバインド・サイクル発電では、LNGが貯蔵にコストがかかる上、石油火力へLNGを供給する場合、パイプライン埋設に高コストがかかる。
【0006】
一方、原油を燃料とするいわゆる油焚きガスタービン・コンバインド・サイクル発電については、欧米で実施された例もあるが、原油に含まれる不純物によりトラブルが多く発生し、保守費用が嵩むという問題があり、この点で実用化に難があった。というのは、原油に含まれる塩分とバナジウムと硫黄分とが相互に影響してガスタービン中で低融点の物質となりブレードに付着し、ブレードの腐食を起こすためである。
【0007】
またこのため、ガスタービン用の燃料としては、塩分及びバナジウムの含有濃度が0.5ppm以下とする基準が一般的に採用されており、また硫黄分についても0.5wt.%以下であることが好ましいとされているが、前記ミナス産原油や大慶産原油のような低硫黄含有原油でも少なくとも塩分やバナジウムについてのこれら基準を満足できず、熱効率のよいコンバインド・サイクル発電のタービン燃料としてはそのまま利用できなかった。したがって、結果として原油をガスタービンの燃料とする油焚きガスタービン・コンバインド・サイクル発電の実用化も困難であった。
【0008】
【発明が解決しようとする課題】
そこで出願人は、上記不純物の問題を解決するものとして、例えば特願平4−287504号(特開平6−207180号)により、脱塩処理された原油を所定の温度で蒸留して低沸点留分と高沸点留分とに分離し、低沸点留分をガスタービンの燃料として使用し、一方高沸点留分を蒸気タービン用ボイラの燃料として使用するという、原油蒸留技術を利用した油焚きガスタービン・コンバインド・サイクル発電方法を提案し、実用化を進めている。
【0009】
ところが、この発電方法では、一定の蒸留温度でそれぞれの燃料(低沸点留分又は高沸点留分)を生成する構成が当初考えられていたため、発電負荷の変動等に伴う燃料消費量の必要割合の変化に対して柔軟に対応することが困難であった。すなわち、タービン燃料とボイラ燃料の必要量の比率は、必ずしも一定ではなく発電負荷の変動等に伴い変化するが、蒸留温度が一定であると、タービン燃料としての低沸点留分の生成量と、ボイラ燃料としての高沸点留分の生成量の比率もほぼ一定になってしまう。
【0010】
このため従来の構成ではこの燃料必要量の割合変化に対応できず、場合によってはなんらかの補助燃料の補給が必要になったり、余剰の燃料がでてしまう恐れがある。
【0011】
そこで本発明は、原油蒸留技術を利用した油焚きガスタービン・コンバインド・サイクル発電設備の燃料供給系運転方法であって、補助燃料の補給等を要することなく、タービン燃料とボイラ燃料の必要量の比率の変化に柔軟に対応できる燃料供給系運転方法を提供することを目的としている。
【0012】
【課題を解決するための手段】
上記課題を達成するため、請求項1記載のコンバインド・サイクル発電設備の燃料供給系運転方法は、原油を所定の蒸留温度で蒸留して低沸点留分と高沸点留分とに分離し、前記低沸点留分をガスタービンの燃料として使用し、前記高沸点留分を蒸気タービン用ボイラの燃料として使用するコンバインド・サイクル発電設備の燃料供給系運転方法であって、前記低沸点留分と前記高沸点留分の必要量に応じて、前記蒸留温度を調整して前記低沸点留分と前記高沸点留分の生成比率を制御することを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態の一例を図1、図2及び図3により説明する。ここで図1は、本例のコンバインド・サイクル発電設備における燃料供給系統の構成を示す図であり、図2は、同コンバインド・サイクル発電設備における発電系統の構成を示す図である。また図3は、ミナス産原油の場合の蒸留温度と留分との関係を示す図である。
【0014】
この発電設備の燃料供給系統は、主な構成機器として、図1に示すように、原油タンク1、原油供給ポンプ2、原油予熱器3〜6、原油加熱炉7、蒸留塔8、凝縮器9、タービン燃料供給ポンプ10、還流ポンプ11、タービン燃料タンク12、ボイラ燃料供給ポンプ13、ボイラ燃料タンク14、給水予熱器15,16、タービン燃料レベルセンサ17(図2では省略)、ボイラ燃料レベルセンサ18(図2では省略)、原油供給量調整バルブ19、蒸留量コントローラ20を備える。
【0015】
原油タンク1は、原油を貯留するもので、この原油としては脱塩処理された低硫黄原油を使用するのが好ましい。この低硫黄原油としては、排ガスの脱硫工程を簡略化できることから、できるだけ硫黄含有量の少ないものが好ましいことはいうまでもないが、通常硫黄含有量が1重量%以下、さらに好ましくは0.5重量%以下の原油が用いられる。このような原油としては、前述のミナス産原油や大慶産原油等を挙げることができる。
【0016】
なお、原油中に含まれる硫黄分のほとんどは後述する蒸留により分離されるので、本発明の原油としては、必ずしも上記のような低硫黄原油を用いる必要はない。また、原油に含まれる塩分は、蒸留塔8による蒸留により高沸点留分側に残留し易く、蒸留の温度条件によっては、低沸点留分の塩分含有量が前述の基準値(0.5ppm)以下となるので、本発明の原油は必ずしも脱塩処理されている必要はない。
【0017】
また、脱塩処理を同一設備内で実施する場合には、原油を予め80〜150℃程度に加熱する加熱手段を設けるとともに、例えば周知の脱塩手段であるディソルータを必要に応じて複数段設ければよい。このディソルータは、加熱した原油と淡水を混合し、例えば2万ボルト程度の静電圧を印加して水滴を凝集させて分離するものであり、原油の粘度を下げるとともに水と原油の比重差による分離を容易にするため、前述の如く原油を予め加熱するのが好ましい。
【0018】
なお、原油タンク1から原油加熱炉7まで原油を送給する原油供給ライン21の途上に上記ディソルータを配設し、原油予熱器3〜6のうちのいくつかを上記脱塩処理のための加熱手段として機能させることもできる。
【0019】
原油供給ポンプ2は、原油タンク1内の原油を送り出し、原油供給ライン21を介して原油加熱炉7さらには蒸留塔8へと圧送するものである。原油加熱炉7は、この場合、原油タンク1内の原油、ボイラ燃料タンク14内の高沸点留分、或いは発電燃料とは別に用意された原油、重油、軽油、灯油、ナフサ、LPG等を燃焼させて蒸留塔8に送られる原油を所定の蒸留温度まで加熱するものである。
【0020】
なお、この場合この原油加熱炉7の加熱量は、蒸留量コントローラ20により自動制御され、各燃料がそれぞれ必要量に応じた量だけ生成されるように蒸留温度(蒸留塔8の入口における原油温度)が調整される。すなわち、蒸留により生成する低沸点留分の量比率と蒸留温度との間には一定の関係があり、例えばミナス産原油の場合には図3に示すようになる。そして後述するように、この場合蒸留量コントローラ20は、タービン燃料レベルセンサ17とボイラ燃料レベルセンサ18からのレベル信号に基づき、生成すべき低沸点留分と高沸点留分の量比率に相当する蒸留温度となるように原油加熱炉7の加熱量を制御する構成となっている。
【0021】
なお蒸留温度は、ガスタービン用燃料となる低沸点留分のバナジウムや塩分或いは硫黄分の含有量が所望の値になるように、所定の許容範囲内で制御する必要があるが、この許容範囲は原油の性状や蒸留圧力に応じて決定すればよく、例えば常圧蒸留の場合には420℃程度以下の範囲とすればよい。
【0022】
原油予熱器3,4或いは原油予熱器5,6は、この場合蒸留塔8の塔頂から導出されたガス(即ち低沸点留分)、或いは蒸留塔8の塔底から導出された液(即ち高沸点留分)からそれぞれ2段階で熱回収し、原油加熱炉7に送られる前に原油を順次加熱する熱交換器であり、これにより原油の加熱効率がアップして原油加熱炉7の負担が軽くなる。
【0023】
蒸留塔8は、この場合、還流ポンプ11及び還流ライン22により塔頂から導出された低沸点留分が液として戻されて、原油の発生蒸気と向流的に接触して分離度を高める方式の蒸留塔(いわゆる精留塔)であり、具体的には例えば泡鐘塔や多孔板塔、或いは充てん塔が使用できる。
【0024】
凝縮器9は、液ライン23により蒸留塔8の塔頂から導出されたガス(即ち低沸点留分)を最終的に冷却して凝縮させる例えば多管式熱交換器であり、この場合凝縮しきれなかったガス(オフガス)が頂部から排出される。そして、この凝縮器9で凝縮された原油の低沸点留分は、底部から抜き出されて、一部が還流ポンプ11及び還流ライン22により蒸留塔8に戻され、残りがタービン燃料としてタービン燃料供給ポンプ10によりタービン燃料タンク12に送られる構成となっている。また、ボイラ燃料供給ポンプ13は、蒸留塔8の塔底から導出された液(即ち高沸点留分)を液ライン24によりボイラ燃料タンク14に圧送するものである。
【0025】
なお給水予熱器15,16は、蒸留塔8の塔頂から導出されたガス(即ち低沸点留分)、或いは蒸留塔8の塔底から導出された液(即ち高沸点留分)から熱回収し、後述するボイラ35に送られるボイラ給水を加熱する熱交換器である。
【0026】
タービン燃料レベルセンサ17は、タービン燃料タンク12内の燃料(低沸点留分よりなるタービン燃料)の液面高さに応じた信号を出力するレベルセンサであり、またボイラ燃料レベルセンサ18は、ボイラ燃料タンク14内の燃料(高沸点留分よりなるボイラ燃料)の液面高さに応じた信号を出力するレベルセンサであり、これらレベルセンサ17,18の検出信号は、図1に示すように蒸留量コントローラ20に入力されている。
【0027】
原油供給量調整バルブ19は、この場合原油供給ポンプ2の吐出側に設けられて、原油タンク1内から蒸留塔8に送られる原油の流量を調整するもので、この場合蒸留量コントローラ20により自動制御される。また蒸留量コントローラ20は、各レベルセンサ17,18の検出信号により検知される各タンク12,14内の燃料の貯留量に基づいて、原油供給量制御調整バルブ19の開度や原油加熱炉7の加熱量を制御し、各タンク12,14内の燃料の貯留量が一定範囲に維持されるように原油の蒸留量を制御するものであり、この場合図3に示すような蒸留温度と留分の関係に基づいて、高沸点留分と低沸点留分の生成比率を必要量に対応するように蒸留温度によって変化させる点に特徴を有する。
【0028】
なお、具体的には例えば以下のような制御を行う。すなわち、各タンク12,14内の燃料の貯留量が通常範囲内にある場合には、後述のガスタービン34の平均的な燃料の消費量に相当する基準量の低沸点留分と、後述のボイラ35の平均的な燃料の消費量に相当する基準量の高沸点留分とがそれぞれ生成されるように、蒸留塔8に送られる原油の流量と蒸留温度とを制御する。
【0029】
そして、このような通常状態から例えばガスタービン34の燃料消費量のみが増加して、タービン燃料タンク12内の貯留量のみが前記通常範囲の下限より低下した場合(低沸点留分の必要量の比率が増加した場合)には、高沸点留分の生成量が前記基準量に維持されつつ低沸点留分のみが前記基準量よりも多量に生成されるように(低沸点留分の生成比率が増加するように)、原油の供給流量とともに蒸留温度を上昇させる。
【0030】
また逆に、タービン燃料タンク12内の貯留量のみが前記通常範囲の上限を越えた場合(低沸点留分の必要量の比率が低下した場合)には、高沸点留分の生成量が前記基準量に維持されつつ低沸点留分のみが前記基準量よりも少量生成されるように(低沸点留分の生成比率が低下するように)、蒸留塔8に送られる原油の供給流量とともに蒸留温度を低下させる制御を行う。
【0031】
さらに、タービン燃料タンク12内の貯留量のみが前記通常範囲の外側に設定された許容範囲の下限より低下した場合(低沸点留分の必要量の比率がさらに増加した場合)には、前記基準量よりもさらに多量の低沸点留分が生成されるように蒸留温度をその許容範囲の最大限(例えば420℃)に制御するとともに、高沸点留分の生成量が過大にならない範囲で原油の供給流量を最大に増加させる。
【0032】
また逆に、タービン燃料タンク12内の貯留量のみが前記許容範囲の上限を越えた場合(低沸点留分の必要量の比率がさらに低下した場合)には、前記低沸点留分の生成のみを停止すべく原油の加熱を停止し、原油の供給流量を高沸点留分の必要量(ボイラ燃料タンク14に送るべき前記基準量)に制御する。
【0033】
また例えば、通常状態からガスタービン34とボイラ35の燃料消費量の両方が増加して、各タンク12,14内の貯留量がそれぞれ前記通常範囲の下限より低下した場合(高沸点留分と低沸点留分の必要量の比率がほぼ一定のまま、全体の必要量が増加した場合)には、高沸点留分と低沸点留分が前記基準量よりもそれぞれ多量に生成されるように、蒸留温度を前記通常状態の値に維持したまま原油の供給流量のみを増加させる。
【0034】
また逆に、各タンク12,14内の貯留量がそれぞれ前記通常範囲の上限を越えた場合(高沸点留分と低沸点留分の必要量の比率がほぼ一定のまま、全体の必要量が低下した場合)には、高沸点留分と低沸点留分が前記基準量よりもそれぞれ少量生成されるように、蒸留温度を前記通常状態の値に維持したまま原油の供給流量のみを低下させる制御を行う。
【0035】
さらに、各タンク12,14内の貯留量がそれぞれ前記許容範囲の下限より低下した場合(高沸点留分と低沸点留分の必要量の比率がほぼ一定のまま、全体の必要量がさらに増加した場合)には、前記基準量よりもさらに多量の高沸点留分及び低沸点留分がそれぞれ生成されるように、蒸留温度を前記通常状態の値に維持したまま原油の供給流量を能力最大に増加させる。
【0036】
また逆に、各タンク12,14内の貯留量がそれぞれ前記許容範囲の上限を越えた場合(高沸点留分と低沸点留分の必要量の比率がほぼ一定のまま、全体の必要量がさらに低下した場合)には、高沸点留分及び低沸点留分の生成を停止すべく原油の加熱及び原油の供給を停止する。
【0037】
次に、この発電設備の発電系統は、主な構成機器として、図2に示すように、タービン本体31、圧縮機32及び燃焼器33からなるガスタービン34、ボイラ35、蒸気タービン36、復水器37、エコノマイザー38を備える。ここでガスタービン34は、燃焼器33において、タービン燃料タンク12から供給ライン41を介して供給されたタービン燃料を、圧縮機32により圧縮された空気と接触させて燃焼させ、タービン本体31におけるこの燃焼ガスの膨張により出力軸を回転させて発電する周知のもので、この場合排気再燃型のコンバインド・サイクルを形成すべく、燃焼後の排ガス(残酸素濃度11%〜15%程度、温度580℃程度)が排ガスライン42を経由してボイラ35に供給される構成となっている。
【0038】
ボイラ35は、例えばスターリングボイラであり、対流伝熱部35aを有する。このボイラ35には、燃料として前述のボイラ燃料タンク14内のボイラ燃料が供給ライン43を経由して供給され、またこのボイラ35の排煙は排煙導出ライン44を介して、図示省略した脱硝装置や集塵装置を経由するとともに、エコノマイザー38により熱回収されて、図示省略した煙突に導かれて大気に放出される。なお、原油の性状によってはこの排煙中から硫黄分(特に亜硫酸ガス)を除去する脱硫装置を設けてもよい。また、エコノマイザー38は、蒸気サイクルの熱効率向上のためにボイラ35の排煙の熱によりボイラ給水を加熱する熱交換器である。
【0039】
なお、図2では繁雑になるので図示省略しているが、蒸気タービン36としては、いわゆる再熱サイクルを形成すべく、高圧、中圧、低圧といった具合に複数段の蒸気タービンを備えた構成とするとともに、またいわゆる再生サイクルを形成すべく、複数の抽気給水加熱器を設けて、熱効率を高度に確保した構成とするのが当然好ましい。この場合には、図1に示した給水予熱器15,16(図2では図示省略)も、復水器37からボイラ35に送られる給水を加熱し、蒸気サイクルの熱効率をさらに高めている。
【0040】
以上のように構成された発電設備及びその運転方法によれば、まず、前述したような不純物に起因するガスタービン34のブレード金属の腐食といった問題点を回避しつつ、コンバインド・サイクル発電の利点を生かした高効率な発電が実用的に可能となる。すなわち、原油タンク1から原油供給ポンプ2により送り出された原油は、原油予熱器3〜6により例えば270℃程度まで加熱された後、この場合独立に設けられた原油加熱炉7により最終的に前述したような所定の蒸留温度まで加熱される。
【0041】
そして、蒸留温度が前述の許容範囲内に維持されれば、蒸留塔8の塔頂から導出される低沸点留分(即ち、タービン燃料)のバナジウムや塩分の含有濃度は、用意に基準値の0.5ppm(wt.)以下に安定的に維持できるし、また硫黄分についても0.5〜0.05wt.%以下に維持できる。すなわち重金属は、常圧蒸留の場合、ほとんどが約900°F以上の高沸点留分に残留し、また塩分についても420℃(788°F)以上の高沸点留分に残留するため、この場合これらほとんどの不純物が高沸点留分側に残留し、ボイラ燃料タンク14に送られるボイラ燃料中に含まれることになる。なお、ボイラ35では、従来より重油等を燃焼させているので、このような不純物が含まれた燃料でもなんら問題なく運転可能である。
【0042】
こうして、不純物濃度が十分に低い燃料がタービン燃料タンク12から連続的にガスタービン34に供給され、ガスタービン34から排出される高温の排ガスがボイラ35に導入されて再燃されることで、貯蔵が容易な原油を使用した高効率なコンバインド・サイクル発電が、原油中の不純物に起因するトラブルを発生させることなく信頼性高く運転できる。
【0043】
そして本例の運転方法では、重金属や塩分のほとんどが高沸点留分側に分離される前述の温度条件内において、前述したように各タンク12,14の貯留量の変化に基づいて原油の供給量とともに蒸留温度を制御することで、高沸点留分と低沸点留分のそれぞれの必要量に応じて、それらの全体的な生成量(蒸留量)とともにその生成比率を変化させているので、燃料の全体的な消費量とともにガスタービン用燃料とボイラ用燃料の消費量の割合が変動するような場合でも、いずれの燃料についても補助燃料を必要とすることなく、また余剰の燃料をだすこともない。このため、補助燃料用タンク等を要しない簡単な設備で効率良く必要最小限の燃料を供給することが可能となる。
【0044】
しかも上記形態例の場合には、前述したように、高沸点留分と低沸点留分をそれぞれ貯留するタンク12,14が設けられ、各タンクの絶対的な貯留量を一定の範囲に維持するように制御している。このため、各タンク12,14がバッファとして機能して、急激な燃料消費量の変動があった場合でも安定的に必要な量の燃料を供給することが可能となるとともに、これらタンク12,14が蒸留量一定制御の場合に比し小型なものですむという利点がある。
【0045】
なお、本発明は上記形態例に限られず、各種の態様があり得る。例えば、上記形態例では、高沸点留分又は低沸点留分を貯留するタンク12,14の貯留量に基づいて各燃料の必要量を判断し、これに応じて蒸留温度を変化させて各燃料の生成比率を調整するようにしているが、例えばタービン34及びボイラ35にそれぞれ供給される燃料の供給流量を検出し、この供給流量の割合に応じて各燃料の生成比率が変化するように、蒸留温度を調整するようにしてもよい。
【0046】
また、タンク12,14の貯留量に基づいて各燃料の必要量を判断する場合でも、上記例のように、一定範囲の上限下限を越えたか否かを基準に段階的に必要量の変化を判定して蒸留温度を調整する態様に限られず、貯留量の割合に応じて連続的に生成比率が変化するように蒸留温度を調整してもよい。
【0047】
また上記形態例では、原油の供給量の調整(バルブ19の操作)や原油加熱炉7の加熱量の操作等の運転操作をコントローラ20よりなるシステムが自動的に行う構成としたが、例えば各タンクの貯留量等を作業者が判断して作業者のマニュアル操作により行ってもよいことはいうまでもない。
【0048】
【発明の効果】
本発明のコンバインド・サイクル発電設備の燃料供給系運転方法によれば、高沸点留分と低沸点留分のそれぞれの必要量に応じて、蒸留温度を調整してそれらの生成比率を変化させているので、燃料の全体的な必要量とともにガスタービン用燃料とボイラ用燃料の必要量の割合が変動するような場合でも、いずれの燃料についても補助燃料を必要とすることなく、また余剰の燃料をだすこともなく、補助燃料用タンク等を要しない簡単な設備で効率良く必要最小限の燃料を供給することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例であるコンバインド・サイクル発電設備の燃料供給系統の構成を示す図である。
【図2】同コンバインド・サイクル発電設備の発電系統を示す図である。
【図3】ミナス産原油の性状(蒸留温度と留分の関係)を示す図である。
【符号の説明】
1 原油タンク
2 原油供給ポンプ
3〜6 原油予熱器
7 原油加熱炉
8 蒸留塔
9 凝縮器
10 タービン燃料供給ポンプ
11 還流ポンプ
12 タービン燃料タンク
14 ボイラ燃料タンク
17 タービン燃料レベルセンサ
18 ボイラ燃料レベルセンサ
19 原油供給量調整バルブ
20 蒸留量コントローラ
34 ガスタービン
35 ボイラ
36 蒸気タービン
37 復水器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to oil-fired gas turbine combined cycle power generation.
[0002]
[Prior art]
At present, thermal power generation in Japan mainly uses a system in which a steam turbine is rotated by high-temperature and high-pressure steam generated by a boiler. As the boiler fuel, heavy oil and crude oil are mainly used. Of these, in the case of burning crude oil, low sulfur content crude oil with a high wax content and low SOx generation, such as Minas crude oil and Daqing Produced crude oil is preferred.
[0003]
In addition, recently, a combined cycle power generation facility using LNG, which is a high-quality fuel, has also been adopted. In power generation using the above-described boilers and steam turbines of crude oil or heavy oil, the thermal efficiency is relatively low at around 40% / HHV standard (HHV: high heating value).
[0004]
On the other hand, combined cycle power generation used in LNG burning is a method in which fuel is burned in a gas turbine, the high-temperature exhaust gas is reburned in a boiler, a steam turbine is operated, and power is generated again (so-called exhaust reburning type). The thermal efficiency is dramatically improved to around 48% / HHV standard.
[0005]
For this reason, the development of the combined cycle power generation is strongly desired in recent years when it is urged to switch to a more heat-efficient power generation method from the viewpoint of suppressing the increase in oil consumption. However, in the conventional combined cycle power generation of LNG, LNG is costly to store, and when LNG is supplied to petroleum thermal power, it is expensive to embed the pipeline.
[0006]
On the other hand, there are examples of so-called oil-fired gas turbine combined cycle power generation using crude oil as a fuel in Europe and the United States, but there are problems that many troubles occur due to impurities contained in the crude oil and maintenance costs increase. In this respect, there was a difficulty in practical use. This is because the salinity, vanadium and sulfur contained in the crude oil interact with each other to become a low melting point substance in the gas turbine and adhere to the blade, causing corrosion of the blade.
[0007]
For this reason, as a fuel for a gas turbine, a standard in which the content of salt and vanadium is 0.5 ppm or less is generally adopted, and the sulfur content is also 0.5 wt. However, even low-sulfur-containing crude oils such as Minas crude oil and Daqing crude oil do not satisfy at least these standards for salinity and vanadium, and heat-efficient combined cycle power generation It could not be used as a turbine fuel. Therefore, as a result, it has been difficult to put oil-fired gas turbine combined cycle power generation using crude oil as fuel for the gas turbine.
[0008]
[Problems to be solved by the invention]
In order to solve the above-mentioned impurity problem, the applicant, for example, according to Japanese Patent Application No. 4-287504 (Japanese Patent Application Laid-Open No. 6-207180), distills the desalted crude oil at a predetermined temperature to obtain a low boiling point distillation. An oil-fired gas using crude oil distillation technology, in which a low-boiling fraction is used as gas turbine fuel, while a high-boiling fraction is used as fuel for steam turbine boilers. A turbine combined cycle power generation method is proposed and put into practical use.
[0009]
However, in this power generation method, it was originally considered that each fuel (low-boiling fraction or high-boiling fraction) is generated at a constant distillation temperature. Therefore, the required proportion of fuel consumption accompanying fluctuations in power generation load, etc. It was difficult to respond flexibly to changes. That is, the ratio of the required amount of turbine fuel and boiler fuel is not necessarily constant but changes with fluctuations in the power generation load, etc., but when the distillation temperature is constant, the amount of low-boiling fraction produced as turbine fuel and The ratio of the amount of high-boiling fraction produced as boiler fuel is also almost constant.
[0010]
For this reason, the conventional configuration cannot cope with the change in the ratio of the required amount of fuel, and depending on the case, there is a possibility that some supplementary fuel needs to be replenished or surplus fuel is generated.
[0011]
Accordingly, the present invention is a method for operating a fuel supply system of an oil-fired gas turbine combined cycle power generation facility using crude oil distillation technology, and does not require supplementary fuel or the like. It aims at providing the fuel supply system operation method which can respond flexibly to the change of a ratio.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the fuel supply system operating method of the combined cycle power generation facility according to claim 1, wherein the crude oil is distilled at a predetermined distillation temperature to be separated into a low boiling fraction and a high boiling fraction, A method for operating a fuel supply system of a combined cycle power plant using a low-boiling fraction as a fuel for a gas turbine and using the high-boiling fraction as a fuel for a steam turbine boiler, the low-boiling fraction and the According to the required amount of the high boiling fraction, the distillation temperature is adjusted to control the production ratio of the low boiling fraction and the high boiling fraction.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to FIGS. Here, FIG. 1 is a diagram showing the configuration of the fuel supply system in the combined cycle power generation facility of this example, and FIG. 2 is a diagram showing the configuration of the power generation system in the combined cycle power generation facility. FIG. 3 is a diagram showing the relationship between the distillation temperature and fraction in the case of Minas crude oil.
[0014]
As shown in FIG. 1, the fuel supply system of this power generation facility includes a crude oil tank 1, a crude oil supply pump 2, a crude oil preheater 3-6, a crude oil heating furnace 7, a distillation tower 8, a condenser 9 as shown in FIG. , Turbine fuel supply pump 10, reflux pump 11, turbine fuel tank 12, boiler fuel supply pump 13, boiler fuel tank 14, feed water preheaters 15 and 16, turbine fuel level sensor 17 (not shown in FIG. 2), boiler fuel level sensor 18 (omitted in FIG. 2), a crude oil supply amount adjustment valve 19 and a distillation amount controller 20 are provided.
[0015]
The crude oil tank 1 stores crude oil, and it is preferable to use a low-sulfur crude oil that has been desalted as the crude oil. As this low-sulfur crude oil, since the desulfurization process of exhaust gas can be simplified, it is needless to say that a low sulfur content is preferable. Usually, the sulfur content is 1% by weight or less, more preferably 0.5%. Less than wt% crude oil is used. Examples of such crude oil include the aforementioned Minas crude oil and Daqing crude oil.
[0016]
In addition, since most sulfur content contained in crude oil is isolate | separated by distillation mentioned later, it is not necessary to necessarily use the above low sulfur crude oil as crude oil of this invention. Further, the salinity contained in the crude oil is likely to remain on the high-boiling fraction side by distillation using the distillation column 8, and depending on the distillation temperature conditions, the salinity content of the low-boiling fraction may be the above-mentioned reference value (0.5 ppm). Therefore, the crude oil of the present invention does not necessarily have to be desalted.
[0017]
In addition, when the desalination treatment is performed in the same facility, a heating means for preheating the crude oil to about 80 to 150 ° C. is provided, and for example, a plurality of stages of diso-routers as well-known desalting means are provided as necessary. Just do it. This disorouter mixes heated crude oil and fresh water and applies a static voltage of, for example, about 20,000 volts to agglomerate and separate the water droplets, lowering the viscosity of the crude oil and separating it by the difference in specific gravity between water and crude oil. In order to facilitate, it is preferable to preheat the crude oil as described above.
[0018]
In addition, the said disorouter is arrange | positioned in the middle of the crude oil supply line 21 which supplies crude oil from the crude oil tank 1 to the crude oil heating furnace 7, and some of the crude oil preheaters 3-6 are heated for the said desalination process. It can also function as a means.
[0019]
The crude oil supply pump 2 sends out the crude oil in the crude oil tank 1 and pumps it to the crude oil heating furnace 7 and further to the distillation tower 8 through the crude oil supply line 21. In this case, the crude heating furnace 7 burns crude oil in the crude oil tank 1, high boiling fraction in the boiler fuel tank 14, or crude oil, heavy oil, light oil, kerosene, naphtha, LPG, etc. prepared separately from the power generation fuel. The crude oil sent to the distillation column 8 is heated to a predetermined distillation temperature.
[0020]
In this case, the heating amount of the crude oil heating furnace 7 is automatically controlled by the distillation amount controller 20, and the distillation temperature (the crude oil temperature at the inlet of the distillation column 8) is generated so that each fuel is generated in an amount corresponding to the required amount. ) Is adjusted. That is, there is a certain relationship between the amount ratio of the low-boiling fraction produced by distillation and the distillation temperature. For example, in the case of Minas crude oil, it is as shown in FIG. As will be described later, in this case, the distillation amount controller 20 corresponds to the amount ratio of the low-boiling fraction and the high-boiling fraction to be generated based on the level signals from the turbine fuel level sensor 17 and the boiler fuel level sensor 18. It is the structure which controls the heating amount of the crude-oil heating furnace 7 so that it may become distillation temperature.
[0021]
The distillation temperature must be controlled within a predetermined allowable range so that the content of vanadium, salt or sulfur in the low-boiling fraction used as a gas turbine fuel becomes a desired value. May be determined according to the properties of the crude oil and the distillation pressure.
[0022]
In this case, the crude oil preheaters 3 and 4 or the crude oil preheaters 5 and 6 are gas derived from the top of the distillation column 8 (ie, low boiling fraction) or liquid derived from the bottom of the distillation column 8 (ie, This heat exchanger recovers heat in two stages from the high boiling fraction) and sequentially heats the crude oil before it is sent to the crude oil heating furnace 7, which increases the heating efficiency of the crude oil and imposes a burden on the crude oil heating furnace 7. Becomes lighter.
[0023]
In this case, the distillation column 8 is a system in which the low-boiling fraction derived from the top of the column is returned as a liquid by the reflux pump 11 and the reflux line 22 to come into contact with the generated steam of the crude oil and increase the degree of separation. For example, a bubble tower, a perforated plate tower, or a packed tower can be used.
[0024]
The condenser 9 is, for example, a multi-tube heat exchanger that finally cools and condenses the gas (that is, the low-boiling fraction) led out from the top of the distillation column 8 by the liquid line 23. In this case, the condenser 9 is condensed. Unsuccessful gas (off-gas) is discharged from the top. The low-boiling fraction of crude oil condensed in the condenser 9 is withdrawn from the bottom, a part thereof is returned to the distillation column 8 by the reflux pump 11 and the reflux line 22, and the remainder is turbine fuel as turbine fuel. The feed pump 10 sends the fuel to the turbine fuel tank 12. The boiler fuel supply pump 13 pumps the liquid derived from the bottom of the distillation column 8 (ie, the high boiling fraction) to the boiler fuel tank 14 through the liquid line 24.
[0025]
The feed water preheaters 15 and 16 recover heat from the gas derived from the top of the distillation column 8 (ie, the low boiling fraction) or the liquid derived from the bottom of the distillation column 8 (ie, the high boiling fraction). It is a heat exchanger that heats boiler feed water that is sent to the boiler 35 described later.
[0026]
The turbine fuel level sensor 17 is a level sensor that outputs a signal corresponding to the liquid level of the fuel in the turbine fuel tank 12 (turbine fuel composed of low boiling fraction), and the boiler fuel level sensor 18 is a boiler. This is a level sensor that outputs a signal corresponding to the liquid level of the fuel in the fuel tank 14 (boiler fuel comprising a high boiling fraction). The detection signals of these level sensors 17 and 18 are as shown in FIG. It is input to the distillation amount controller 20.
[0027]
The crude oil supply amount adjusting valve 19 is provided on the discharge side of the crude oil supply pump 2 in this case, and adjusts the flow rate of the crude oil sent from the crude oil tank 1 to the distillation tower 8. Be controlled. The distillation amount controller 20 also determines the opening of the crude oil supply amount control adjustment valve 19 and the crude oil heating furnace 7 based on the amount of fuel stored in the tanks 12 and 14 detected by the detection signals of the level sensors 17 and 18. The amount of crude oil distilled is controlled so that the amount of fuel stored in the tanks 12 and 14 is maintained within a certain range. In this case, the distillation temperature and distillation as shown in FIG. It is characterized in that the production ratio of the high-boiling fraction and the low-boiling fraction is changed depending on the distillation temperature so as to correspond to the required amount based on the relationship of the minutes.
[0028]
Specifically, for example, the following control is performed. That is, when the amount of fuel stored in each of the tanks 12 and 14 is within the normal range, a reference amount of low-boiling fraction corresponding to the average fuel consumption of the gas turbine 34 described later, and The flow rate and distillation temperature of the crude oil sent to the distillation column 8 are controlled so that a reference amount of high-boiling fraction corresponding to the average fuel consumption of the boiler 35 is generated.
[0029]
Then, for example, when only the fuel consumption of the gas turbine 34 increases from such a normal state, and only the storage amount in the turbine fuel tank 12 falls below the lower limit of the normal range (the required amount of the low-boiling fraction is reduced). When the ratio is increased), only the low-boiling fraction is generated in a larger amount than the reference amount while the amount of the high-boiling fraction is maintained at the reference amount (the generation ratio of the low-boiling fraction). Increase the distillation temperature with the crude oil feed rate.
[0030]
Conversely, when only the amount stored in the turbine fuel tank 12 exceeds the upper limit of the normal range (when the ratio of the required amount of low-boiling fraction is reduced), the production amount of the high-boiling fraction is Distillation with the supply flow rate of the crude oil sent to the distillation column 8 so that only the low-boiling fraction is produced in a smaller amount than the reference amount while maintaining the reference amount (so that the generation ratio of the low-boiling fraction is reduced). Control to lower the temperature.
[0031]
Furthermore, when only the amount stored in the turbine fuel tank 12 falls below the lower limit of the allowable range set outside the normal range (when the ratio of the required amount of the low boiling fraction further increases), the reference The distillation temperature is controlled to the maximum permissible range (for example, 420 ° C.) so that a larger amount of low-boiling fraction is produced than the amount, and the amount of high-boiling fraction produced within the range that does not become excessive. Increase supply flow to maximum.
[0032]
Conversely, when only the amount stored in the turbine fuel tank 12 exceeds the upper limit of the allowable range (when the ratio of the required amount of low-boiling fraction further decreases), only the low-boiling fraction is generated. In order to stop the heating, the heating of the crude oil is stopped, and the supply flow rate of the crude oil is controlled to the required amount of the high boiling fraction (the reference amount to be sent to the boiler fuel tank 14).
[0033]
In addition, for example, when both the fuel consumption of the gas turbine 34 and the boiler 35 increase from the normal state, and the storage amount in each of the tanks 12 and 14 falls below the lower limit of the normal range (high boiling fraction and low In the case where the total required amount is increased while the ratio of the required amount of boiling fraction remains substantially constant), the high boiling fraction and the low boiling fraction are each produced in a larger amount than the reference amount. Only the crude oil supply flow rate is increased while maintaining the distillation temperature at the normal value.
[0034]
Conversely, if the amount stored in each of the tanks 12 and 14 exceeds the upper limit of the normal range (the ratio of the required amount of the high boiling fraction and the low boiling fraction remains substantially constant, In the case of lowering), only the crude oil supply flow rate is reduced while maintaining the distillation temperature at the normal state value so that the high boiling fraction and the low boiling fraction are produced in a smaller amount than the reference amount, respectively. Take control.
[0035]
Furthermore, when the storage amount in each tank 12, 14 falls below the lower limit of the allowable range (the overall required amount further increases while the ratio of the required amount of the high boiling fraction and the low boiling fraction remains substantially constant) In this case, the supply flow rate of the crude oil can be maximized while maintaining the distillation temperature at the normal value so that a higher boiling fraction and a lower boiling fraction than the reference amount are generated. Increase to.
[0036]
Conversely, if the amount stored in each tank 12, 14 exceeds the upper limit of the allowable range (the ratio of the required amount of the high boiling fraction and the low boiling fraction remains substantially constant, In the case of further reduction), the heating of the crude oil and the supply of the crude oil are stopped to stop the production of the high boiling fraction and the low boiling fraction.
[0037]
Next, as shown in FIG. 2, the power generation system of this power generation facility includes, as shown in FIG. 2, a gas turbine 34, a boiler 35, a steam turbine 36, a condensate comprising a turbine body 31, a compressor 32, and a combustor 33. A container 37 and an economizer 38 are provided. Here, the gas turbine 34 causes the turbine fuel supplied from the turbine fuel tank 12 through the supply line 41 to be brought into contact with the air compressed by the compressor 32 and burned in the combustor 33, and this in the turbine body 31. In this case, the exhaust gas after combustion (residual oxygen concentration of about 11% to 15%, temperature of 580 ° C.) is formed in order to form an exhaust gas recombination type combined cycle. Degree) is supplied to the boiler 35 via the exhaust gas line 42.
[0038]
The boiler 35 is a Stirling boiler, for example, and has a convection heat transfer section 35a. The boiler 35 is supplied with the boiler fuel in the above-described boiler fuel tank 14 through the supply line 43 as fuel, and the exhaust gas from the boiler 35 is removed from the NOx removal through the exhaust gas derivation line 44. In addition to passing through the device and the dust collector, the heat is recovered by the economizer 38, guided to a chimney (not shown), and released to the atmosphere. Depending on the properties of the crude oil, a desulfurization device for removing sulfur (especially sulfurous acid gas) from the flue gas may be provided. Further, the economizer 38 is a heat exchanger that heats boiler feed water by the heat of smoke discharged from the boiler 35 in order to improve the thermal efficiency of the steam cycle.
[0039]
Although not shown in FIG. 2 because it is complicated, the steam turbine 36 includes a multi-stage steam turbine such as high pressure, medium pressure, and low pressure so as to form a so-called reheat cycle. In addition, in order to form a so-called regeneration cycle, it is naturally preferable to provide a plurality of extraction / feed water heaters to ensure a high degree of thermal efficiency. In this case, the feed water preheaters 15 and 16 (not shown in FIG. 2) shown in FIG. 1 also heat the feed water sent from the condenser 37 to the boiler 35 to further increase the thermal efficiency of the steam cycle.
[0040]
According to the power generation facility configured as described above and the operation method thereof, first, the advantages of combined cycle power generation are avoided while avoiding the problems such as the corrosion of the blade metal of the gas turbine 34 caused by impurities as described above. High-efficiency power generation can be made practical. That is, the crude oil sent out from the crude oil tank 1 by the crude oil supply pump 2 is heated to, for example, about 270 ° C. by the crude oil preheaters 3 to 6, and in this case, the crude oil heating furnace 7 provided independently in this case finally To a predetermined distillation temperature.
[0041]
If the distillation temperature is maintained within the above-described allowable range, the vanadium and salt content concentrations of the low-boiling fraction (that is, turbine fuel) derived from the top of the distillation column 8 are set to the reference values. It can be stably maintained at 0.5 ppm (wt.) Or less, and the sulfur content is also 0.5 to 0.05 wt. % Or less. That is, in the case of atmospheric distillation, most of heavy metals remain in high boiling fractions of about 900 ° F. or higher, and salt also remains in high boiling fractions of 420 ° C. (788 ° F.) or higher. Most of these impurities remain on the high-boiling fraction side and are contained in the boiler fuel sent to the boiler fuel tank 14. In the boiler 35, since heavy oil or the like has been burned conventionally, even a fuel containing such impurities can be operated without any problem.
[0042]
Thus, fuel with a sufficiently low impurity concentration is continuously supplied from the turbine fuel tank 12 to the gas turbine 34, and the high-temperature exhaust gas discharged from the gas turbine 34 is introduced into the boiler 35 and re-burned, so that storage is possible. High-efficiency combined cycle power generation using easy crude oil can be operated with high reliability without causing problems caused by impurities in the crude oil.
[0043]
In the operation method of this example, the supply of crude oil is performed based on the change in the storage amount of each of the tanks 12 and 14 as described above within the above-mentioned temperature condition in which most of heavy metals and salt are separated to the high boiling point side. By controlling the distillation temperature together with the amount, depending on the required amount of the high-boiling fraction and the low-boiling fraction, the production ratio is changed together with their overall production amount (distillation amount). Even if the ratio of consumption of fuel for gas turbines and boilers fluctuates with the overall consumption of fuel, no auxiliary fuel is required for any fuel, and surplus fuel is produced. Nor. For this reason, it becomes possible to efficiently supply the minimum necessary fuel with simple equipment that does not require an auxiliary fuel tank or the like.
[0044]
Moreover, in the case of the above-described embodiment, as described above, the tanks 12 and 14 for storing the high-boiling fraction and the low-boiling fraction are provided, and the absolute storage amount of each tank is maintained within a certain range. So that it is controlled. Therefore, each of the tanks 12 and 14 functions as a buffer, and even when there is a sudden change in fuel consumption, it is possible to stably supply a necessary amount of fuel, and these tanks 12 and 14 Is advantageous in that it is smaller than in the case of constant distillation amount control.
[0045]
In addition, this invention is not restricted to the said example of a form, There can be various aspects. For example, in the above embodiment, the required amount of each fuel is determined based on the storage amount of the tanks 12 and 14 that store the high-boiling fraction or the low-boiling fraction, and the distillation temperature is changed in accordance with this amount. For example, the supply flow rate of the fuel supplied to the turbine 34 and the boiler 35 is detected, and the generation rate of each fuel changes according to the ratio of the supply flow rate. The distillation temperature may be adjusted.
[0046]
Even when the required amount of each fuel is determined based on the storage amount of the tanks 12 and 14, the required amount is changed stepwise based on whether or not the upper and lower limits of a certain range are exceeded, as in the above example. It is not restricted to the aspect which determines and adjusts distillation temperature, You may adjust distillation temperature so that a production | generation ratio may change continuously according to the ratio of storage amount.
[0047]
Moreover, in the said form example, it was set as the structure which the system which consists of the controller 20 performs automatically operation operation, such as adjustment of the supply_amount | feed_rate of crude oil (operation of the valve 19), and operation of the heating amount of the crude oil heating furnace 7, Needless to say, the operator may determine the amount of tank storage and the like by manual operation of the operator.
[0048]
【The invention's effect】
According to the fuel supply system operation method of the combined cycle power generation facility of the present invention, according to the respective required amounts of the high boiling fraction and the low boiling fraction, the distillation temperature is adjusted to change their production ratio. Therefore, even if the ratio of the required amount of gas turbine fuel and boiler fuel fluctuates along with the overall required amount of fuel, any fuel does not require auxiliary fuel and surplus fuel. Therefore, it is possible to efficiently supply the minimum necessary fuel with a simple facility that does not require an auxiliary fuel tank or the like.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a fuel supply system of a combined cycle power generation facility as an example of an embodiment of the present invention.
FIG. 2 is a diagram showing a power generation system of the combined cycle power generation facility.
FIG. 3 is a diagram showing properties of Minas crude oil (distillation temperature and fraction).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crude oil tank 2 Crude oil supply pump 3-6 Crude oil preheater 7 Crude oil heating furnace 8 Distillation tower 9 Condenser 10 Turbine fuel supply pump 11 Reflux pump 12 Turbine fuel tank 14 Boiler fuel tank 17 Turbine fuel level sensor 18 Boiler fuel level sensor 19 Crude oil supply amount adjustment valve 20 Distillation amount controller 34 Gas turbine 35 Boiler 36 Steam turbine 37 Condenser

Claims (1)

原油を所定の蒸留温度で蒸留して低沸点留分と高沸点留分とに分離し、前記低沸点留分をガスタービンの燃料として使用し、前記高沸点留分を蒸気タービン用ボイラの燃料として使用するコンバインド・サイクル発電設備の燃料供給系運転方法であって、前記低沸点留分と前記高沸点留分の必要量に応じて、前記蒸留温度を調整して前記低沸点留分と前記高沸点留分の生成比率を制御することを特徴とするコンバインド・サイクル発電設備の燃料供給系運転方法。Crude oil is distilled at a predetermined distillation temperature to be separated into a low boiling fraction and a high boiling fraction, the low boiling fraction is used as a gas turbine fuel, and the high boiling fraction is used as fuel for a steam turbine boiler. The combined cycle power generation facility used as a fuel supply system operation method, wherein the distillation temperature is adjusted according to the required amount of the low boiling fraction and the high boiling fraction, the low boiling fraction and the A method for operating a fuel supply system of a combined cycle power generation facility, characterized by controlling a generation ratio of a high-boiling fraction.
JP15674996A 1996-06-18 1996-06-18 Operation method of fuel supply system for combined cycle power plant Expired - Fee Related JP3643647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15674996A JP3643647B2 (en) 1996-06-18 1996-06-18 Operation method of fuel supply system for combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15674996A JP3643647B2 (en) 1996-06-18 1996-06-18 Operation method of fuel supply system for combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH102204A JPH102204A (en) 1998-01-06
JP3643647B2 true JP3643647B2 (en) 2005-04-27

Family

ID=15634485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15674996A Expired - Fee Related JP3643647B2 (en) 1996-06-18 1996-06-18 Operation method of fuel supply system for combined cycle power plant

Country Status (1)

Country Link
JP (1) JP3643647B2 (en)

Also Published As

Publication number Publication date
JPH102204A (en) 1998-01-06

Similar Documents

Publication Publication Date Title
US5261225A (en) Pressurized wet combustion at increased temperature
JP4731293B2 (en) Combustion control method and apparatus for oxyfuel boiler
EP2300692B1 (en) Oxyfuel combusting boiler system and a method of generating power by using the boiler system
CN100544807C (en) The method of a kind of sulphur recovery and exhaust gas processing device and sulphur recovery thereof and vent gas treatment
JP5107418B2 (en) Primary recirculation exhaust gas flow controller for oxyfuel boiler
EP2304366A2 (en) Method of and system for generating power by oxyfuel combustion
JP5107419B2 (en) Combustion control device for oxyfuel boiler
AU2009253043A1 (en) Method of and system for generating power by oxyfuel combustion
WO2009144369A2 (en) Method of and system for generating power by oxyfuel combustion
CN106480251A (en) A kind of heat storage type converter exhaust heat recovering method and device
JP3706432B2 (en) Combined cycle power generation facility
JP3643647B2 (en) Operation method of fuel supply system for combined cycle power plant
CA2206802C (en) Heavy oil emulsion fuel combustion apparatus
JP5092114B2 (en) In-furnace fluidity management method for fluidized media accompanying coal type switching in fluidized bed boiler
CA2231670C (en) Heavy oil emulsified fuel combustion apparatus
JP2012137269A (en) Coal fired power generation plant and method of controlling the same
WO2011148298A2 (en) Method of controlling a boiler plant during switchover from air-combustion to oxygen-combustion
JPH09256813A (en) Method for operating fuel feed system of combined cycle power generating equipment
NO812376L (en) FUEL OIL DRAINAGE SYSTEM.
JPH09209711A (en) Combined cycle power generating facility and its operating method
JPH09189206A (en) Combined cycle power generation facilities
JP6549342B1 (en) POWER PLANT AND ITS OPERATION METHOD
JPH09209780A (en) Combined cycle power generating facility
JPH09194852A (en) Production of fuel for combined-cycle power generation
JPH10331609A (en) Combined cycle power generation and device thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080204

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100204

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120204

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120204

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees